blob: dd2635b7ceac4ff2211b764848b278624562230b [file] [log] [blame]
/**
* f2fs_fs.h
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* Dual licensed under the GPL or LGPL version 2 licenses.
*
* The byteswap codes are copied from:
* samba_3_master/lib/ccan/endian/endian.h under LGPL 2.1
*/
#ifndef __F2FS_FS_H__
#define __F2FS_FS_H__
#include <inttypes.h>
#include <linux/types.h>
#include <sys/types.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef HAVE_LINUX_BLKZONED_H
#include <linux/blkzoned.h>
#endif
typedef u_int64_t u64;
typedef u_int32_t u32;
typedef u_int16_t u16;
typedef u_int8_t u8;
typedef u32 block_t;
typedef u32 nid_t;
typedef u8 bool;
typedef unsigned long pgoff_t;
typedef unsigned short umode_t;
#if HAVE_BYTESWAP_H
#include <byteswap.h>
#else
/**
* bswap_16 - reverse bytes in a uint16_t value.
* @val: value whose bytes to swap.
*
* Example:
* // Output contains "1024 is 4 as two bytes reversed"
* printf("1024 is %u as two bytes reversed\n", bswap_16(1024));
*/
static inline uint16_t bswap_16(uint16_t val)
{
return ((val & (uint16_t)0x00ffU) << 8)
| ((val & (uint16_t)0xff00U) >> 8);
}
/**
* bswap_32 - reverse bytes in a uint32_t value.
* @val: value whose bytes to swap.
*
* Example:
* // Output contains "1024 is 262144 as four bytes reversed"
* printf("1024 is %u as four bytes reversed\n", bswap_32(1024));
*/
static inline uint32_t bswap_32(uint32_t val)
{
return ((val & (uint32_t)0x000000ffUL) << 24)
| ((val & (uint32_t)0x0000ff00UL) << 8)
| ((val & (uint32_t)0x00ff0000UL) >> 8)
| ((val & (uint32_t)0xff000000UL) >> 24);
}
#endif /* !HAVE_BYTESWAP_H */
#if defined HAVE_DECL_BSWAP_64 && !HAVE_DECL_BSWAP_64
/**
* bswap_64 - reverse bytes in a uint64_t value.
* @val: value whose bytes to swap.
*
* Example:
* // Output contains "1024 is 1125899906842624 as eight bytes reversed"
* printf("1024 is %llu as eight bytes reversed\n",
* (unsigned long long)bswap_64(1024));
*/
static inline uint64_t bswap_64(uint64_t val)
{
return ((val & (uint64_t)0x00000000000000ffULL) << 56)
| ((val & (uint64_t)0x000000000000ff00ULL) << 40)
| ((val & (uint64_t)0x0000000000ff0000ULL) << 24)
| ((val & (uint64_t)0x00000000ff000000ULL) << 8)
| ((val & (uint64_t)0x000000ff00000000ULL) >> 8)
| ((val & (uint64_t)0x0000ff0000000000ULL) >> 24)
| ((val & (uint64_t)0x00ff000000000000ULL) >> 40)
| ((val & (uint64_t)0xff00000000000000ULL) >> 56);
}
#endif
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define le16_to_cpu(x) ((__u16)(x))
#define le32_to_cpu(x) ((__u32)(x))
#define le64_to_cpu(x) ((__u64)(x))
#define cpu_to_le16(x) ((__u16)(x))
#define cpu_to_le32(x) ((__u32)(x))
#define cpu_to_le64(x) ((__u64)(x))
#elif __BYTE_ORDER == __BIG_ENDIAN
#define le16_to_cpu(x) bswap_16(x)
#define le32_to_cpu(x) bswap_32(x)
#define le64_to_cpu(x) bswap_64(x)
#define cpu_to_le16(x) bswap_16(x)
#define cpu_to_le32(x) bswap_32(x)
#define cpu_to_le64(x) bswap_64(x)
#endif
#define typecheck(type,x) \
({ type __dummy; \
typeof(x) __dummy2; \
(void)(&__dummy == &__dummy2); \
1; \
})
#define NULL_SEGNO ((unsigned int)~0)
/*
* Debugging interfaces
*/
#define FIX_MSG(fmt, ...) \
do { \
printf("[FIX] (%s:%4d) ", __func__, __LINE__); \
printf(" --> "fmt"\n", ##__VA_ARGS__); \
} while (0)
#define ASSERT_MSG(fmt, ...) \
do { \
printf("[ASSERT] (%s:%4d) ", __func__, __LINE__); \
printf(" --> "fmt"\n", ##__VA_ARGS__); \
c.bug_on = 1; \
} while (0)
#define ASSERT(exp) \
do { \
if (!(exp)) { \
printf("[ASSERT] (%s:%4d) " #exp"\n", \
__func__, __LINE__); \
exit(-1); \
} \
} while (0)
#define ERR_MSG(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __func__, __LINE__, ##__VA_ARGS__); \
} while (0)
#define MSG(n, fmt, ...) \
do { \
if (c.dbg_lv >= n) { \
printf(fmt, ##__VA_ARGS__); \
} \
} while (0)
#define DBG(n, fmt, ...) \
do { \
if (c.dbg_lv >= n) { \
printf("[%s:%4d] " fmt, \
