blob: 13c14c82b2ddd511e6bc5db24749cb2b7b77fae1 [file] [log] [blame]
The Android Open Source Projectb07e1d92009-03-03 19:29:30 -08001
2/* @(#)e_log.c 1.3 95/01/18 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14/* __ieee754_log(x)
15 * Return the logrithm of x
16 *
17 * Method :
18 * 1. Argument Reduction: find k and f such that
19 * x = 2^k * (1+f),
20 * where ieee_sqrt(2)/2 < 1+f < ieee_sqrt(2) .
21 *
22 * 2. Approximation of ieee_log(1+f).
23 * Let s = f/(2+f) ; based on ieee_log(1+f) = ieee_log(1+s) - ieee_log(1-s)
24 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25 * = 2s + s*R
26 * We use a special Reme algorithm on [0,0.1716] to generate
27 * a polynomial of degree 14 to approximate R The maximum error
28 * of this polynomial approximation is bounded by 2**-58.45. In
29 * other words,
30 * 2 4 6 8 10 12 14
31 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
32 * (the values of Lg1 to Lg7 are listed in the program)
33 * and
34 * | 2 14 | -58.45
35 * | Lg1*s +...+Lg7*s - R(z) | <= 2
36 * | |
37 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
38 * In order to guarantee error in log below 1ulp, we compute log
39 * by
40 * log(1+f) = f - s*(f - R) (if f is not too large)
41 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
42 *
43 * 3. Finally, ieee_log(x) = k*ln2 + ieee_log(1+f).
44 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
45 * Here ln2 is split into two floating point number:
46 * ln2_hi + ln2_lo,
47 * where n*ln2_hi is always exact for |n| < 2000.
48 *
49 * Special cases:
50 * log(x) is NaN with signal if x < 0 (including -INF) ;
51 * log(+INF) is +INF; ieee_log(0) is -INF with signal;
52 * log(NaN) is that NaN with no signal.
53 *
54 * Accuracy:
55 * according to an error analysis, the error is always less than
56 * 1 ulp (unit in the last place).
57 *
58 * Constants:
59 * The hexadecimal values are the intended ones for the following
60 * constants. The decimal values may be used, provided that the
61 * compiler will convert from decimal to binary accurately enough
62 * to produce the hexadecimal values shown.
63 */
64
65#include "fdlibm.h"
66
67#ifdef __STDC__
68static const double
69#else
70static double
71#endif
72ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
73ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
74two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
75Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
76Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
77Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
78Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
79Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
80Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
81Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
82
83static double zero = 0.0;
84
85#ifdef __STDC__
86 double __ieee754_log(double x)
87#else
88 double __ieee754_log(x)
89 double x;
90#endif
91{
92 double hfsq,f,s,z,R,w,t1,t2,dk;
93 int k,hx,i,j;
94 unsigned lx;
95
96 hx = __HI(x); /* high word of x */
97 lx = __LO(x); /* low word of x */
98
99 k=0;
100 if (hx < 0x00100000) { /* x < 2**-1022 */
101 if (((hx&0x7fffffff)|lx)==0)
102 return -two54/zero; /* ieee_log(+-0)=-inf */
103 if (hx<0) return (x-x)/zero; /* ieee_log(-#) = NaN */
104 k -= 54; x *= two54; /* subnormal number, scale up x */
105 hx = __HI(x); /* high word of x */
106 }
107 if (hx >= 0x7ff00000) return x+x;
108 k += (hx>>20)-1023;
109 hx &= 0x000fffff;
110 i = (hx+0x95f64)&0x100000;
111 __HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */
112 k += (i>>20);
113 f = x-1.0;
114 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
115 if(f==zero) if(k==0) return zero; else {dk=(double)k;
116 return dk*ln2_hi+dk*ln2_lo;}
117 R = f*f*(0.5-0.33333333333333333*f);
118 if(k==0) return f-R; else {dk=(double)k;
119 return dk*ln2_hi-((R-dk*ln2_lo)-f);}
120 }
121 s = f/(2.0+f);
122 dk = (double)k;
123 z = s*s;
124 i = hx-0x6147a;
125 w = z*z;
126 j = 0x6b851-hx;
127 t1= w*(Lg2+w*(Lg4+w*Lg6));
128 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
129 i |= j;
130 R = t2+t1;
131 if(i>0) {
132 hfsq=0.5*f*f;
133 if(k==0) return f-(hfsq-s*(hfsq+R)); else
134 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
135 } else {
136 if(k==0) return f-s*(f-R); else
137 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
138 }
139}