| /** |
| * f2fs_format.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * Dual licensed under the GPL or LGPL version 2 licenses. |
| */ |
| #define _LARGEFILE64_SOURCE |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <fcntl.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <sys/stat.h> |
| #include <sys/mount.h> |
| #include <time.h> |
| #include <uuid/uuid.h> |
| |
| #include "f2fs_fs.h" |
| #include "quota.h" |
| #include "f2fs_format_utils.h" |
| |
| extern struct f2fs_configuration c; |
| struct f2fs_super_block raw_sb; |
| struct f2fs_super_block *sb = &raw_sb; |
| struct f2fs_checkpoint *cp; |
| |
| /* Return first segment number of each area */ |
| #define prev_zone(cur) (c.cur_seg[cur] - c.segs_per_zone) |
| #define next_zone(cur) (c.cur_seg[cur] + c.segs_per_zone) |
| #define last_zone(cur) ((cur - 1) * c.segs_per_zone) |
| #define last_section(cur) (cur + (c.secs_per_zone - 1) * c.segs_per_sec) |
| |
| static unsigned int quotatype_bits = 0; |
| |
| const char *media_ext_lists[] = { |
| "jpg", |
| "gif", |
| "png", |
| "avi", |
| "divx", |
| "mp4", |
| "mp3", |
| "3gp", |
| "wmv", |
| "wma", |
| "mpeg", |
| "mkv", |
| "mov", |
| "asx", |
| "asf", |
| "wmx", |
| "svi", |
| "wvx", |
| "wm", |
| "mpg", |
| "mpe", |
| "rm", |
| "ogg", |
| "jpeg", |
| "video", |
| "apk", /* for android system */ |
| "so", /* for android system */ |
| NULL |
| }; |
| |
| static bool is_extension_exist(const char *name) |
| { |
| int i; |
| |
| for (i = 0; i < F2FS_MAX_EXTENSION; i++) { |
| char *ext = (char *)sb->extension_list[i]; |
| if (!strcmp(ext, name)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void cure_extension_list(void) |
| { |
| const char **extlist = media_ext_lists; |
| char *ext_str = c.extension_list; |
| char *ue; |
| int name_len; |
| int i = 0; |
| |
| set_sb(extension_count, 0); |
| memset(sb->extension_list, 0, sizeof(sb->extension_list)); |
| |
| while (*extlist) { |
| name_len = strlen(*extlist); |
| memcpy(sb->extension_list[i++], *extlist, name_len); |
| extlist++; |
| } |
| set_sb(extension_count, i); |
| |
| if (!ext_str) |
| return; |
| |
| /* add user ext list */ |
| ue = strtok(ext_str, ", "); |
| while (ue != NULL) { |
| name_len = strlen(ue); |
| if (name_len >= 8) { |
| MSG(0, "\tWarn: Extension name (%s) is too long\n", ue); |
| goto next; |
| } |
| if (!is_extension_exist(ue)) |
| memcpy(sb->extension_list[i++], ue, name_len); |
| next: |
| ue = strtok(NULL, ", "); |
| if (i >= F2FS_MAX_EXTENSION) |
| break; |
| } |
| |
| set_sb(extension_count, i); |
| |
| free(c.extension_list); |
| } |
| |
| static void verify_cur_segs(void) |
| { |
| int i, j; |
| int reorder = 0; |
| |
| for (i = 0; i < NR_CURSEG_TYPE; i++) { |
| for (j = i + 1; j < NR_CURSEG_TYPE; j++) { |
| if (c.cur_seg[i] == c.cur_seg[j]) { |
| reorder = 1; |
| break; |
| } |
| } |
| } |
| |
| if (!reorder) |
| return; |
| |
| c.cur_seg[0] = 0; |
| for (i = 1; i < NR_CURSEG_TYPE; i++) |
| c.cur_seg[i] = next_zone(i - 1); |
| } |
| |
| static int f2fs_prepare_super_block(void) |
| { |
| u_int32_t blk_size_bytes; |
| u_int32_t log_sectorsize, log_sectors_per_block; |
| u_int32_t log_blocksize, log_blks_per_seg; |
| u_int32_t segment_size_bytes, zone_size_bytes; |
| u_int32_t sit_segments; |
| u_int32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa; |
| u_int32_t total_valid_blks_available; |
| u_int64_t zone_align_start_offset, diff; |
| u_int64_t total_meta_zones, total_meta_segments; |
| u_int32_t sit_bitmap_size, max_sit_bitmap_size; |
| u_int32_t max_nat_bitmap_size, max_nat_segments; |
| u_int32_t total_zones; |
| u_int32_t next_ino; |
| enum quota_type qtype; |
| int i; |
| |
| set_sb(magic, F2FS_SUPER_MAGIC); |
| set_sb(major_ver, F2FS_MAJOR_VERSION); |
| set_sb(minor_ver, F2FS_MINOR_VERSION); |
| |
| log_sectorsize = log_base_2(c.sector_size); |
| log_sectors_per_block = log_base_2(c.sectors_per_blk); |
| log_blocksize = log_sectorsize + log_sectors_per_block; |
| log_blks_per_seg = log_base_2(c.blks_per_seg); |
| |
| set_sb(log_sectorsize, log_sectorsize); |
| set_sb(log_sectors_per_block, log_sectors_per_block); |
| |
| set_sb(log_blocksize, log_blocksize); |
| set_sb(log_blocks_per_seg, log_blks_per_seg); |
| |
| set_sb(segs_per_sec, c.segs_per_sec); |
| set_sb(secs_per_zone, c.secs_per_zone); |
| |
| blk_size_bytes = 1 << log_blocksize; |
| segment_size_bytes = blk_size_bytes * c.blks_per_seg; |
| zone_size_bytes = |
| blk_size_bytes * c.secs_per_zone * |
| c.segs_per_sec * c.blks_per_seg; |
| |
| set_sb(checksum_offset, 0); |
| |
| set_sb(block_count, c.total_sectors >> log_sectors_per_block); |
| |
| zone_align_start_offset = |
| (c.start_sector * c.sector_size + |
| 2 * F2FS_BLKSIZE + zone_size_bytes - 1) / |
| zone_size_bytes * zone_size_bytes - |
| c.start_sector * c.sector_size; |
| |
| if (c.start_sector % c.sectors_per_blk) { |
| MSG(1, "\t%s: Align start sector number to the page unit\n", |
| c.zoned_mode ? "FAIL" : "WARN"); |
| MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n", |
| c.start_sector, |
| c.start_sector % c.sectors_per_blk, |
| c.sectors_per_blk); |
| if (c.zoned_mode) |
| return -1; |
| } |
| |
| set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes); |
| sb->cp_blkaddr = sb->segment0_blkaddr; |
| |
| MSG(0, "Info: zone aligned segment0 blkaddr: %u\n", |
| get_sb(segment0_blkaddr)); |
| |