__func__, __LINE__, ##__VA_ARGS__); \
} \
} while (0)
/* Display on console */
#define DISP(fmt, ptr, member) \
do { \
printf("%-30s" fmt, #member, ((ptr)->member)); \
} while (0)
#define DISP_u32(ptr, member) \
do { \
assert(sizeof((ptr)->member) <= 4); \
printf("%-30s" "\t\t[0x%8x : %u]\n", \
#member, le32_to_cpu(((ptr)->member)), \
le32_to_cpu(((ptr)->member))); \
} while (0)
#define DISP_u64(ptr, member) \
do { \
assert(sizeof((ptr)->member) == 8); \
printf("%-30s" "\t\t[0x%8llx : %llu]\n", \
#member, le64_to_cpu(((ptr)->member)), \
le64_to_cpu(((ptr)->member))); \
} while (0)
#define DISP_utf(ptr, member) \
do { \
printf("%-30s" "\t\t[%s]\n", #member, ((ptr)->member)); \
} while (0)
/* Display to buffer */
#define BUF_DISP_u32(buf, data, len, ptr, member) \
do { \
assert(sizeof((ptr)->member) <= 4); \
snprintf(buf, len, #member); \
snprintf(data, len, "0x%x : %u", ((ptr)->member), \
((ptr)->member)); \
} while (0)
#define BUF_DISP_u64(buf, data, len, ptr, member) \
do { \
assert(sizeof((ptr)->member) == 8); \
snprintf(buf, len, #member); \
snprintf(data, len, "0x%llx : %llu", ((ptr)->member), \
((ptr)->member)); \
} while (0)
#define BUF_DISP_utf(buf, data, len, ptr, member) \
snprintf(buf, len, #member)
/* these are defined in kernel */
#define PAGE_SIZE 4096
#define PAGE_CACHE_SIZE 4096
#define BITS_PER_BYTE 8
#define F2FS_SUPER_MAGIC 0xF2F52010 /* F2FS Magic Number */
#define CHECKSUM_OFFSET 4092
#define MAX_PATH_LEN 64
#define MAX_DEVICES 8
#define F2FS_BYTES_TO_BLK(bytes) ((bytes) >> F2FS_BLKSIZE_BITS)
#define F2FS_BLKSIZE_BITS 12
/* for mkfs */
#define F2FS_NUMBER_OF_CHECKPOINT_PACK 2
#define DEFAULT_SECTOR_SIZE 512
#define DEFAULT_SECTORS_PER_BLOCK 8
#define DEFAULT_BLOCKS_PER_SEGMENT 512
#define DEFAULT_SEGMENTS_PER_SECTION 1
#define VERSION_LEN 256
enum f2fs_config_func {
FSCK,
DUMP,
DEFRAG,
RESIZE,
SLOAD,
};
struct device_info {
char *path;
int32_t fd;
u_int32_t sector_size;
u_int64_t total_sectors; /* got by get_device_info */
u_int64_t start_blkaddr;
u_int64_t end_blkaddr;
u_int32_t total_segments;
/* to handle zone block devices */
int zoned_model;
u_int32_t nr_zones;
u_int32_t nr_rnd_zones;
size_t zone_blocks;
};
struct f2fs_configuration {
u_int32_t reserved_segments;
u_int32_t new_reserved_segments;
int sparse_mode;
int zoned_mode;
int zoned_model;
size_t zone_blocks;
double overprovision;
double new_overprovision;
u_int32_t cur_seg[6];
u_int32_t segs_per_sec;
u_int32_t secs_per_zone;
u_int32_t segs_per_zone;
u_int32_t start_sector;
u_int32_t total_segments;
u_int32_t sector_size;
u_int64_t device_size;
u_int64_t total_sectors;
u_int64_t wanted_total_sectors;
u_int64_t target_sectors;
u_int32_t sectors_per_blk;
u_int32_t blks_per_seg;
__u8 init_version[VERSION_LEN + 1];
__u8 sb_version[VERSION_LEN + 1];
__u8 version[VERSION_LEN + 1];
char *vol_label;
int heap;
int32_t kd;
int32_t dump_fd;
struct device_info devices[MAX_DEVICES];
int ndevs;
char *extension_list;
const char *rootdev_name;
int dbg_lv;
int show_dentry;
int trim;
int trimmed;
int func;
void *private;
int fix_on;
int bug_on;
int auto_fix;
int preen_mode;
int ro;
__le32 feature; /* defined features */
/* defragmentation parameters */
int defrag_shrink;
u_int64_t defrag_start;
u_int64_t defrag_len;
u_int64_t defrag_target;
/* sload parameters */
char *from_dir;
char *mount_point;
};
#ifdef CONFIG_64BIT
#define BITS_PER_LONG 64
#else
#define BITS_PER_LONG 32
#endif
#define BIT_MASK(nr) (1 << (nr % BITS_PER_LONG))
#define BIT_WORD(nr) (nr / BITS_PER_LONG)
#define set_sb_le64(member, val) (sb->member = cpu_to_le64(val))
#define set_sb_le32(member, val) (sb->member = cpu_to_le32(val))
#define set_sb_le16(member, val) (sb->member = cpu_to_le16(val))
#define get_sb_le64(member) le64_to_cpu(sb->member)
#define get_sb_le32(member) le32_to_cpu(sb->member)
