blob: 1ed505029cc473cb3b5a1e59c8a229d8fc821cc7 [file] [log] [blame]
/**
* mount.c
*
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "fsck.h"
void print_inode_info(struct f2fs_inode *inode)
{
int i = 0;
int namelen = le32_to_cpu(inode->i_namelen);
DISP_u32(inode, i_mode);
DISP_u32(inode, i_uid);
DISP_u32(inode, i_gid);
DISP_u32(inode, i_links);
DISP_u64(inode, i_size);
DISP_u64(inode, i_blocks);
DISP_u64(inode, i_atime);
DISP_u32(inode, i_atime_nsec);
DISP_u64(inode, i_ctime);
DISP_u32(inode, i_ctime_nsec);
DISP_u64(inode, i_mtime);
DISP_u32(inode, i_mtime_nsec);
DISP_u32(inode, i_generation);
DISP_u32(inode, i_current_depth);
DISP_u32(inode, i_xattr_nid);
DISP_u32(inode, i_flags);
DISP_u32(inode, i_pino);
if (namelen) {
DISP_u32(inode, i_namelen);
inode->i_name[namelen] = '\0';
DISP_utf(inode, i_name);
}
printf("i_ext: fofs:%x blkaddr:%x len:%x\n",
inode->i_ext.fofs,
inode->i_ext.blk_addr,
inode->i_ext.len);
DISP_u32(inode, i_addr[0]); /* Pointers to data blocks */
DISP_u32(inode, i_addr[1]); /* Pointers to data blocks */
DISP_u32(inode, i_addr[2]); /* Pointers to data blocks */
DISP_u32(inode, i_addr[3]); /* Pointers to data blocks */
for (i = 4; i < ADDRS_PER_INODE; i++) {
if (inode->i_addr[i] != 0x0) {
printf("i_addr[0x%x] points data block\r\t\t\t\t[0x%4x]\n",
i, inode->i_addr[i]);
break;
}
}
DISP_u32(inode, i_nid[0]); /* direct */
DISP_u32(inode, i_nid[1]); /* direct */
DISP_u32(inode, i_nid[2]); /* indirect */
DISP_u32(inode, i_nid[3]); /* indirect */
DISP_u32(inode, i_nid[4]); /* double indirect */
printf("\n");
}
void print_node_info(struct f2fs_node *node_block)
{
nid_t ino = le32_to_cpu(node_block->footer.ino);
nid_t nid = le32_to_cpu(node_block->footer.nid);
/* Is this inode? */
if (ino == nid) {
DBG(0, "Node ID [0x%x:%u] is inode\n", nid, nid);
print_inode_info(&node_block->i);
} else {
DBG(0, "Node ID [0x%x:%u] is direct node or indirect node.\n", nid, nid);
}
}
void print_raw_sb_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
printf("\n");
printf("+--------------------------------------------------------+\n");
printf("| Super block |\n");
printf("+--------------------------------------------------------+\n");
DISP_u32(sb, magic);
DISP_u32(sb, major_ver);
DISP_u32(sb, minor_ver);
DISP_u32(sb, log_sectorsize);
DISP_u32(sb, log_sectors_per_block);
DISP_u32(sb, log_blocksize);
DISP_u32(sb, log_blocks_per_seg);
DISP_u32(sb, segs_per_sec);
DISP_u32(sb, secs_per_zone);
DISP_u32(sb, checksum_offset);
DISP_u64(sb, block_count);
DISP_u32(sb, section_count);
DISP_u32(sb, segment_count);
DISP_u32(sb, segment_count_ckpt);
DISP_u32(sb, segment_count_sit);
DISP_u32(sb, segment_count_nat);
DISP_u32(sb, segment_count_ssa);
DISP_u32(sb, segment_count_main);
DISP_u32(sb, segment0_blkaddr);
DISP_u32(sb, cp_blkaddr);
DISP_u32(sb, sit_blkaddr);
DISP_u32(sb, nat_blkaddr);
DISP_u32(sb, ssa_blkaddr);
DISP_u32(sb, main_blkaddr);
DISP_u32(sb, root_ino);
DISP_u32(sb, node_ino);
DISP_u32(sb, meta_ino);
printf("\n");
}
void print_ckpt_info(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
printf("\n");
printf("+--------------------------------------------------------+\n");
printf("| Checkpoint |\n");
printf("+--------------------------------------------------------+\n");
DISP_u64(cp, checkpoint_ver);
DISP_u64(cp, user_block_count);
DISP_u64(cp, valid_block_count);
DISP_u32(cp, rsvd_segment_count);
DISP_u32(cp, overprov_segment_count);
DISP_u32(cp, free_segment_count);
DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]);
DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]);
DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]);
DISP_u32(cp, cur_node_segno[0]);