| if (c.zoned_mode && (get_sb(segment0_blkaddr) + c.start_sector / |
| c.sectors_per_blk) % c.zone_blocks) { |
| MSG(1, "\tError: Unaligned segment0 block address %u\n", |
| get_sb(segment0_blkaddr)); |
| return -1; |
| } |
| |
| for (i = 0; i < c.ndevs; i++) { |
| if (i == 0) { |
| c.devices[i].total_segments = |
| (c.devices[i].total_sectors * |
| c.sector_size - zone_align_start_offset) / |
| segment_size_bytes; |
| c.devices[i].start_blkaddr = 0; |
| c.devices[i].end_blkaddr = c.devices[i].total_segments * |
| c.blks_per_seg - 1 + |
| sb->segment0_blkaddr; |
| } else { |
| c.devices[i].total_segments = |
| c.devices[i].total_sectors / |
| (c.sectors_per_blk * c.blks_per_seg); |
| c.devices[i].start_blkaddr = |
| c.devices[i - 1].end_blkaddr + 1; |
| c.devices[i].end_blkaddr = c.devices[i].start_blkaddr + |
| c.devices[i].total_segments * |
| c.blks_per_seg - 1; |
| } |
| if (c.ndevs > 1) { |
| memcpy(sb->devs[i].path, c.devices[i].path, MAX_PATH_LEN); |
| sb->devs[i].total_segments = |
| cpu_to_le32(c.devices[i].total_segments); |
| } |
| |
| c.total_segments += c.devices[i].total_segments; |
| } |
| set_sb(segment_count, (c.total_segments / c.segs_per_zone * |
| c.segs_per_zone)); |
| set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK); |
| |
| set_sb(sit_blkaddr, get_sb(segment0_blkaddr) + |
| get_sb(segment_count_ckpt) * c.blks_per_seg); |
| |
| blocks_for_sit = SIZE_ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK); |
| |
| sit_segments = SEG_ALIGN(blocks_for_sit); |
| |
| set_sb(segment_count_sit, sit_segments * 2); |
| |
| set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) * |
| c.blks_per_seg); |
| |
| total_valid_blks_available = (get_sb(segment_count) - |
| (get_sb(segment_count_ckpt) + |
| get_sb(segment_count_sit))) * c.blks_per_seg; |
| |
| blocks_for_nat = SIZE_ALIGN(total_valid_blks_available, |
| NAT_ENTRY_PER_BLOCK); |
| |
| set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat)); |
| /* |
| * The number of node segments should not be exceeded a "Threshold". |
| * This number resizes NAT bitmap area in a CP page. |
| * So the threshold is determined not to overflow one CP page |
| */ |
| sit_bitmap_size = ((get_sb(segment_count_sit) / 2) << |
| log_blks_per_seg) / 8; |
| |
| if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE) |
| max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE; |
| else |
| max_sit_bitmap_size = sit_bitmap_size; |
| |
| /* |
| * It should be reserved minimum 1 segment for nat. |
| * When sit is too large, we should expand cp area. It requires more |
| * pages for cp. |
| */ |
| if (max_sit_bitmap_size > |
| (CHECKSUM_OFFSET - |
| sizeof(struct f2fs_checkpoint) + 1 - 64)) { |
| max_nat_bitmap_size = CHECKSUM_OFFSET - |
| sizeof(struct f2fs_checkpoint) + 1; |
| set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size)); |
| } else { |
| max_nat_bitmap_size = |
| CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1 |
| - max_sit_bitmap_size; |
| set_sb(cp_payload, 0); |
| } |
| |
| max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg; |
| |
| if (get_sb(segment_count_nat) > max_nat_segments) |
| set_sb(segment_count_nat, max_nat_segments); |
| |
| set_sb(segment_count_nat, get_sb(segment_count_nat) * 2); |
| |
| set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) * |
| c.blks_per_seg); |
| |
| total_valid_blks_available = (get_sb(segment_count) - |
| (get_sb(segment_count_ckpt) + |
| get_sb(segment_count_sit) + |
| get_sb(segment_count_nat))) * |
| c.blks_per_seg; |
| |
| blocks_for_ssa = total_valid_blks_available / |
| c.blks_per_seg + 1; |
| |
| set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa)); |
| |
| total_meta_segments = get_sb(segment_count_ckpt) + |
| get_sb(segment_count_sit) + |
| get_sb(segment_count_nat) + |
| get_sb(segment_count_ssa); |
| diff = total_meta_segments % (c.segs_per_zone); |
| if (diff) |
| set_sb(segment_count_ssa, get_sb(segment_count_ssa) + |
| (c.segs_per_zone - diff)); |
| |
| total_meta_zones = ZONE_ALIGN(total_meta_segments * |
| c.blks_per_seg); |
| |
| set_sb(main_blkaddr, get_sb(segment0_blkaddr) + total_meta_zones * |
| c.segs_per_zone * c.blks_per_seg); |
| |
| if (c.zoned_mode) { |
| /* |
| * Make sure there is enough randomly writeable |
| * space at the beginning of the disk. |
| */ |
| unsigned long main_blkzone = get_sb(main_blkaddr) / c.zone_blocks; |
| |
| if (c.devices[0].zoned_model == F2FS_ZONED_HM && |
| c.devices[0].nr_rnd_zones < main_blkzone) { |
| MSG(0, "\tError: Device does not have enough random " |
| "write zones for F2FS volume (%lu needed)\n", |
| main_blkzone); |
| return -1; |
| } |
| } |
| |
| total_zones = get_sb(segment_count) / (c.segs_per_zone) - |
| total_meta_zones; |
| |
| set_sb(section_count, total_zones * c.secs_per_zone); |
| |
| set_sb(segment_count_main, get_sb(section_count) * c.segs_per_sec); |
| |
| /* Let's determine the best reserved and overprovisioned space */ |
| if (c.overprovision == 0) |
| c.overprovision = get_best_overprovision(sb); |
| |
| if (c.overprovision == 0 || c.total_segments < F2FS_MIN_SEGMENTS || |
| (c.devices[0].total_sectors * |
| c.sector_size < zone_align_start_offset) || |
| (get_sb(segment_count_main) - 2) < c.reserved_segments) { |
| MSG(0, "\tError: Device size is not sufficient for F2FS volume\n"); |
| return -1; |
| } |
| |
| c.reserved_segments = |
| (2 * (100 / c.overprovision + 1) + 6) |