#define get_sb_le16(member) le16_to_cpu(sb->member)
#define get_newsb_le64(member) le64_to_cpu(new_sb->member)
#define get_newsb_le32(member) le32_to_cpu(new_sb->member)
#define get_newsb_le16(member) le16_to_cpu(new_sb->member)
#define set_sb(member, val) \
do { \
typeof(sb->member) t; \
switch (sizeof(t)) { \
case 8: set_sb_le64(member, val); break; \
case 4: set_sb_le32(member, val); break; \
case 2: set_sb_le16(member, val); break; \
} \
} while(0)
#define get_sb(member) \
({ \
typeof(sb->member) t; \
switch (sizeof(t)) { \
case 8: t = get_sb_le64(member); break; \
case 4: t = get_sb_le32(member); break; \
case 2: t = get_sb_le16(member); break; \
} \
t; \
})
#define get_newsb(member) \
({ \
typeof(new_sb->member) t; \
switch (sizeof(t)) { \
case 8: t = get_newsb_le64(member); break; \
case 4: t = get_newsb_le32(member); break; \
case 2: t = get_newsb_le16(member); break; \
} \
t; \
})
#define set_cp_le64(member, val) (cp->member = cpu_to_le64(val))
#define set_cp_le32(member, val) (cp->member = cpu_to_le32(val))
#define set_cp_le16(member, val) (cp->member = cpu_to_le16(val))
#define get_cp_le64(member) le64_to_cpu(cp->member)
#define get_cp_le32(member) le32_to_cpu(cp->member)
#define get_cp_le16(member) le16_to_cpu(cp->member)
#define set_cp(member, val) \
do { \
typeof(cp->member) t; \
switch (sizeof(t)) { \
case 8: set_cp_le64(member, val); break; \
case 4: set_cp_le32(member, val); break; \
case 2: set_cp_le16(member, val); break; \
} \
} while(0)
#define get_cp(member) \
({ \
typeof(cp->member) t; \
switch (sizeof(t)) { \
case 8: t = get_cp_le64(member); break; \
case 4: t = get_cp_le32(member); break; \
case 2: t = get_cp_le16(member); break; \
} \
t; \
})
/*
* Copied from include/linux/kernel.h
*/
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
#define round_down(x, y) ((x) & ~__round_mask(x, y))
#define min(x, y) ({ \
typeof(x) _min1 = (x); \
typeof(y) _min2 = (y); \
(void) (&_min1 == &_min2); \
_min1 < _min2 ? _min1 : _min2; })
#define max(x, y) ({ \
typeof(x) _max1 = (x); \
typeof(y) _max2 = (y); \
(void) (&_max1 == &_max2); \
_max1 > _max2 ? _max1 : _max2; })
/*
* Copied from fs/f2fs/f2fs.h
*/
#define NR_CURSEG_DATA_TYPE (3)
#define NR_CURSEG_NODE_TYPE (3)
#define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
enum {
CURSEG_HOT_DATA = 0, /* directory entry blocks */
CURSEG_WARM_DATA, /* data blocks */
CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
CURSEG_HOT_NODE, /* direct node blocks of directory files */
CURSEG_WARM_NODE, /* direct node blocks of normal files */
CURSEG_COLD_NODE, /* indirect node blocks */
NO_CHECK_TYPE
};
#define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
/*
* Copied from fs/f2fs/segment.h
*/
#define GET_SUM_TYPE(footer) ((footer)->entry_type)
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
/*
* Copied from include/linux/f2fs_sb.h
*/
#define F2FS_SUPER_OFFSET 1024 /* byte-size offset */
#define F2FS_MIN_LOG_SECTOR_SIZE 9 /* 9 bits for 512 bytes */
#define F2FS_MAX_LOG_SECTOR_SIZE 12 /* 12 bits for 4096 bytes */
#define F2FS_BLKSIZE 4096 /* support only 4KB block */
#define F2FS_MAX_EXTENSION 64 /* # of extension entries */
#define F2FS_BLK_ALIGN(x) (((x) + F2FS_BLKSIZE - 1) / F2FS_BLKSIZE)
#define NULL_ADDR 0x0U
#define NEW_ADDR -1U
#define F2FS_ROOT_INO(sbi) (sbi->root_ino_num)
#define F2FS_NODE_INO(sbi) (sbi->node_ino_num)
#define F2FS_META_INO(sbi) (sbi->meta_ino_num)
/* This flag is used by node and meta inodes, and by recovery */
#define GFP_F2FS_ZERO (GFP_NOFS | __GFP_ZERO)
/*
* For further optimization on multi-head logs, on-disk layout supports maximum
* 16 logs by default. The number, 16, is expected to cover all the cases
* enoughly. The implementaion currently uses no more than 6 logs.
* Half the logs are used for nodes, and the other half are used for data.