DISP_u32(cp, cur_node_segno[1]);
DISP_u32(cp, cur_node_segno[2]);
DISP_u32(cp, cur_node_blkoff[0]);
DISP_u32(cp, cur_node_blkoff[1]);
DISP_u32(cp, cur_node_blkoff[2]);
DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]);
DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]);
DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]);
DISP_u32(cp, cur_data_segno[0]);
DISP_u32(cp, cur_data_segno[1]);
DISP_u32(cp, cur_data_segno[2]);
DISP_u32(cp, cur_data_blkoff[0]);
DISP_u32(cp, cur_data_blkoff[1]);
DISP_u32(cp, cur_data_blkoff[2]);
DISP_u32(cp, ckpt_flags);
DISP_u32(cp, cp_pack_total_block_count);
DISP_u32(cp, cp_pack_start_sum);
DISP_u32(cp, valid_node_count);
DISP_u32(cp, valid_inode_count);
DISP_u32(cp, next_free_nid);
DISP_u32(cp, sit_ver_bitmap_bytesize);
DISP_u32(cp, nat_ver_bitmap_bytesize);
DISP_u32(cp, checksum_offset);
DISP_u64(cp, elapsed_time);
DISP_u32(cp, sit_nat_version_bitmap[0]);
printf("\n\n");
}
int sanity_check_raw_super(struct f2fs_super_block *raw_super)
{
unsigned int blocksize;
if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
return -1;
}
if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
return -1;
}
blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
if (F2FS_BLKSIZE != blocksize) {
return -1;
}
if (F2FS_LOG_SECTOR_SIZE != le32_to_cpu(raw_super->log_sectorsize)) {
return -1;
}
if (F2FS_LOG_SECTORS_PER_BLOCK != le32_to_cpu(raw_super->log_sectors_per_block)) {
return -1;
}
return 0;
}
int validate_super_block(struct f2fs_sb_info *sbi, int block)
{
u64 offset = (block + 1) * F2FS_SUPER_OFFSET;
sbi->raw_super = malloc(sizeof(struct f2fs_super_block));
if (dev_read(sbi->raw_super, offset, sizeof(struct f2fs_super_block)))
return -1;
if (!sanity_check_raw_super(sbi->raw_super))
return 0;
free(sbi->raw_super);
MSG(0, "\tCan't find a valid F2FS filesystem in %d superblock\n", block);
return -EINVAL;
}
int init_sb_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = sbi->raw_super;
sbi->log_sectors_per_block =
le32_to_cpu(raw_super->log_sectors_per_block);
sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
sbi->blocksize = 1 << sbi->log_blocksize;
sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
sbi->total_sections = le32_to_cpu(raw_super->section_count);
sbi->total_node_count =
(le32_to_cpu(raw_super->segment_count_nat) / 2)
* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
sbi->cur_victim_sec = NULL_SEGNO;
return 0;
}
void *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr, unsigned long long *version)
{
void *cp_page_1, *cp_page_2;
struct f2fs_checkpoint *cp_block;
unsigned long blk_size = sbi->blocksize;
unsigned long long cur_version = 0, pre_version = 0;
unsigned int crc = 0;
size_t crc_offset;
/* Read the 1st cp block in this CP pack */
cp_page_1 = malloc(PAGE_SIZE);
if (dev_read_block(cp_page_1, cp_addr) < 0)
return NULL;
cp_block = (struct f2fs_checkpoint *)cp_page_1;
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp1;
crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
if (f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp1;
pre_version = le64_to_cpu(cp_block->checkpoint_ver);
/* Read the 2nd cp block in this CP pack */
cp_page_2 = malloc(PAGE_SIZE);
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
if (dev_read_block(cp_page_2, cp_addr) < 0)
goto invalid_cp2;
cp_block = (struct f2fs_checkpoint *)cp_page_2;
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp2;
crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
if (f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp1;
cur_version = le64_to_cpu(cp_block->checkpoint_ver);
if (cur_version == pre_version) {
*version = cur_version;
free(cp_page_2);