| * c.segs_per_sec; |
| |
| uuid_generate(sb->uuid); |
| |
| /* precompute checksum seed for metadata */ |
| if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) |
| c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid)); |
| |
| utf8_to_utf16(sb->volume_name, (const char *)c.vol_label, |
| MAX_VOLUME_NAME, strlen(c.vol_label)); |
| set_sb(node_ino, 1); |
| set_sb(meta_ino, 2); |
| set_sb(root_ino, 3); |
| next_ino = 4; |
| |
| if (c.feature & cpu_to_le32(F2FS_FEATURE_QUOTA_INO)) { |
| quotatype_bits = QUOTA_USR_BIT | QUOTA_GRP_BIT; |
| if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA)) |
| quotatype_bits |= QUOTA_PRJ_BIT; |
| } |
| |
| for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { |
| if (!((1 << qtype) & quotatype_bits)) |
| continue; |
| sb->qf_ino[qtype] = cpu_to_le32(next_ino++); |
| MSG(0, "Info: add quota type = %u => %u\n", |
| qtype, next_ino - 1); |
| } |
| |
| if (total_zones <= 6) { |
| MSG(1, "\tError: %d zones: Need more zones " |
| "by shrinking zone size\n", total_zones); |
| return -1; |
| } |
| |
| if (c.heap) { |
| c.cur_seg[CURSEG_HOT_NODE] = |
| last_section(last_zone(total_zones)); |
| c.cur_seg[CURSEG_WARM_NODE] = prev_zone(CURSEG_HOT_NODE); |
| c.cur_seg[CURSEG_COLD_NODE] = prev_zone(CURSEG_WARM_NODE); |
| c.cur_seg[CURSEG_HOT_DATA] = prev_zone(CURSEG_COLD_NODE); |
| c.cur_seg[CURSEG_COLD_DATA] = 0; |
| c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_COLD_DATA); |
| } else { |
| c.cur_seg[CURSEG_HOT_NODE] = 0; |
| c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE); |
| c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE); |
| c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE); |
| c.cur_seg[CURSEG_COLD_DATA] = |
| max(last_zone((total_zones >> 2)), |
| next_zone(CURSEG_COLD_NODE)); |
| c.cur_seg[CURSEG_WARM_DATA] = |
| max(last_zone((total_zones >> 1)), |
| next_zone(CURSEG_COLD_DATA)); |
| } |
| |
| /* if there is redundancy, reassign it */ |
| verify_cur_segs(); |
| |
| cure_extension_list(); |
| |
| /* get kernel version */ |
| if (c.kd >= 0) { |
| dev_read_version(c.version, 0, VERSION_LEN); |
| get_kernel_version(c.version); |
| MSG(0, "Info: format version with\n \"%s\"\n", c.version); |
| } else { |
| memset(c.version, 0, VERSION_LEN); |
| } |
| |
| memcpy(sb->version, c.version, VERSION_LEN); |
| memcpy(sb->init_version, c.version, VERSION_LEN); |
| |
| sb->feature = c.feature; |
| |
| return 0; |
| } |
| |
| static int f2fs_init_sit_area(void) |
| { |
| u_int32_t blk_size, seg_size; |
| u_int32_t index = 0; |
| u_int64_t sit_seg_addr = 0; |
| u_int8_t *zero_buf = NULL; |
| |
| blk_size = 1 << get_sb(log_blocksize); |
| seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size; |
| |
| zero_buf = calloc(sizeof(u_int8_t), seg_size); |
| if(zero_buf == NULL) { |
| MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n"); |
| return -1; |
| } |
| |
| sit_seg_addr = get_sb(sit_blkaddr); |
| sit_seg_addr *= blk_size; |
| |
| DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr); |
| for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) { |
| if (dev_fill(zero_buf, sit_seg_addr, seg_size)) { |
| MSG(1, "\tError: While zeroing out the sit area " |
| "on disk!!!\n"); |
| free(zero_buf); |
| return -1; |
| } |
| sit_seg_addr += seg_size; |
| } |
| |
| free(zero_buf); |
| return 0 ; |
| } |
| |
| static int f2fs_init_nat_area(void) |
| { |
| u_int32_t blk_size, seg_size; |
| u_int32_t index = 0; |
| u_int64_t nat_seg_addr = 0; |
| u_int8_t *nat_buf = NULL; |
| |
| blk_size = 1 << get_sb(log_blocksize); |
| seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size; |
| |
| nat_buf = calloc(sizeof(u_int8_t), seg_size); |
| if (nat_buf == NULL) { |
| MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n"); |
| return -1; |
| } |
| |
| nat_seg_addr = get_sb(nat_blkaddr); |
| nat_seg_addr *= blk_size; |
| |
| DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr); |
| for (index = 0; index < get_sb(segment_count_nat) / 2; index++) { |
| if (dev_fill(nat_buf, nat_seg_addr, seg_size)) { |
| MSG(1, "\tError: While zeroing out the nat area " |
| "on disk!!!\n"); |
| free(nat_buf); |
| return -1; |
| } |
| nat_seg_addr = nat_seg_addr + (2 * seg_size); |
| } |
| |
| free(nat_buf); |
| return 0 ; |
| } |
| |
| static int f2fs_write_check_point_pack(void) |
| { |
| struct f2fs_summary_block *sum = NULL; |
| struct f2fs_journal *journal; |
| u_int32_t blk_size_bytes; |
| u_int32_t nat_bits_bytes, nat_bits_blocks; |
| unsigned char *nat_bits = NULL, *empty_nat_bits; |
| u_int64_t cp_seg_blk = 0; |
| u_int32_t crc = 0, flags; |
| unsigned int i; |
| char *cp_payload = NULL; |
| char *sum_compact, *sum_compact_p; |
| struct f2fs_summary *sum_entry; |
| enum quota_type qtype; |
| u_int32_t quota_inum, quota_dnum; |
| int off; |
| int ret = -1; |
| |
| cp = calloc(F2FS_BLKSIZE, 1); |
| if (cp == NULL) { |
| MSG(1, "\tError: Calloc Failed for f2fs_checkpoint!!!\n"); |
| return ret; |
| } |
| |
| sum = calloc(F2FS_BLKSIZE, 1); |
| if (sum == NULL) { |
| MSG(1, "\tError: Calloc Failed for summay_node!!!\n"); |
| goto free_cp; |
| } |
| |
| sum_compact = calloc(F2FS_BLKSIZE, 1); |
| if (sum_compact == NULL) { |
| MSG(1, "\tError: Calloc Failed for summay buffer!!!\n"); |
| goto free_sum; |
| } |
| sum_compact_p = sum_compact; |
| |
| nat_bits_bytes = get_sb(segment_count_nat) << 5; |
| nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + |
| F2FS_BLKSIZE - 1); |
| nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks); |
| if (nat_bits == NULL) { |
| MSG(1, "\tError: Calloc Failed for nat bits buffer!!!\n"); |
| goto free_sum_compact; |
| } |
| |
| cp_payload = calloc(F2FS_BLKSIZE, 1); |
| if (cp_payload == NULL) { |
| MSG(1, "\tError: Calloc Failed for cp_payload!!!\n"); |
| goto free_nat_bits; |
| } |
| |
| /* 1. cp page 1 of checkpoint pack 1 */ |
| cp->checkpoint_ver = cpu_to_le64(rand() | 0x1); |
| set_cp(cur_node_segno[0], c.cur_seg[CURSEG_HOT_NODE]); |
| set_cp(cur_node_segno[1], c.cur_seg[CURSEG_WARM_NODE]); |
| set_cp(cur_node_segno[2], c.cur_seg[CURSEG_COLD_NODE]); |
| set_cp(cur_data_segno[0], c.cur_seg[CURSEG_HOT_DATA]); |
| set_cp(cur_data_segno[1], c.cur_seg[CURSEG_WARM_DATA]); |
| set_cp(cur_data_segno[2], c.cur_seg[CURSEG_COLD_DATA]); |
| for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) { |
| set_cp(cur_node_segno[i], 0xffffffff); |
| set_cp(cur_data_segno[i], 0xffffffff); |
| } |
| |
| quota_inum = quota_dnum = 0; |
| for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) |
| if (sb->qf_ino[qtype]) { |
| quota_inum++; |
| quota_dnum += QUOTA_DATA(qtype); |
| } |
| |
| set_cp(cur_node_blkoff[0], 1 + quota_inum); |
| set_cp(cur_data_blkoff[0], 1 + quota_dnum); |
| set_cp(valid_block_count, 2 + quota_inum + quota_dnum); |
| set_cp(rsvd_segment_count, c.reserved_segments); |
| set_cp(overprov_segment_count, (get_sb(segment_count_main) - |
| get_cp(rsvd_segment_count)) * |
| c.overprovision / 100); |
| set_cp(overprov_segment_count, get_cp(overprov_segment_count) + |
| get_cp(rsvd_segment_count)); |
| |
| MSG(0, "Info: Overprovision ratio = %.3lf%%\n", c.overprovision); |
| MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n", |
| get_cp(overprov_segment_count), |
| c.reserved_segments); |
| |
| /* main segments - reserved segments - (node + data segments) */ |
| set_cp(free_segment_count, get_sb(segment_count_main) - 6); |
| set_cp(user_block_count, ((get_cp(free_segment_count) + 6 - |
| get_cp(overprov_segment_count)) * c.blks_per_seg)); |
| /* cp page (2), data summaries (1), node summaries (3) */ |
| set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload)); |
| flags = CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG; |
| if (get_cp(cp_pack_total_block_count) <= |
| (1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks) |
| flags |= CP_NAT_BITS_FLAG; |
| |
| if (c.trimmed) |
| flags |= CP_TRIMMED_FLAG; |
| |
| set_cp(ckpt_flags, flags); |
| set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload)); |
| set_cp(valid_node_count, 1 + quota_inum); |
| set_cp(valid_inode_count, 1 + quota_inum); |
| set_cp(next_free_nid, get_sb(root_ino) + 1 + quota_inum); |
| set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) << |
| get_sb(log_blocks_per_seg)) / 8); |
| |
| set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) << |
| get_sb(log_blocks_per_seg)) / 8); |
| |
| set_cp(checksum_offset, CHECKSUM_OFFSET); |
| |
| crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CHECKSUM_OFFSET); |
| *((__le32 *)((unsigned char *)cp + CHECKSUM_OFFSET)) = |
| cpu_to_le32(crc); |
| |
| blk_size_bytes = 1 << get_sb(log_blocksize); |
| |
| if (blk_size_bytes != F2FS_BLKSIZE) { |
| MSG(1, "\tError: Wrong block size %d / %d!!!\n", |
| blk_size_bytes, F2FS_BLKSIZE); |
| goto free_cp_payload; |
| } |
| |
| cp_seg_blk = get_sb(segment0_blkaddr); |
| |
| DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n", |
| cp_seg_blk); |
| if (dev_write_block(cp, cp_seg_blk)) { |
| MSG(1, "\tError: While writing the cp to disk!!!\n"); |
| goto free_cp_payload; |
| } |
| |
| for (i = 0; i < get_sb(cp_payload); i++) { |
| cp_seg_blk++; |
| if (dev_fill_block(cp_payload, cp_seg_blk)) { |
| MSG(1, "\tError: While zeroing out the sit bitmap area " |
| "on disk!!!\n"); |
| goto free_cp_payload; |
| } |
| } |
| |
| /* Prepare and write Segment summary for HOT/WARM/COLD DATA |
| * |
| * The structure of compact summary |
| * +-------------------+ |
| * | nat_journal | |
| * +-------------------+ |
| * | sit_journal | |
| * +-------------------+ |
| * | hot data summary | |
| * +-------------------+ |
| * | warm data summary | |
| * +-------------------+ |
| * | cold data summary | |
| * +-------------------+ |
| */ |
| memset(sum, 0, sizeof(struct f2fs_summary_block)); |
| SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA); |
| |
| journal = &sum->journal; |
| journal->n_nats = cpu_to_le16(1 + quota_inum); |
| journal->nat_j.entries[0].nid = sb->root_ino; |
| journal->nat_j.entries[0].ne.version = 0; |
| journal->nat_j.entries[0].ne.ino = sb->root_ino; |
| journal->nat_j.entries[0].ne.block_addr = cpu_to_le32( |
| get_sb(main_blkaddr) + |
| get_cp(cur_node_segno[0]) * c.blks_per_seg); |
| |
| for (qtype = 0, i = 1; qtype < F2FS_MAX_QUOTAS; qtype++) { |
| if (sb->qf_ino[qtype] == 0) |
| continue; |
| journal->nat_j.entries[i].nid = sb->qf_ino[qtype]; |
| journal->nat_j.entries[i].ne.version = 0; |
| journal->nat_j.entries[i].ne.ino = sb->qf_ino[qtype]; |
| journal->nat_j.entries[i].ne.block_addr = cpu_to_le32( |
| get_sb(main_blkaddr) + |
| get_cp(cur_node_segno[0]) * |
| c.blks_per_seg + i); |
| i++; |
| } |
| |
| memcpy(sum_compact_p, &journal->n_nats, SUM_JOURNAL_SIZE); |
| sum_compact_p += SUM_JOURNAL_SIZE; |
| |
| memset(sum, 0, sizeof(struct f2fs_summary_block)); |