*/
#define MAX_ACTIVE_LOGS 16
#define MAX_ACTIVE_NODE_LOGS 8
#define MAX_ACTIVE_DATA_LOGS 8
#define F2FS_FEATURE_ENCRYPT 0x0001
#define F2FS_FEATURE_BLKZONED 0x0002
#define MAX_VOLUME_NAME 512
/*
* For superblock
*/
struct f2fs_device {
__u8 path[MAX_PATH_LEN];
__le32 total_segments;
} __attribute__((packed));
struct f2fs_super_block {
__le32 magic; /* Magic Number */
__le16 major_ver; /* Major Version */
__le16 minor_ver; /* Minor Version */
__le32 log_sectorsize; /* log2 sector size in bytes */
__le32 log_sectors_per_block; /* log2 # of sectors per block */
__le32 log_blocksize; /* log2 block size in bytes */
__le32 log_blocks_per_seg; /* log2 # of blocks per segment */
__le32 segs_per_sec; /* # of segments per section */
__le32 secs_per_zone; /* # of sections per zone */
__le32 checksum_offset; /* checksum offset inside super block */
__le64 block_count; /* total # of user blocks */
__le32 section_count; /* total # of sections */
__le32 segment_count; /* total # of segments */
__le32 segment_count_ckpt; /* # of segments for checkpoint */
__le32 segment_count_sit; /* # of segments for SIT */
__le32 segment_count_nat; /* # of segments for NAT */
__le32 segment_count_ssa; /* # of segments for SSA */
__le32 segment_count_main; /* # of segments for main area */
__le32 segment0_blkaddr; /* start block address of segment 0 */
__le32 cp_blkaddr; /* start block address of checkpoint */
__le32 sit_blkaddr; /* start block address of SIT */
__le32 nat_blkaddr; /* start block address of NAT */
__le32 ssa_blkaddr; /* start block address of SSA */
__le32 main_blkaddr; /* start block address of main area */
__le32 root_ino; /* root inode number */
__le32 node_ino; /* node inode number */
__le32 meta_ino; /* meta inode number */
__u8 uuid[16]; /* 128-bit uuid for volume */
__le16 volume_name[MAX_VOLUME_NAME]; /* volume name */
__le32 extension_count; /* # of extensions below */
__u8 extension_list[F2FS_MAX_EXTENSION][8]; /* extension array */
__le32 cp_payload;
__u8 version[VERSION_LEN]; /* the kernel version */
__u8 init_version[VERSION_LEN]; /* the initial kernel version */
__le32 feature; /* defined features */
__u8 encryption_level; /* versioning level for encryption */
__u8 encrypt_pw_salt[16]; /* Salt used for string2key algorithm */
struct f2fs_device devs[MAX_DEVICES]; /* device list */
__u8 reserved[327]; /* valid reserved region */
} __attribute__((packed));
/*
* For checkpoint
*/
#define CP_TRIMMED_FLAG 0x00000100
#define CP_NAT_BITS_FLAG 0x00000080
#define CP_CRC_RECOVERY_FLAG 0x00000040
#define CP_FASTBOOT_FLAG 0x00000020
#define CP_FSCK_FLAG 0x00000010
#define CP_ERROR_FLAG 0x00000008
#define CP_COMPACT_SUM_FLAG 0x00000004
#define CP_ORPHAN_PRESENT_FLAG 0x00000002
#define CP_UMOUNT_FLAG 0x00000001
struct f2fs_checkpoint {
__le64 checkpoint_ver; /* checkpoint block version number */
__le64 user_block_count; /* # of user blocks */
__le64 valid_block_count; /* # of valid blocks in main area */
__le32 rsvd_segment_count; /* # of reserved segments for gc */
__le32 overprov_segment_count; /* # of overprovision segments */
__le32 free_segment_count; /* # of free segments in main area */
/* information of current node segments */
__le32 cur_node_segno[MAX_ACTIVE_NODE_LOGS];
__le16 cur_node_blkoff[MAX_ACTIVE_NODE_LOGS];
/* information of current data segments */
__le32 cur_data_segno[MAX_ACTIVE_DATA_LOGS];
__le16 cur_data_blkoff[MAX_ACTIVE_DATA_LOGS];
__le32 ckpt_flags; /* Flags : umount and journal_present */
__le32 cp_pack_total_block_count; /* total # of one cp pack */
__le32 cp_pack_start_sum; /* start block number of data summary */
__le32 valid_node_count; /* Total number of valid nodes */
__le32 valid_inode_count; /* Total number of valid inodes */
__le32 next_free_nid; /* Next free node number */
__le32 sit_ver_bitmap_bytesize; /* Default value 64 */
__le32 nat_ver_bitmap_bytesize; /* Default value 256 */
__le32 checksum_offset; /* checksum offset inside cp block */
__le64 elapsed_time; /* mounted time */
/* allocation type of current segment */
unsigned char alloc_type[MAX_ACTIVE_LOGS];
/* SIT and NAT version bitmap */
unsigned char sit_nat_version_bitmap[1];
} __attribute__((packed));
/*
* For orphan inode management
*/
#define F2FS_ORPHANS_PER_BLOCK 1020
struct f2fs_orphan_block {
__le32 ino[F2FS_ORPHANS_PER_BLOCK]; /* inode numbers */
__le32 reserved; /* reserved */
__le16 blk_addr; /* block index in current CP */
__le16 blk_count; /* Number of orphan inode blocks in CP */
__le32 entry_count; /* Total number of orphan nodes in current CP */
__le32 check_sum; /* CRC32 for orphan inode block */
} __attribute__((packed));