return cp_page_1;
}
invalid_cp2:
free(cp_page_2);
invalid_cp1:
free(cp_page_1);
return NULL;
}
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_sb = sbi->raw_super;
void *cp1, *cp2, *cur_page;
unsigned long blk_size = sbi->blocksize;
unsigned long long cp1_version = 0, cp2_version = 0;
unsigned long long cp_start_blk_no;
sbi->ckpt = malloc(blk_size);
if (!sbi->ckpt)
return -ENOMEM;
/*
* Finding out valid cp block involves read both
* sets( cp pack1 and cp pack 2)
*/
cp_start_blk_no = le32_to_cpu(raw_sb->cp_blkaddr);
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
/* The second checkpoint pack should start at the next segment */
cp_start_blk_no += 1 << le32_to_cpu(raw_sb->log_blocks_per_seg);
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version))
cur_page = cp2;
else
cur_page = cp1;
} else if (cp1) {
cur_page = cp1;
} else if (cp2) {
cur_page = cp2;
} else {
free(cp1);
free(cp2);
goto fail_no_cp;
}
memcpy(sbi->ckpt, cur_page, blk_size);
free(cp1);
free(cp2);
return 0;
fail_no_cp:
free(sbi->ckpt);
return -EINVAL;
}
int sanity_check_ckpt(struct f2fs_sb_info *sbi)
{
unsigned int total, fsmeta;
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
total = le32_to_cpu(raw_super->segment_count);
fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
fsmeta += le32_to_cpu(raw_super->segment_count_sit);
fsmeta += le32_to_cpu(raw_super->segment_count_nat);
fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
if (fsmeta >= total)
return 1;
return 0;
}
int init_node_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned char *version_bitmap;
unsigned int nat_segs, nat_blocks;
nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
/* segment_count_nat includes pair segment so divide to 2. */
nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
nm_i->fcnt = 0;
nm_i->nat_cnt = 0;
nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
nm_i->nat_bitmap = malloc(nm_i->bitmap_size);
if (!nm_i->nat_bitmap)
return -ENOMEM;
version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
if (!version_bitmap)
return -EFAULT;
/* copy version bitmap */
memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
return 0;
}
int build_node_manager(struct f2fs_sb_info *sbi)
{
int err;
sbi->nm_info = malloc(sizeof(struct f2fs_nm_info));
if (!sbi->nm_info)
return -ENOMEM;
err = init_node_manager(sbi);
if (err)
return err;
return 0;
}
int build_sit_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct sit_info *sit_i;
unsigned int sit_segs, start;
char *src_bitmap, *dst_bitmap;
unsigned int bitmap_size;
sit_i = malloc(sizeof(struct sit_info));
if (!sit_i)
return -ENOMEM;
SM_I(sbi)->sit_info = sit_i;
sit_i->sentries = calloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry), 1);
for (start = 0; start < TOTAL_SEGS(sbi); start++) {
sit_i->sentries[start].cur_valid_map
= calloc(SIT_VBLOCK_MAP_SIZE, 1);
sit_i->sentries[start].ckpt_valid_map
= calloc(SIT_VBLOCK_MAP_SIZE, 1);
if (!sit_i->sentries[start].cur_valid_map
|| !sit_i->sentries[start].ckpt_valid_map)
return -ENOMEM;
}
sit_segs = le32_to_cpu(raw_sb->segment_count_sit) >> 1;
bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
dst_bitmap = malloc(bitmap_size);
memcpy(dst_bitmap, src_bitmap, bitmap_size);
sit_i->sit_base_addr = le32_to_cpu(raw_sb->sit_blkaddr);
sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
sit_i->sit_bitmap = dst_bitmap;
sit_i->bitmap_size = bitmap_size;
sit_i->dirty_sentries = 0;
sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
sit_i->elapsed_time = le64_to_cpu(ckpt->elapsed_time);
return 0;
}
void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
curseg->segno = curseg->next_segno;
curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
curseg->next_blkoff = 0;
curseg->next_segno = NULL_SEGNO;
}
int read_compacted_summaries(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct curseg_info *curseg;
block_t start;
char *kaddr;
unsigned int i, j, offset;
start = start_sum_block(sbi);
kaddr = (char *)malloc(PAGE_SIZE);
dev_read_block(kaddr, start++);
curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
memcpy(&curseg->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
memcpy(&curseg->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
offset = 2 * SUM_JOURNAL_SIZE;
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
unsigned short blk_off;
unsigned int segno;
curseg = CURSEG_I(sbi, i);
segno = le32_to_cpu(ckpt->cur_data_segno[i]);
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
curseg->next_segno = segno;
reset_curseg(sbi, i, 0);
curseg->alloc_type = ckpt->alloc_type[i];
curseg->next_blkoff = blk_off;
if (curseg->alloc_type == SSR)
blk_off = sbi->blocks_per_seg;
for (j = 0; j < blk_off; j++) {
struct f2fs_summary *s;
s = (struct f2fs_summary *)(kaddr + offset);
curseg->sum_blk->entries[j] = *s;
offset += SUMMARY_SIZE;
if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - SUM_FOOTER_SIZE)
continue;
memset(kaddr, 0, PAGE_SIZE);
dev_read_block(kaddr, start++);
offset = 0;
}
}
free(kaddr);
return 0;
}
int restore_node_summary(struct f2fs_sb_info *sbi,
unsigned int segno, struct f2fs_summary_block *sum_blk)
{
struct f2fs_node *node_blk;
struct f2fs_summary *sum_entry;
void *page;
block_t addr;
int i;
page = malloc(PAGE_SIZE);
if (!page)
return -ENOMEM;
/* scan the node segment */
addr = START_BLOCK(sbi, segno);
sum_entry = &sum_blk->entries[0];
for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) {
if (dev_read_block(page, addr))
goto out;
node_blk = (struct f2fs_node *)page;
sum_entry->nid = node_blk->footer.nid;
/* do not change original value */
#if 0
sum_entry->version = 0;
sum_entry->ofs_in_node = 0;
#endif
addr++;
}
out:
free(page);
return 0;
}
int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_summary_block *sum_blk;
struct curseg_info *curseg;
unsigned short blk_off;
unsigned int segno = 0;
block_t blk_addr = 0;
if (IS_DATASEG(type)) {
segno = le32_to_cpu(ckpt->cur_data_segno[type]);
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - CURSEG_HOT_DATA]);
if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
else
blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
} else {
segno = le32_to_cpu(ckpt->cur_node_segno[type - CURSEG_HOT_NODE]);
blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - CURSEG_HOT_NODE]);
if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, type - CURSEG_HOT_NODE);
else
blk_addr = GET_SUM_BLKADDR(sbi, segno);
}
sum_blk = (struct f2fs_summary_block *)malloc(PAGE_SIZE);
dev_read_block(sum_blk, blk_addr);
if (IS_NODESEG(type)) {
if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
struct f2fs_summary *sum_entry = &sum_blk->entries[0];
int i;
for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) {
/* do not change original value */
#if 0
sum_entry->version = 0;
sum_entry->ofs_in_node = 0;
#endif
}
} else {
if (restore_node_summary(sbi, segno, sum_blk)) {
free(sum_blk);
return -EINVAL;
}
}
}
curseg = CURSEG_I(sbi, type);
memcpy(curseg->sum_blk, sum_blk, PAGE_CACHE_SIZE);
curseg->next_segno = segno;
reset_curseg(sbi, type, 0);
curseg->alloc_type = ckpt->alloc_type[type];
curseg->next_blkoff = blk_off;
free(sum_blk);
return 0;
}
int restore_curseg_summaries(struct f2fs_sb_info *sbi)
{
int type = CURSEG_HOT_DATA;
if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
if (read_compacted_summaries(sbi))
return -EINVAL;