| /* inode sit for root */ |
| journal->n_sits = cpu_to_le16(6); |
| journal->sit_j.entries[0].segno = cp->cur_node_segno[0]; |
| journal->sit_j.entries[0].se.vblocks = |
| cpu_to_le16((CURSEG_HOT_NODE << 10) | |
| (1 + quota_inum)); |
| f2fs_set_bit(0, (char *)journal->sit_j.entries[0].se.valid_map); |
| for (i = 1; i <= quota_inum; i++) |
| f2fs_set_bit(i, (char *)journal->sit_j.entries[0].se.valid_map); |
| journal->sit_j.entries[1].segno = cp->cur_node_segno[1]; |
| journal->sit_j.entries[1].se.vblocks = |
| cpu_to_le16((CURSEG_WARM_NODE << 10)); |
| journal->sit_j.entries[2].segno = cp->cur_node_segno[2]; |
| journal->sit_j.entries[2].se.vblocks = |
| cpu_to_le16((CURSEG_COLD_NODE << 10)); |
| |
| /* data sit for root */ |
| journal->sit_j.entries[3].segno = cp->cur_data_segno[0]; |
| journal->sit_j.entries[3].se.vblocks = |
| cpu_to_le16((CURSEG_HOT_DATA << 10) | |
| (1 + quota_dnum)); |
| f2fs_set_bit(0, (char *)journal->sit_j.entries[3].se.valid_map); |
| for (i = 1; i <= quota_dnum; i++) |
| f2fs_set_bit(i, (char *)journal->sit_j.entries[3].se.valid_map); |
| |
| journal->sit_j.entries[4].segno = cp->cur_data_segno[1]; |
| journal->sit_j.entries[4].se.vblocks = |
| cpu_to_le16((CURSEG_WARM_DATA << 10)); |
| journal->sit_j.entries[5].segno = cp->cur_data_segno[2]; |
| journal->sit_j.entries[5].se.vblocks = |
| cpu_to_le16((CURSEG_COLD_DATA << 10)); |
| |
| memcpy(sum_compact_p, &journal->n_sits, SUM_JOURNAL_SIZE); |
| sum_compact_p += SUM_JOURNAL_SIZE; |
| |
| /* hot data summary */ |
| sum_entry = (struct f2fs_summary *)sum_compact_p; |
| sum_entry->nid = sb->root_ino; |
| sum_entry->ofs_in_node = 0; |
| |
| off = 1; |
| for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { |
| if (sb->qf_ino[qtype] == 0) |
| continue; |
| int j; |
| |
| for (j = 0; j < QUOTA_DATA(qtype); j++) { |
| (sum_entry + off + j)->nid = sb->qf_ino[qtype]; |
| (sum_entry + off + j)->ofs_in_node = j; |
| } |
| off += QUOTA_DATA(qtype); |
| } |
| |
| /* warm data summary, nothing to do */ |
| /* cold data summary, nothing to do */ |
| |
| cp_seg_blk++; |
| DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n", |
| cp_seg_blk); |
| if (dev_write_block(sum_compact, cp_seg_blk)) { |
| MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); |
| goto free_cp_payload; |
| } |
| |
| /* Prepare and write Segment summary for HOT_NODE */ |
| memset(sum, 0, sizeof(struct f2fs_summary_block)); |
| SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE); |
| |
| sum->entries[0].nid = sb->root_ino; |
| sum->entries[0].ofs_in_node = 0; |
| for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { |
| if (sb->qf_ino[qtype] == 0) |
| continue; |
| sum->entries[1 + i].nid = sb->qf_ino[qtype]; |
| sum->entries[1 + i].ofs_in_node = 0; |
| i++; |
| } |
| |
| cp_seg_blk++; |
| DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n", |
| cp_seg_blk); |
| if (dev_write_block(sum, cp_seg_blk)) { |
| MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); |
| goto free_cp_payload; |
| } |
| |
| /* Fill segment summary for WARM_NODE to zero. */ |
| memset(sum, 0, sizeof(struct f2fs_summary_block)); |
| SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE); |
| |
| cp_seg_blk++; |
| DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n", |
| cp_seg_blk); |
| if (dev_write_block(sum, cp_seg_blk)) { |
| MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); |
| goto free_cp_payload; |
| } |
| |
| /* Fill segment summary for COLD_NODE to zero. */ |
| memset(sum, 0, sizeof(struct f2fs_summary_block)); |
| SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE); |
| cp_seg_blk++; |
| DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n", |
| cp_seg_blk); |
| if (dev_write_block(sum, cp_seg_blk)) { |
| MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); |
| goto free_cp_payload; |
| } |
| |
| /* cp page2 */ |
| cp_seg_blk++; |
| DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk); |
| if (dev_write_block(cp, cp_seg_blk)) { |
| MSG(1, "\tError: While writing the cp to disk!!!\n"); |
| goto free_cp_payload; |
| } |
| |
| /* write NAT bits, if possible */ |
| if (flags & CP_NAT_BITS_FLAG) { |
| uint32_t i; |
| |
| *(__le64 *)nat_bits = get_cp_crc(cp); |
| empty_nat_bits = nat_bits + 8 + nat_bits_bytes; |
| memset(empty_nat_bits, 0xff, nat_bits_bytes); |
| test_and_clear_bit_le(0, empty_nat_bits); |
| |
| /* write the last blocks in cp pack */ |
| cp_seg_blk = get_sb(segment0_blkaddr) + (1 << |
| get_sb(log_blocks_per_seg)) - nat_bits_blocks; |
| |
| DBG(1, "\tWriting NAT bits pages, at offset 0x%08"PRIx64"\n", |
| cp_seg_blk); |
| |
| for (i = 0; i < nat_bits_blocks; i++) { |
| if (dev_write_block(nat_bits + i * |
| F2FS_BLKSIZE, cp_seg_blk + i)) { |
| MSG(1, "\tError: write NAT bits to disk!!!\n"); |
| goto free_cp_payload; |
| } |
| } |
| } |
| |
| /* cp page 1 of check point pack 2 |
| * Initiatialize other checkpoint pack with version zero |
| */ |
| cp->checkpoint_ver = 0; |
| |
| crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CHECKSUM_OFFSET); |
| *((__le32 *)((unsigned char *)cp + CHECKSUM_OFFSET)) = |
| cpu_to_le32(crc); |
| cp_seg_blk = get_sb(segment0_blkaddr) + c.blks_per_seg; |
| DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", |
| cp_seg_blk); |
| if (dev_write_block(cp, cp_seg_blk)) { |
| MSG(1, "\tError: While writing the cp to disk!!!\n"); |