/*
* For NODE structure
*/
struct f2fs_extent {
__le32 fofs; /* start file offset of the extent */
__le32 blk_addr; /* start block address of the extent */
__le32 len; /* lengh of the extent */
} __attribute__((packed));
#define F2FS_NAME_LEN 255
#define F2FS_INLINE_XATTR_ADDRS 50 /* 200 bytes for inline xattrs */
#define DEF_ADDRS_PER_INODE 923 /* Address Pointers in an Inode */
#define ADDRS_PER_INODE(i) addrs_per_inode(i)
#define DEF_ADDRS_PER_INODE_INLINE_XATTR \
(DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS)
#define ADDRS_PER_BLOCK 1018 /* Address Pointers in a Direct Block */
#define NIDS_PER_BLOCK 1018 /* Node IDs in an Indirect Block */
#define NODE_DIR1_BLOCK (DEF_ADDRS_PER_INODE + 1)
#define NODE_DIR2_BLOCK (DEF_ADDRS_PER_INODE + 2)
#define NODE_IND1_BLOCK (DEF_ADDRS_PER_INODE + 3)
#define NODE_IND2_BLOCK (DEF_ADDRS_PER_INODE + 4)
#define NODE_DIND_BLOCK (DEF_ADDRS_PER_INODE + 5)
#define F2FS_INLINE_XATTR 0x01 /* file inline xattr flag */
#define F2FS_INLINE_DATA 0x02 /* file inline data flag */
#define F2FS_INLINE_DENTRY 0x04 /* file inline dentry flag */
#define F2FS_DATA_EXIST 0x08 /* file inline data exist flag */
#define F2FS_INLINE_DOTS 0x10 /* file having implicit dot dentries */
#define MAX_INLINE_DATA (sizeof(__le32) * \
(DEF_ADDRS_PER_INODE_INLINE_XATTR - 1))
#define INLINE_DATA_OFFSET (PAGE_CACHE_SIZE - sizeof(struct node_footer) \
- sizeof(__le32)*(DEF_ADDRS_PER_INODE + 5 - 1))
#define DEF_DIR_LEVEL 0
/*
* i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
*/
#define FADVISE_COLD_BIT 0x01
#define FADVISE_LOST_PINO_BIT 0x02
#define FADVISE_ENCRYPT_BIT 0x04
#define FADVISE_ENC_NAME_BIT 0x08
#define file_is_encrypt(fi) ((fi)->i_advise & FADVISE_ENCRYPT_BIT)
#define file_enc_name(fi) ((fi)->i_advise & FADVISE_ENC_NAME_BIT)
struct f2fs_inode {
__le16 i_mode; /* file mode */
__u8 i_advise; /* file hints */
__u8 i_inline; /* file inline flags */
__le32 i_uid; /* user ID */
__le32 i_gid; /* group ID */
__le32 i_links; /* links count */
__le64 i_size; /* file size in bytes */
__le64 i_blocks; /* file size in blocks */
__le64 i_atime; /* access time */
__le64 i_ctime; /* change time */
__le64 i_mtime; /* modification time */
__le32 i_atime_nsec; /* access time in nano scale */
__le32 i_ctime_nsec; /* change time in nano scale */
__le32 i_mtime_nsec; /* modification time in nano scale */
__le32 i_generation; /* file version (for NFS) */
__le32 i_current_depth; /* only for directory depth */
__le32 i_xattr_nid; /* nid to save xattr */
__le32 i_flags; /* file attributes */
__le32 i_pino; /* parent inode number */
__le32 i_namelen; /* file name length */
__u8 i_name[F2FS_NAME_LEN]; /* file name for SPOR */
__u8 i_dir_level; /* dentry_level for large dir */
struct f2fs_extent i_ext; /* caching a largest extent */
__le32 i_addr[DEF_ADDRS_PER_INODE]; /* Pointers to data blocks */
__le32 i_nid[5]; /* direct(2), indirect(2),
double_indirect(1) node id */
} __attribute__((packed));
struct direct_node {
__le32 addr[ADDRS_PER_BLOCK]; /* array of data block address */
} __attribute__((packed));
struct indirect_node {
__le32 nid[NIDS_PER_BLOCK]; /* array of data block address */
} __attribute__((packed));
enum {
COLD_BIT_SHIFT = 0,
FSYNC_BIT_SHIFT,
DENT_BIT_SHIFT,
OFFSET_BIT_SHIFT
};
#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
>> OFFSET_BIT_SHIFT)
struct node_footer {
__le32 nid; /* node id */
__le32 ino; /* inode nunmber */
__le32 flag; /* include cold/fsync/dentry marks and offset */
__le64 cp_ver; /* checkpoint version */
__le32 next_blkaddr; /* next node page block address */
} __attribute__((packed));
struct f2fs_node {
/* can be one of three types: inode, direct, and indirect types */
union {
struct f2fs_inode i;
struct direct_node dn;
struct indirect_node in;
};
struct node_footer footer;
} __attribute__((packed));
/*
* For NAT entries
*/
#define NAT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_nat_entry))
#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
struct f2fs_nat_entry {
__u8 version; /* latest version of cached nat entry */
__le32 ino; /* inode number */
__le32 block_addr; /* block address */
} __attribute__((packed));
struct f2fs_nat_block {
struct f2fs_nat_entry entries[NAT_ENTRY_PER_BLOCK];
} __attribute__((packed));
/*
* For SIT entries
*
* Each segment is 2MB in size by default so that a bitmap for validity of
* there-in blocks should occupy 64 bytes, 512 bits.