type = CURSEG_HOT_NODE;
}
for (; type <= CURSEG_COLD_NODE; type++) {
if (read_normal_summaries(sbi, type))
return -EINVAL;
}
return 0;
}
int build_curseg(struct f2fs_sb_info *sbi)
{
struct curseg_info *array;
int i;
array = malloc(sizeof(*array) * NR_CURSEG_TYPE);
SM_I(sbi)->curseg_array = array;
for (i = 0; i < NR_CURSEG_TYPE; i++) {
array[i].sum_blk = malloc(PAGE_CACHE_SIZE);
if (!array[i].sum_blk)
return -ENOMEM;
array[i].segno = NULL_SEGNO;
array[i].next_blkoff = 0;
}
return restore_curseg_summaries(sbi);
}
inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
{
unsigned int end_segno = SM_I(sbi)->segment_count - 1;
ASSERT(segno <= end_segno);
}
struct f2fs_sit_block *get_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
block_t blk_addr = sit_i->sit_base_addr + offset;
struct f2fs_sit_block *sit_blk = calloc(BLOCK_SZ, 1);
check_seg_range(sbi, segno);
/* calculate sit block address */
if (f2fs_test_bit(offset, sit_i->sit_bitmap))
blk_addr += sit_i->sit_blocks;
dev_read_block(sit_blk, blk_addr);
return sit_blk;
}
void check_block_count(struct f2fs_sb_info *sbi,
int segno, struct f2fs_sit_entry *raw_sit)
{
struct f2fs_sm_info *sm_info = SM_I(sbi);
unsigned int end_segno = sm_info->segment_count - 1;
int valid_blocks = 0;
int i;
/* check segment usage */
ASSERT(GET_SIT_VBLOCKS(raw_sit) <= sbi->blocks_per_seg);
/* check boundary of a given segment number */
ASSERT(segno <= end_segno);
/* check bitmap with valid block count */
for (i = 0; i < sbi->blocks_per_seg; i++)
if (f2fs_test_bit(i, (char *)raw_sit->valid_map))
valid_blocks++;
ASSERT(GET_SIT_VBLOCKS(raw_sit) == valid_blocks);
}
void seg_info_from_raw_sit(struct seg_entry *se,
struct f2fs_sit_entry *raw_sit)
{
se->valid_blocks = GET_SIT_VBLOCKS(raw_sit);
se->ckpt_valid_blocks = GET_SIT_VBLOCKS(raw_sit);
memcpy(se->cur_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
memcpy(se->ckpt_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
se->type = GET_SIT_TYPE(raw_sit);
se->mtime = le64_to_cpu(raw_sit->mtime);
}
struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
unsigned int segno)
{
struct sit_info *sit_i = SIT_I(sbi);
return &sit_i->sentries[segno];
}
int get_sum_block(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_summary_block *sum_blk)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct curseg_info *curseg;
int type, ret;
u64 ssa_blk;
ssa_blk = GET_SUM_BLKADDR(sbi, segno);
for (type = 0; type < NR_CURSEG_NODE_TYPE; type++) {
if (segno == ckpt->cur_node_segno[type]) {
curseg = CURSEG_I(sbi, type);
memcpy(sum_blk, curseg->sum_blk, BLOCK_SZ);
return SEG_TYPE_CUR_NODE; /* current node seg was not stored */
}
}
for (type = 0; type < NR_CURSEG_DATA_TYPE; type++) {
if (segno == ckpt->cur_data_segno[type]) {
curseg = CURSEG_I(sbi, type);
memcpy(sum_blk, curseg->sum_blk, BLOCK_SZ);
ASSERT(!IS_SUM_NODE_SEG(sum_blk->footer));
DBG(2, "segno [0x%x] is current data seg[0x%x]\n", segno, type);
return SEG_TYPE_CUR_DATA; /* current data seg was not stored */
}
}
ret = dev_read_block(sum_blk, ssa_blk);
ASSERT(ret >= 0);
if (IS_SUM_NODE_SEG(sum_blk->footer))
return SEG_TYPE_NODE;
else
return SEG_TYPE_DATA;
}
int get_sum_entry(struct f2fs_sb_info *sbi, u32 blk_addr, struct f2fs_summary *sum_entry)
{
struct f2fs_summary_block *sum_blk;
u32 segno, offset;
int ret;
segno = GET_SEGNO(sbi, blk_addr);
offset = OFFSET_IN_SEG(sbi, blk_addr);
sum_blk = calloc(BLOCK_SZ, 1);
ret = get_sum_block(sbi, segno, sum_blk);
memcpy(sum_entry, &(sum_blk->entries[offset]), sizeof(struct f2fs_summary));
free(sum_blk);
return ret;
}
int get_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, struct f2fs_nat_entry *raw_nat)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct f2fs_nat_block *nat_block;