| goto free_cp_payload; |
| } |
| |
| for (i = 0; i < get_sb(cp_payload); i++) { |
| cp_seg_blk++; |
| if (dev_fill_block(cp_payload, cp_seg_blk)) { |
| MSG(1, "\tError: While zeroing out the sit bitmap area " |
| "on disk!!!\n"); |
| goto free_cp_payload; |
| } |
| } |
| |
| /* cp page 2 of check point pack 2 */ |
| cp_seg_blk += (le32_to_cpu(cp->cp_pack_total_block_count) - |
| get_sb(cp_payload) - 1); |
| DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", |
| cp_seg_blk); |
| if (dev_write_block(cp, cp_seg_blk)) { |
| MSG(1, "\tError: While writing the cp to disk!!!\n"); |
| goto free_cp_payload; |
| } |
| |
| ret = 0; |
| |
| free_cp_payload: |
| free(cp_payload); |
| free_nat_bits: |
| free(nat_bits); |
| free_sum_compact: |
| free(sum_compact); |
| free_sum: |
| free(sum); |
| free_cp: |
| free(cp); |
| return ret; |
| } |
| |
| static int f2fs_write_super_block(void) |
| { |
| int index; |
| u_int8_t *zero_buff; |
| |
| zero_buff = calloc(F2FS_BLKSIZE, 1); |
| |
| memcpy(zero_buff + F2FS_SUPER_OFFSET, sb, sizeof(*sb)); |
| DBG(1, "\tWriting super block, at offset 0x%08x\n", 0); |
| for (index = 0; index < 2; index++) { |
| if (dev_write_block(zero_buff, index)) { |
| MSG(1, "\tError: While while writing supe_blk " |
| "on disk!!! index : %d\n", index); |
| free(zero_buff); |
| return -1; |
| } |
| } |
| |
| free(zero_buff); |
| return 0; |
| } |
| |
| #ifndef WITH_ANDROID |
| static int discard_obsolete_dnode(struct f2fs_node *raw_node, u_int64_t offset) |
| { |
| u_int64_t next_blkaddr = 0; |
| u64 end_blkaddr = (get_sb(segment_count_main) << |
| get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr); |
| u_int64_t start_inode_pos = get_sb(main_blkaddr); |
| u_int64_t last_inode_pos; |
| enum quota_type qtype; |
| u_int32_t quota_inum = 0; |
| |
| for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) |
| if (sb->qf_ino[qtype]) quota_inum++; |
| |
| /* only root inode was written before truncating dnodes */ |
| last_inode_pos = start_inode_pos + |
| c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg + quota_inum; |
| |
| if (c.zoned_mode) |
| return 0; |
| do { |
| if (offset < get_sb(main_blkaddr) || offset >= end_blkaddr) |
| break; |
| |
| if (dev_read_block(raw_node, offset)) { |
| MSG(1, "\tError: While traversing direct node!!!\n"); |
| return -1; |
| } |
| |
| next_blkaddr = le32_to_cpu(raw_node->footer.next_blkaddr); |
| memset(raw_node, 0, F2FS_BLKSIZE); |
| |
| DBG(1, "\tDiscard dnode, at offset 0x%08"PRIx64"\n", offset); |
| if (dev_write_block(raw_node, offset)) { |
| MSG(1, "\tError: While discarding direct node!!!\n"); |
| return -1; |
| } |
| offset = next_blkaddr; |
| /* should avoid recursive chain due to stale data */ |
| if (offset >= start_inode_pos || offset <= last_inode_pos) |
| break; |
| } while (1); |
| |
| return 0; |
| } |
| #endif |
| |
| static int f2fs_write_root_inode(void) |
| { |
| struct f2fs_node *raw_node = NULL; |
| u_int64_t blk_size_bytes, data_blk_nor; |
| u_int64_t main_area_node_seg_blk_offset = 0; |
| |
| raw_node = calloc(F2FS_BLKSIZE, 1); |
| if (raw_node == NULL) { |
| MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); |
| return -1; |
| } |
| |
| raw_node->footer.nid = sb->root_ino; |
| raw_node->footer.ino = sb->root_ino; |
| raw_node->footer.cp_ver = cpu_to_le64(1); |
| raw_node->footer.next_blkaddr = cpu_to_le32( |
| get_sb(main_blkaddr) + |
| c.cur_seg[CURSEG_HOT_NODE] * |
| c.blks_per_seg + 1); |
| |
| raw_node->i.i_mode = cpu_to_le16(0x41ed); |
| raw_node->i.i_links = cpu_to_le32(2); |
| raw_node->i.i_uid = cpu_to_le32(getuid()); |
| raw_node->i.i_gid = cpu_to_le32(getgid()); |
| |
| blk_size_bytes = 1 << get_sb(log_blocksize); |
| raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */ |
| raw_node->i.i_blocks = cpu_to_le64(2); |
| |
| raw_node->i.i_atime = cpu_to_le32(time(NULL)); |
| raw_node->i.i_atime_nsec = 0; |
| raw_node->i.i_ctime = cpu_to_le32(time(NULL)); |
| raw_node->i.i_ctime_nsec = 0; |
| raw_node->i.i_mtime = cpu_to_le32(time(NULL)); |
| raw_node->i.i_mtime_nsec = 0; |
| raw_node->i.i_generation = 0; |
| raw_node->i.i_xattr_nid = 0; |
| raw_node->i.i_flags = 0; |
| raw_node->i.i_current_depth = cpu_to_le32(1); |
| raw_node->i.i_dir_level = DEF_DIR_LEVEL; |
| |
| if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) { |
| raw_node->i.i_inline = F2FS_EXTRA_ATTR; |
| raw_node->i.i_extra_isize = |
| cpu_to_le16(F2FS_TOTAL_EXTRA_ATTR_SIZE); |
| } |
| |
| if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA)) |
| raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID); |
| |
| data_blk_nor = get_sb(main_blkaddr) + |
| c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg; |
| raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blk_nor); |
| |
| raw_node->i.i_ext.fofs = 0; |
| raw_node->i.i_ext.blk_addr = 0; |
| raw_node->i.i_ext.len = 0; |
| |
| if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) |
| raw_node->i.i_inode_checksum = |
| cpu_to_le32(f2fs_inode_chksum(raw_node)); |
| |
| main_area_node_seg_blk_offset = get_sb(main_blkaddr); |
| main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] * |
| c.blks_per_seg; |
| |
| DBG(1, "\tWriting root inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n", |
| get_sb(main_blkaddr), |
| c.cur_seg[CURSEG_HOT_NODE], |
| c.blks_per_seg, main_area_node_seg_blk_offset); |
| if (dev_write_block(raw_node, main_area_node_seg_blk_offset)) { |