* Not allow to change this.
*/
#define SIT_VBLOCK_MAP_SIZE 64
#define SIT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_sit_entry))
/*
* F2FS uses 4 bytes to represent block address. As a result, supported size of
* disk is 16 TB and it equals to 16 * 1024 * 1024 / 2 segments.
*/
#define F2FS_MAX_SEGMENT ((16 * 1024 * 1024) / 2)
#define MAX_SIT_BITMAP_SIZE (SEG_ALIGN(ALIGN(F2FS_MAX_SEGMENT, \
SIT_ENTRY_PER_BLOCK)) * \
c.blks_per_seg / 8)
/*
* Note that f2fs_sit_entry->vblocks has the following bit-field information.
* [15:10] : allocation type such as CURSEG_XXXX_TYPE
* [9:0] : valid block count
*/
#define SIT_VBLOCKS_SHIFT 10
#define SIT_VBLOCKS_MASK ((1 << SIT_VBLOCKS_SHIFT) - 1)
#define GET_SIT_VBLOCKS(raw_sit) \
(le16_to_cpu((raw_sit)->vblocks) & SIT_VBLOCKS_MASK)
#define GET_SIT_TYPE(raw_sit) \
((le16_to_cpu((raw_sit)->vblocks) & ~SIT_VBLOCKS_MASK) \
>> SIT_VBLOCKS_SHIFT)
struct f2fs_sit_entry {
__le16 vblocks; /* reference above */
__u8 valid_map[SIT_VBLOCK_MAP_SIZE]; /* bitmap for valid blocks */
__le64 mtime; /* segment age for cleaning */
} __attribute__((packed));
struct f2fs_sit_block {
struct f2fs_sit_entry entries[SIT_ENTRY_PER_BLOCK];
} __attribute__((packed));
/*
* For segment summary
*
* One summary block contains exactly 512 summary entries, which represents
* exactly 2MB segment by default. Not allow to change the basic units.
*
* NOTE: For initializing fields, you must use set_summary
*
* - If data page, nid represents dnode's nid
* - If node page, nid represents the node page's nid.
*
* The ofs_in_node is used by only data page. It represents offset
* from node's page's beginning to get a data block address.
* ex) data_blkaddr = (block_t)(nodepage_start_address + ofs_in_node)
*/
#define ENTRIES_IN_SUM 512
#define SUMMARY_SIZE (7) /* sizeof(struct summary) */
#define SUM_FOOTER_SIZE (5) /* sizeof(struct summary_footer) */
#define SUM_ENTRIES_SIZE (SUMMARY_SIZE * ENTRIES_IN_SUM)
/* a summary entry for a 4KB-sized block in a segment */
struct f2fs_summary {
__le32 nid; /* parent node id */
union {
__u8 reserved[3];
struct {
__u8 version; /* node version number */
__le16 ofs_in_node; /* block index in parent node */
} __attribute__((packed));
};
} __attribute__((packed));
/* summary block type, node or data, is stored to the summary_footer */
#define SUM_TYPE_NODE (1)
#define SUM_TYPE_DATA (0)
struct summary_footer {
unsigned char entry_type; /* SUM_TYPE_XXX */
__le32 check_sum; /* summary checksum */
} __attribute__((packed));
#define SUM_JOURNAL_SIZE (F2FS_BLKSIZE - SUM_FOOTER_SIZE -\
SUM_ENTRIES_SIZE)
#define NAT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\
sizeof(struct nat_journal_entry))
#define NAT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\
sizeof(struct nat_journal_entry))
#define SIT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\
sizeof(struct sit_journal_entry))
#define SIT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\
sizeof(struct sit_journal_entry))
/*
* Reserved area should make size of f2fs_extra_info equals to
* that of nat_journal and sit_journal.