pgoff_t block_off;
pgoff_t block_addr;
int seg_off, entry_off;
int ret;
if (nid / NAT_ENTRY_PER_BLOCK > (fsck->nat_area_bitmap_sz * 8)) {
DBG(0, "\n");
return -EINVAL;
}
if (lookup_nat_in_journal(sbi, nid, raw_nat) >= 0)
return 0;
nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
block_off = nid / NAT_ENTRY_PER_BLOCK;
entry_off = nid % NAT_ENTRY_PER_BLOCK;
seg_off = block_off >> sbi->log_blocks_per_seg;
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
(seg_off << sbi->log_blocks_per_seg << 1) +
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
block_addr += sbi->blocks_per_seg;
ret = dev_read_block(nat_block, block_addr);
ASSERT(ret >= 0);
memcpy(raw_nat, &nat_block->entries[entry_off], sizeof(struct f2fs_nat_entry));
free(nat_block);
return 0;
}
int get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
{
struct f2fs_nat_entry raw_nat;
int ret;
ret = get_nat_entry(sbi, nid, &raw_nat);
ni->nid = nid;
node_info_from_raw_nat(ni, &raw_nat);
return ret;
}
void build_sit_entries(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
unsigned int segno;
for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
struct seg_entry *se = &sit_i->sentries[segno];
struct f2fs_sit_block *sit_blk;
struct f2fs_sit_entry sit;
int i;
for (i = 0; i < sits_in_cursum(sum); i++) {
if (le32_to_cpu(segno_in_journal(sum, i)) == segno) {
sit = sit_in_journal(sum, i);
goto got_it;
}
}
sit_blk = get_current_sit_page(sbi, segno);
sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
free(sit_blk);
got_it:
check_block_count(sbi, segno, &sit);
seg_info_from_raw_sit(se, &sit);
}
}
int build_segment_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_sm_info *sm_info;
sm_info = malloc(sizeof(struct f2fs_sm_info));
if (!sm_info)
return -ENOMEM;
/* init sm info */
sbi->sm_info = sm_info;
sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
build_sit_info(sbi);
build_curseg(sbi);
build_sit_entries(sbi);
return 0;
}
int build_sit_area_bitmap(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_sm_info *sm_i = SM_I(sbi);
int segno = 0, j = 0;
char *ptr = NULL;
u32 sum_vblocks = 0;
u32 free_segs = 0;
u32 vblocks = 0;
struct seg_entry *se;
fsck->sit_area_bitmap_sz = sm_i->main_segments * SIT_VBLOCK_MAP_SIZE;
fsck->sit_area_bitmap = calloc(1, fsck->sit_area_bitmap_sz);
ptr = fsck->sit_area_bitmap;
ASSERT(fsck->sit_area_bitmap_sz == fsck->main_area_bitmap_sz);
for (segno = 0; segno < sm_i->main_segments; segno++) {
se = get_seg_entry(sbi, segno);
memcpy(ptr, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
ptr += SIT_VBLOCK_MAP_SIZE;
vblocks = 0;
for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) {
vblocks += get_bits_in_byte(se->cur_valid_map[j]);
}
ASSERT(vblocks == se->valid_blocks);
if (se->valid_blocks == 0x0) {
if (sbi->ckpt->cur_node_segno[0] == segno ||
sbi->ckpt->cur_data_segno[0] == segno ||
sbi->ckpt->cur_node_segno[1] == segno ||
sbi->ckpt->cur_data_segno[1] == segno ||
sbi->ckpt->cur_node_segno[2] == segno ||
sbi->ckpt->cur_data_segno[2] == segno) {
continue;
} else {
free_segs++;
}
} else {
ASSERT(se->valid_blocks <= 512);
sum_vblocks += se->valid_blocks;
}
}
fsck->chk.sit_valid_blocks = sum_vblocks;
fsck->chk.sit_free_segs = free_segs;
DBG(0, "Blocks [0x%x] Free Segs [0x%x]\n", sum_vblocks, free_segs);
return 0;
}
int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *raw_nat)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_summary_block *sum = curseg->sum_blk;
int i = 0;
for (i = 0; i < nats_in_cursum(sum); i++) {
if (le32_to_cpu(nid_in_journal(sum, i)) == nid) {