| MSG(1, "\tError: While writing the raw_node to disk!!!\n"); |
| free(raw_node); |
| return -1; |
| } |
| |
| /* avoid power-off-recovery based on roll-forward policy */ |
| main_area_node_seg_blk_offset = get_sb(main_blkaddr); |
| main_area_node_seg_blk_offset += c.cur_seg[CURSEG_WARM_NODE] * |
| c.blks_per_seg; |
| |
| #ifndef WITH_ANDROID |
| if (discard_obsolete_dnode(raw_node, main_area_node_seg_blk_offset)) { |
| free(raw_node); |
| return -1; |
| } |
| #endif |
| free(raw_node); |
| return 0; |
| } |
| |
| static int f2fs_write_default_quota(int qtype, unsigned int blkaddr, |
| __le32 raw_id) |
| { |
| char *filebuf = calloc(F2FS_BLKSIZE, 2); |
| int file_magics[] = INITQMAGICS; |
| struct v2_disk_dqheader ddqheader; |
| struct v2_disk_dqinfo ddqinfo; |
| struct v2r1_disk_dqblk dqblk; |
| |
| if (filebuf == NULL) { |
| MSG(1, "\tError: Calloc Failed for filebuf!!!\n"); |
| return -1; |
| } |
| |
| /* Write basic quota header */ |
| ddqheader.dqh_magic = cpu_to_le32(file_magics[qtype]); |
| /* only support QF_VFSV1 */ |
| ddqheader.dqh_version = cpu_to_le32(1); |
| |
| memcpy(filebuf, &ddqheader, sizeof(ddqheader)); |
| |
| /* Fill Initial quota file content */ |
| ddqinfo.dqi_bgrace = cpu_to_le32(MAX_DQ_TIME); |
| ddqinfo.dqi_igrace = cpu_to_le32(MAX_IQ_TIME); |
| ddqinfo.dqi_flags = cpu_to_le32(0); |
| ddqinfo.dqi_blocks = cpu_to_le32(QT_TREEOFF + 5); |
| ddqinfo.dqi_free_blk = cpu_to_le32(0); |
| ddqinfo.dqi_free_entry = cpu_to_le32(5); |
| |
| memcpy(filebuf + V2_DQINFOOFF, &ddqinfo, sizeof(ddqinfo)); |
| |
| filebuf[1024] = 2; |
| filebuf[2048] = 3; |
| filebuf[3072] = 4; |
| filebuf[4096] = 5; |
| |
| filebuf[5120 + 8] = 1; |
| |
| dqblk.dqb_id = raw_id; |
| dqblk.dqb_pad = cpu_to_le32(0); |
| dqblk.dqb_ihardlimit = cpu_to_le64(0); |
| dqblk.dqb_isoftlimit = cpu_to_le64(0); |
| dqblk.dqb_curinodes = cpu_to_le64(1); |
| dqblk.dqb_bhardlimit = cpu_to_le64(0); |
| dqblk.dqb_bsoftlimit = cpu_to_le64(0); |
| dqblk.dqb_curspace = cpu_to_le64(4096); |
| dqblk.dqb_btime = cpu_to_le64(0); |
| dqblk.dqb_itime = cpu_to_le64(0); |
| |
| memcpy(filebuf + 5136, &dqblk, sizeof(struct v2r1_disk_dqblk)); |
| |
| /* Write two blocks */ |
| if (dev_write_block(filebuf, blkaddr) || |
| dev_write_block(filebuf + F2FS_BLKSIZE, blkaddr + 1)) { |
| MSG(1, "\tError: While writing the quota_blk to disk!!!\n"); |
| free(filebuf); |
| return -1; |
| } |
| DBG(1, "\tWriting quota data, at offset %08x, %08x\n", |
| blkaddr, blkaddr + 1); |
| free(filebuf); |
| return 0; |
| } |
| |
| static int f2fs_write_qf_inode(int qtype) |
| { |
| struct f2fs_node *raw_node = NULL; |
| u_int64_t data_blk_nor; |
| u_int64_t main_area_node_seg_blk_offset = 0; |
| __le32 raw_id; |
| int i; |
| |
| raw_node = calloc(F2FS_BLKSIZE, 1); |
| if (raw_node == NULL) { |
| MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); |
| return -1; |
| } |
| |
| raw_node->footer.nid = sb->qf_ino[qtype]; |
| raw_node->footer.ino = sb->qf_ino[qtype]; |
| raw_node->footer.cp_ver = cpu_to_le64(1); |
| raw_node->footer.next_blkaddr = cpu_to_le32( |
| get_sb(main_blkaddr) + |
| c.cur_seg[CURSEG_HOT_NODE] * |
| c.blks_per_seg + 1 + qtype + 1); |
| |
| raw_node->i.i_mode = cpu_to_le16(0x8180); |
| raw_node->i.i_links = cpu_to_le32(1); |
| raw_node->i.i_uid = cpu_to_le32(getuid()); |
| raw_node->i.i_gid = cpu_to_le32(getgid()); |
| |
| raw_node->i.i_size = cpu_to_le64(1024 * 6); /* Hard coded */ |
| raw_node->i.i_blocks = cpu_to_le64(1 + QUOTA_DATA(qtype)); |
| |
| raw_node->i.i_atime = cpu_to_le32(time(NULL)); |
| raw_node->i.i_atime_nsec = 0; |
| raw_node->i.i_ctime = cpu_to_le32(time(NULL)); |
| raw_node->i.i_ctime_nsec = 0; |
| raw_node->i.i_mtime = cpu_to_le32(time(NULL)); |
| raw_node->i.i_mtime_nsec = 0; |
| raw_node->i.i_generation = 0; |
| raw_node->i.i_xattr_nid = 0; |
| raw_node->i.i_flags = FS_IMMUTABLE_FL; |
| raw_node->i.i_current_depth = cpu_to_le32(1); |
| raw_node->i.i_dir_level = DEF_DIR_LEVEL; |
| |
| if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) { |
| raw_node->i.i_inline = F2FS_EXTRA_ATTR; |
| raw_node->i.i_extra_isize = |
| cpu_to_le16(F2FS_TOTAL_EXTRA_ATTR_SIZE); |
| } |
| |
| if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA)) |
| raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID); |
| |
| data_blk_nor = get_sb(main_blkaddr) + |
| c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg + 1; |
| |
| for (i = 0; i < qtype; i++) |
| if (sb->qf_ino[i]) |
| data_blk_nor += QUOTA_DATA(i); |
| if (qtype == 0) |
| raw_id = raw_node->i.i_uid; |
| else if (qtype == 1) |
| raw_id = raw_node->i.i_gid; |
| else if (qtype == 2) |
| raw_id = raw_node->i.i_projid; |
| else |
| ASSERT(0); |
| |
| /* write two blocks */ |
| if (f2fs_write_default_quota(qtype, data_blk_nor, raw_id)) { |
| free(raw_node); |
| return -1; |
| } |
| |
| for (i = 0; i < QUOTA_DATA(qtype); i++) |
| raw_node->i.i_addr[get_extra_isize(raw_node) + i] = |
| cpu_to_le32(data_blk_nor + i); |
| raw_node->i.i_ext.fofs = 0; |
| raw_node->i.i_ext.blk_addr = 0; |
| raw_node->i.i_ext.len = 0; |
| |
| if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) |
| raw_node->i.i_inode_checksum = |
| cpu_to_le32(f2fs_inode_chksum(raw_node)); |
| |
| main_area_node_seg_blk_offset = get_sb(main_blkaddr); |
| main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] * |
| c.blks_per_seg + qtype + 1; |
| |