*/
#define EXTRA_INFO_RESERVED (SUM_JOURNAL_SIZE - 2 - 8)
/*
* frequently updated NAT/SIT entries can be stored in the spare area in
* summary blocks
*/
enum {
NAT_JOURNAL = 0,
SIT_JOURNAL
};
struct nat_journal_entry {
__le32 nid;
struct f2fs_nat_entry ne;
} __attribute__((packed));
struct nat_journal {
struct nat_journal_entry entries[NAT_JOURNAL_ENTRIES];
__u8 reserved[NAT_JOURNAL_RESERVED];
} __attribute__((packed));
struct sit_journal_entry {
__le32 segno;
struct f2fs_sit_entry se;
} __attribute__((packed));
struct sit_journal {
struct sit_journal_entry entries[SIT_JOURNAL_ENTRIES];
__u8 reserved[SIT_JOURNAL_RESERVED];
} __attribute__((packed));
struct f2fs_extra_info {
__le64 kbytes_written;
__u8 reserved[EXTRA_INFO_RESERVED];
} __attribute__((packed));
struct f2fs_journal {
union {
__le16 n_nats;
__le16 n_sits;
};
/* spare area is used by NAT or SIT journals or extra info */
union {
struct nat_journal nat_j;
struct sit_journal sit_j;
struct f2fs_extra_info info;
};
} __attribute__((packed));
/* 4KB-sized summary block structure */
struct f2fs_summary_block {
struct f2fs_summary entries[ENTRIES_IN_SUM];
struct f2fs_journal journal;
struct summary_footer footer;
} __attribute__((packed));
/*
* For directory operations
*/
#define F2FS_DOT_HASH 0
#define F2FS_DDOT_HASH F2FS_DOT_HASH
#define F2FS_MAX_HASH (~((0x3ULL) << 62))
#define F2FS_HASH_COL_BIT ((0x1ULL) << 63)
typedef __le32 f2fs_hash_t;
/* One directory entry slot covers 8bytes-long file name */
#define F2FS_SLOT_LEN 8
#define F2FS_SLOT_LEN_BITS 3
#define GET_DENTRY_SLOTS(x) ((x + F2FS_SLOT_LEN - 1) >> F2FS_SLOT_LEN_BITS)
/* the number of dentry in a block */
#define NR_DENTRY_IN_BLOCK 214
/* MAX level for dir lookup */
#define MAX_DIR_HASH_DEPTH 63
/* MAX buckets in one level of dir */
#define MAX_DIR_BUCKETS (1 << ((MAX_DIR_HASH_DEPTH / 2) - 1))
#define SIZE_OF_DIR_ENTRY 11 /* by byte */
#define SIZE_OF_DENTRY_BITMAP ((NR_DENTRY_IN_BLOCK + BITS_PER_BYTE - 1) / \
BITS_PER_BYTE)
#define SIZE_OF_RESERVED (PAGE_SIZE - ((SIZE_OF_DIR_ENTRY + \
F2FS_SLOT_LEN) * \
NR_DENTRY_IN_BLOCK + SIZE_OF_DENTRY_BITMAP))
/* One directory entry slot representing F2FS_SLOT_LEN-sized file name */
struct f2fs_dir_entry {
__le32 hash_code; /* hash code of file name */
__le32 ino; /* inode number */
__le16 name_len; /* lengh of file name */
__u8 file_type; /* file type */
} __attribute__((packed));
/* 4KB-sized directory entry block */
struct f2fs_dentry_block {
/* validity bitmap for directory entries in each block */
__u8 dentry_bitmap[SIZE_OF_DENTRY_BITMAP];
__u8 reserved[SIZE_OF_RESERVED];
struct f2fs_dir_entry dentry[NR_DENTRY_IN_BLOCK];
__u8 filename[NR_DENTRY_IN_BLOCK][F2FS_SLOT_LEN];
} __attribute__((packed));
/* for inline dir */
#define NR_INLINE_DENTRY (MAX_INLINE_DATA * BITS_PER_BYTE / \
((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
BITS_PER_BYTE + 1))
#define INLINE_DENTRY_BITMAP_SIZE ((NR_INLINE_DENTRY + \
BITS_PER_BYTE - 1) / BITS_PER_BYTE)
#define INLINE_RESERVED_SIZE (MAX_INLINE_DATA - \
((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
NR_INLINE_DENTRY + INLINE_DENTRY_BITMAP_SIZE))
/* inline directory entry structure */
struct f2fs_inline_dentry {
__u8 dentry_bitmap[INLINE_DENTRY_BITMAP_SIZE];
__u8 reserved[INLINE_RESERVED_SIZE];
struct f2fs_dir_entry dentry[NR_INLINE_DENTRY];
__u8 filename[NR_INLINE_DENTRY][F2FS_SLOT_LEN];
} __attribute__((packed));
/* file types used in inode_info->flags */
enum FILE_TYPE {
F2FS_FT_UNKNOWN,
F2FS_FT_REG_FILE,
F2FS_FT_DIR,
F2FS_FT_CHRDEV,
F2FS_FT_BLKDEV,
F2FS_FT_FIFO,
F2FS_FT_SOCK,
F2FS_FT_SYMLINK,
F2FS_FT_MAX,
/* added for fsck */
F2FS_FT_ORPHAN,
F2FS_FT_XATTR,
F2FS_FT_LAST_FILE_TYPE = F2FS_FT_XATTR,
};
/* from f2fs/segment.h */
enum {
LFS = 0,
SSR
};
extern int utf8_to_utf16(u_int16_t *, const char *, size_t, size_t);
extern int utf16_to_utf8(char *, const u_int16_t *, size_t, size_t);
extern int log_base_2(u_int32_t);
extern unsigned int addrs_per_inode(struct f2fs_inode *);
extern int get_bits_in_byte(unsigned char n);
extern int test_and_set_bit_le(u32, u8 *);
extern int test_and_clear_bit_le(u32, u8 *);