memcpy(raw_nat, &nat_in_journal(sum, i), sizeof(struct f2fs_nat_entry));
DBG(3, "==> Found nid [0x%x] in nat cache\n", nid);
return i;
}
}
return -1;
}
void build_nat_area_bitmap(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct f2fs_nat_block *nat_block;
u32 nid, nr_nat_blks;
pgoff_t block_off;
pgoff_t block_addr;
int seg_off;
int ret, i;
nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
/* Alloc & build nat entry bitmap */
nr_nat_blks = (le32_to_cpu(raw_sb->segment_count_nat) / 2) << sbi->log_blocks_per_seg;
fsck->nr_nat_entries = nr_nat_blks * NAT_ENTRY_PER_BLOCK;
fsck->nat_area_bitmap_sz = (fsck->nr_nat_entries + 7) / 8;
fsck->nat_area_bitmap = calloc(fsck->nat_area_bitmap_sz, 1);
ASSERT(fsck->nat_area_bitmap != NULL);
for (block_off = 0; block_off < nr_nat_blks; block_off++) {
seg_off = block_off >> sbi->log_blocks_per_seg;
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
(seg_off << sbi->log_blocks_per_seg << 1) +
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
block_addr += sbi->blocks_per_seg;
ret = dev_read_block(nat_block, block_addr);
ASSERT(ret >= 0);
nid = block_off * NAT_ENTRY_PER_BLOCK;
for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
struct f2fs_nat_entry raw_nat;
struct node_info ni;
ni.nid = nid + i;
if ((nid + i) == F2FS_NODE_INO(sbi) || (nid + i) == F2FS_META_INO(sbi)) {
ASSERT(nat_block->entries[i].block_addr != 0x0);
continue;
}
if (lookup_nat_in_journal(sbi, nid + i, &raw_nat) >= 0) {
node_info_from_raw_nat(&ni, &raw_nat);
if (ni.blk_addr != 0x0) {
f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
fsck->chk.valid_nat_entry_cnt++;
DBG(3, "nid[0x%x] in nat cache\n", nid + i);
}
} else {
node_info_from_raw_nat(&ni, &nat_block->entries[i]);
if (ni.blk_addr != 0) {
ASSERT(nid + i != 0x0);
DBG(3, "nid[0x%8x] in nat entry [0x%16x] [0x%8x]\n",
nid + i,
ni.blk_addr,
ni.ino);
f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
fsck->chk.valid_nat_entry_cnt++;
}
}
}
}
free(nat_block);
DBG(0, "valid nat entries (block_addr != 0x0) [0x%8x : %u]\n",
fsck->chk.valid_nat_entry_cnt, fsck->chk.valid_nat_entry_cnt);
}
int f2fs_do_mount(struct f2fs_sb_info *sbi)
{
int ret;
sbi->active_logs = NR_CURSEG_TYPE;
ret = validate_super_block(sbi, 0);
if (ret) {
ret = validate_super_block(sbi, 1);
if (ret)
return -1;
}
print_raw_sb_info(sbi);
init_sb_info(sbi);
ret = get_valid_checkpoint(sbi);
if (ret) {
ERR_MSG("Can't find valid checkpoint\n");
return -1;
}
if (sanity_check_ckpt(sbi)) {
ERR_MSG("Checkpoint is polluted\n");
return -1;
}
print_ckpt_info(sbi);
sbi->total_valid_node_count = le32_to_cpu(sbi->ckpt->valid_node_count);
sbi->total_valid_inode_count = le32_to_cpu(sbi->ckpt->valid_inode_count);
sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
sbi->total_valid_block_count = le64_to_cpu(sbi->ckpt->valid_block_count);
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->alloc_valid_block_count = 0;
if (build_segment_manager(sbi)) {
ERR_MSG("build_segment_manager failed\n");
return -1;
}
if (build_node_manager(sbi)) {
ERR_MSG("build_segment_manager failed\n");
return -1;
}
return ret;
}
void f2fs_do_umount(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
struct f2fs_sm_info *sm_i = SM_I(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
int i;
/* free nm_info */
free(nm_i->nat_bitmap);
free(sbi->nm_info);
/* free sit_info */
for (i = 0; i < TOTAL_SEGS(sbi); i++) {
free(sit_i->sentries[i].cur_valid_map);
free(sit_i->sentries[i].ckpt_valid_map);
}
free(sit_i->sit_bitmap);
free(sm_i->sit_info);
/* free sm_info */
for (i = 0; i < NR_CURSEG_TYPE; i++)
free(sm_i->curseg_array[i].sum_blk);
free(sm_i->curseg_array);
free(sbi->sm_info);
free(sbi->ckpt);
free(sbi->raw_super);
}