| DBG(1, "\tWriting quota inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n", |
| get_sb(main_blkaddr), |
| c.cur_seg[CURSEG_HOT_NODE], |
| c.blks_per_seg, main_area_node_seg_blk_offset); |
| if (dev_write_block(raw_node, main_area_node_seg_blk_offset)) { |
| MSG(1, "\tError: While writing the raw_node to disk!!!\n"); |
| free(raw_node); |
| return -1; |
| } |
| |
| free(raw_node); |
| return 0; |
| } |
| |
| static int f2fs_update_nat_root(void) |
| { |
| struct f2fs_nat_block *nat_blk = NULL; |
| u_int64_t nat_seg_blk_offset = 0; |
| enum quota_type qtype; |
| int i; |
| |
| nat_blk = calloc(F2FS_BLKSIZE, 1); |
| if(nat_blk == NULL) { |
| MSG(1, "\tError: Calloc Failed for nat_blk!!!\n"); |
| return -1; |
| } |
| |
| /* update quota */ |
| for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { |
| if (sb->qf_ino[qtype] == 0) |
| continue; |
| nat_blk->entries[sb->qf_ino[qtype]].block_addr = |
| cpu_to_le32(get_sb(main_blkaddr) + |
| c.cur_seg[CURSEG_HOT_NODE] * |
| c.blks_per_seg + i + 1); |
| nat_blk->entries[sb->qf_ino[qtype]].ino = sb->qf_ino[qtype]; |
| i++; |
| } |
| |
| /* update root */ |
| nat_blk->entries[get_sb(root_ino)].block_addr = cpu_to_le32( |
| get_sb(main_blkaddr) + |
| c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg); |
| nat_blk->entries[get_sb(root_ino)].ino = sb->root_ino; |
| |
| /* update node nat */ |
| nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1); |
| nat_blk->entries[get_sb(node_ino)].ino = sb->node_ino; |
| |
| /* update meta nat */ |
| nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1); |
| nat_blk->entries[get_sb(meta_ino)].ino = sb->meta_ino; |
| |
| nat_seg_blk_offset = get_sb(nat_blkaddr); |
| |
| DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n", |
| nat_seg_blk_offset); |
| if (dev_write_block(nat_blk, nat_seg_blk_offset)) { |
| MSG(1, "\tError: While writing the nat_blk set0 to disk!\n"); |
| free(nat_blk); |
| return -1; |
| } |
| |
| free(nat_blk); |
| return 0; |
| } |
| |
| static int f2fs_add_default_dentry_root(void) |
| { |
| struct f2fs_dentry_block *dent_blk = NULL; |
| u_int64_t data_blk_offset = 0; |
| |
| dent_blk = calloc(F2FS_BLKSIZE, 1); |
| if(dent_blk == NULL) { |
| MSG(1, "\tError: Calloc Failed for dent_blk!!!\n"); |
| return -1; |
| } |
| |
| dent_blk->dentry[0].hash_code = 0; |
| dent_blk->dentry[0].ino = sb->root_ino; |
| dent_blk->dentry[0].name_len = cpu_to_le16(1); |
| dent_blk->dentry[0].file_type = F2FS_FT_DIR; |
| memcpy(dent_blk->filename[0], ".", 1); |
| |
| dent_blk->dentry[1].hash_code = 0; |
| dent_blk->dentry[1].ino = sb->root_ino; |
| dent_blk->dentry[1].name_len = cpu_to_le16(2); |
| dent_blk->dentry[1].file_type = F2FS_FT_DIR; |
| memcpy(dent_blk->filename[1], "..", 2); |
| |
| /* bitmap for . and .. */ |
| test_and_set_bit_le(0, dent_blk->dentry_bitmap); |
| test_and_set_bit_le(1, dent_blk->dentry_bitmap); |
| |
| data_blk_offset = get_sb(main_blkaddr); |
| data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] * |
| c.blks_per_seg; |
| |
| DBG(1, "\tWriting default dentry root, at offset 0x%08"PRIx64"\n", |
| data_blk_offset); |
| if (dev_write_block(dent_blk, data_blk_offset)) { |
| MSG(1, "\tError: While writing the dentry_blk to disk!!!\n"); |
| free(dent_blk); |
| return -1; |
| } |
| |
| free(dent_blk); |
| return 0; |
| } |
| |
| static int f2fs_create_root_dir(void) |
| { |
| enum quota_type qtype; |
| int err = 0; |
| |
| err = f2fs_write_root_inode(); |
| if (err < 0) { |
| MSG(1, "\tError: Failed to write root inode!!!\n"); |
| goto exit; |
| } |
| |
| for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { |
| if (sb->qf_ino[qtype] == 0) |
| continue; |
| err = f2fs_write_qf_inode(qtype); |
| if (err < 0) { |
| MSG(1, "\tError: Failed to write quota inode!!!\n"); |
| goto exit; |
| } |
| } |
| |
| err = f2fs_update_nat_root(); |
| if (err < 0) { |
| MSG(1, "\tError: Failed to update NAT for root!!!\n"); |
| goto exit; |
| } |
| |
| err = f2fs_add_default_dentry_root(); |
| if (err < 0) { |
| MSG(1, "\tError: Failed to add default dentries for root!!!\n"); |
| goto exit; |
| } |
| exit: |
| if (err) |
| MSG(1, "\tError: Could not create the root directory!!!\n"); |
| |
| return err; |
| } |
| |
| int f2fs_format_device(void) |
| { |
| int err = 0; |
| |
| err= f2fs_prepare_super_block(); |
| if (err < 0) { |
| MSG(0, "\tError: Failed to prepare a super block!!!\n"); |
| goto exit; |
| } |
| |
| if (c.trim) { |
| err = f2fs_trim_devices(); |
| if (err < 0) { |
| MSG(0, "\tError: Failed to trim whole device!!!\n"); |
| goto exit; |
| } |
| } |
| |
| err = f2fs_init_sit_area(); |
| if (err < 0) { |
| MSG(0, "\tError: Failed to Initialise the SIT AREA!!!\n"); |
| goto exit; |
| } |
| |
| err = f2fs_init_nat_area(); |
| if (err < 0) { |
| MSG(0, "\tError: Failed to Initialise the NAT AREA!!!\n"); |
| goto exit; |
| } |
| |
| err = f2fs_create_root_dir(); |
| if (err < 0) { |
| MSG(0, "\tError: Failed to create the root directory!!!\n"); |
| goto exit; |
| } |
| |
| err = f2fs_write_check_point_pack(); |
| if (err < 0) { |
| MSG(0, "\tError: Failed to write the check point pack!!!\n"); |
| goto exit; |
| } |
| |
| err = f2fs_write_super_block(); |
| if (err < 0) { |
| MSG(0, "\tError: Failed to write the Super Block!!!\n"); |
| goto exit; |
| } |
| exit: |
| if (err) |
| MSG(0, "\tError: Could not format the device!!!\n"); |
| |
| return err; |
| } |