extern int test_bit_le(u32, const u8 *);
extern int f2fs_test_bit(unsigned int, const char *);
extern int f2fs_set_bit(unsigned int, char *);
extern int f2fs_clear_bit(unsigned int, char *);
extern u64 find_next_bit_le(const u8 *, u64, u64);
extern u64 find_next_zero_bit_le(const u8 *, u64, u64);
extern u_int32_t f2fs_cal_crc32(u_int32_t, void *, int);
extern int f2fs_crc_valid(u_int32_t blk_crc, void *buf, int len);
extern void f2fs_init_configuration(void);
extern int f2fs_devs_are_umounted(void);
extern int f2fs_dev_is_umounted(char *);
extern int f2fs_get_device_info(void);
extern int get_device_info(int);
extern void f2fs_finalize_device(void);
extern int dev_read(void *, __u64, size_t);
extern int dev_write(void *, __u64, size_t);
extern int dev_write_block(void *, __u64);
extern int dev_write_dump(void *, __u64, size_t);
/* All bytes in the buffer must be 0 use dev_fill(). */
extern int dev_fill(void *, __u64, size_t);
extern int dev_fill_block(void *, __u64);
extern int dev_read_block(void *, __u64);
extern int dev_reada_block(__u64);
extern int dev_read_version(void *, __u64, size_t);
extern void get_kernel_version(__u8 *);
f2fs_hash_t f2fs_dentry_hash(const unsigned char *, int);
#define F2FS_ZONED_NONE 0
#define F2FS_ZONED_HA 1
#define F2FS_ZONED_HM 2
#ifdef HAVE_LINUX_BLKZONED_H
#define blk_zone_type(z) (z)->type
#define blk_zone_conv(z) ((z)->type == BLK_ZONE_TYPE_CONVENTIONAL)
#define blk_zone_seq_req(z) ((z)->type == BLK_ZONE_TYPE_SEQWRITE_REQ)
#define blk_zone_seq_pref(z) ((z)->type == BLK_ZONE_TYPE_SEQWRITE_PREF)
#define blk_zone_seq(z) (blk_zone_seq_req(z) || blk_zone_seq_pref(z))
static inline const char *
blk_zone_type_str(struct blk_zone *blkz)
{
switch (blk_zone_type(blkz)) {
case BLK_ZONE_TYPE_CONVENTIONAL:
return( "Conventional" );
case BLK_ZONE_TYPE_SEQWRITE_REQ:
return( "Sequential-write-required" );
case BLK_ZONE_TYPE_SEQWRITE_PREF:
return( "Sequential-write-preferred" );
}
return( "Unknown-type" );
}
#define blk_zone_cond(z) (z)->cond
static inline const char *
blk_zone_cond_str(struct blk_zone *blkz)
{
switch (blk_zone_cond(blkz)) {
case BLK_ZONE_COND_NOT_WP:
return "Not-write-pointer";
case BLK_ZONE_COND_EMPTY:
return "Empty";
case BLK_ZONE_COND_IMP_OPEN:
return "Implicit-open";
case BLK_ZONE_COND_EXP_OPEN:
return "Explicit-open";
case BLK_ZONE_COND_CLOSED:
return "Closed";
case BLK_ZONE_COND_READONLY:
return "Read-only";
case BLK_ZONE_COND_FULL:
return "Full";
case BLK_ZONE_COND_OFFLINE:
return "Offline";
}
return "Unknown-cond";
}
#define blk_zone_empty(z) (blk_zone_cond(z) == BLK_ZONE_COND_EMPTY)
#define blk_zone_sector(z) (z)->start
#define blk_zone_length(z) (z)->len
#define blk_zone_wp_sector(z) (z)->wp
#define blk_zone_need_reset(z) (int)(z)->reset
#define blk_zone_non_seq(z) (int)(z)->non_seq
#endif
extern void f2fs_get_zoned_model(int);
extern int f2fs_get_zone_blocks(int);
extern int f2fs_check_zones(int);
extern int f2fs_reset_zones(int);
extern struct f2fs_configuration c;
#define ALIGN(val, size) ((val) + (size) - 1) / (size)
#define SEG_ALIGN(blks) ALIGN(blks, c.blks_per_seg)
#define ZONE_ALIGN(blks) ALIGN(blks, c.blks_per_seg * \
c.segs_per_zone)
static inline double get_best_overprovision(struct f2fs_super_block *sb)
{
double reserved, ovp, candidate, end, diff, space;
double max_ovp = 0, max_space = 0;
if (get_sb(segment_count_main) < 256) {
candidate = 10;
end = 95;
diff = 5;
} else {
candidate = 0.01;
end = 10;
diff = 0.01;
}
for (; candidate <= end; candidate += diff) {
reserved = (2 * (100 / candidate + 1) + 6) *
get_sb(segs_per_sec);
ovp = (get_sb(segment_count_main) - reserved) * candidate / 100;
space = get_sb(segment_count_main) - reserved - ovp;
if (max_space < space) {
max_space = space;
max_ovp = candidate;
}
}
return max_ovp;
}
static inline __le64 get_cp_crc(struct f2fs_checkpoint *cp)
{
u_int64_t cp_ver = get_cp(checkpoint_ver);
size_t crc_offset = get_cp(checksum_offset);
u_int32_t crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp +
crc_offset));
cp_ver |= ((u_int64_t)crc << 32);
return cpu_to_le64(cp_ver);
}
#endif /*__F2FS_FS_H */