blob: f1f01afe2097764dca6851e528d1b6f97af7f411 [file] [log] [blame]
The Android Open Source Projectb07e1d92009-03-03 19:29:30 -08001
2/* @(#)s_expm1.c 1.5 04/04/22 */
3/*
4 * ====================================================
5 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13/* ieee_expm1(x)
14 * Returns ieee_exp(x)-1, the exponential of x minus 1.
15 *
16 * Method
17 * 1. Argument reduction:
18 * Given x, find r and integer k such that
19 *
20 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
21 *
22 * Here a correction term c will be computed to compensate
23 * the error in r when rounded to a floating-point number.
24 *
25 * 2. Approximating ieee_expm1(r) by a special rational function on
26 * the interval [0,0.34658]:
27 * Since
28 * r*(ieee_exp(r)+1)/(ieee_exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
29 * we define R1(r*r) by
30 * r*(ieee_exp(r)+1)/(ieee_exp(r)-1) = 2+ r^2/6 * R1(r*r)
31 * That is,
32 * R1(r**2) = 6/r *((ieee_exp(r)+1)/(ieee_exp(r)-1) - 2/r)
33 * = 6/r * ( 1 + 2.0*(1/(ieee_exp(r)-1) - 1/r))
34 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
35 * We use a special Remes algorithm on [0,0.347] to generate
36 * a polynomial of degree 5 in r*r to approximate R1. The
37 * maximum error of this polynomial approximation is bounded
38 * by 2**-61. In other words,
39 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
40 * where Q1 = -1.6666666666666567384E-2,
41 * Q2 = 3.9682539681370365873E-4,
42 * Q3 = -9.9206344733435987357E-6,
43 * Q4 = 2.5051361420808517002E-7,
44 * Q5 = -6.2843505682382617102E-9;
45 * (where z=r*r, and the values of Q1 to Q5 are listed below)
46 * with error bounded by
47 * | 5 | -61
48 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
49 * | |
50 *
51 * expm1(r) = ieee_exp(r)-1 is then computed by the following
52 * specific way which minimize the accumulation rounding error:
53 * 2 3
54 * r r [ 3 - (R1 + R1*r/2) ]
55 * ieee_expm1(r) = r + --- + --- * [--------------------]
56 * 2 2 [ 6 - r*(3 - R1*r/2) ]
57 *
58 * To compensate the error in the argument reduction, we use
59 * expm1(r+c) = ieee_expm1(r) + c + ieee_expm1(r)*c
60 * ~ ieee_expm1(r) + c + r*c
61 * Thus c+r*c will be added in as the correction terms for
62 * expm1(r+c). Now rearrange the term to avoid optimization
63 * screw up:
64 * ( 2 2 )
65 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
66 * ieee_expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
67 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
68 * ( )
69 *
70 * = r - E
71 * 3. Scale back to obtain ieee_expm1(x):
72 * From step 1, we have
73 * ieee_expm1(x) = either 2^k*[expm1(r)+1] - 1
74 * = or 2^k*[expm1(r) + (1-2^-k)]
75 * 4. Implementation notes:
76 * (A). To save one multiplication, we scale the coefficient Qi
77 * to Qi*2^i, and replace z by (x^2)/2.
78 * (B). To achieve maximum accuracy, we compute ieee_expm1(x) by
79 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
80 * (ii) if k=0, return r-E
81 * (iii) if k=-1, return 0.5*(r-E)-0.5
82 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
83 * else return 1.0+2.0*(r-E);
84 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or ieee_exp(x)-1)
85 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
86 * (vii) return 2^k(1-((E+2^-k)-r))
87 *
88 * Special cases:
89 * expm1(INF) is INF, ieee_expm1(NaN) is NaN;
90 * expm1(-INF) is -1, and
91 * for finite argument, only ieee_expm1(0)=0 is exact.
92 *
93 * Accuracy:
94 * according to an error analysis, the error is always less than
95 * 1 ulp (unit in the last place).
96 *
97 * Misc. info.
98 * For IEEE double
99 * if x > 7.09782712893383973096e+02 then ieee_expm1(x) overflow
100 *
101 * Constants:
102 * The hexadecimal values are the intended ones for the following
103 * constants. The decimal values may be used, provided that the
104 * compiler will convert from decimal to binary accurately enough
105 * to produce the hexadecimal values shown.
106 */
107
108#include "fdlibm.h"
109
110#ifdef __STDC__
111static const double
112#else
113static double
114#endif
115one = 1.0,
116huge = 1.0e+300,
117tiny = 1.0e-300,
118o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
119ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
120ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
121invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
122 /* scaled coefficients related to expm1 */
123Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
124Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
125Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
126Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
127Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
128
129#ifdef __STDC__
130 double ieee_expm1(double x)
131#else
132 double ieee_expm1(x)
133 double x;
134#endif
135{
136 double y,hi,lo,c,t,e,hxs,hfx,r1;
137 int k,xsb;
138 unsigned hx;
139
140 hx = __HI(x); /* high word of x */
141 xsb = hx&0x80000000; /* sign bit of x */
142 if(xsb==0) y=x; else y= -x; /* y = |x| */
143 hx &= 0x7fffffff; /* high word of |x| */
144
145 /* filter out huge and non-finite argument */
146 if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
147 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
148 if(hx>=0x7ff00000) {
149 if(((hx&0xfffff)|__LO(x))!=0)
150 return x+x; /* NaN */
151 else return (xsb==0)? x:-1.0;/* ieee_exp(+-inf)={inf,-1} */
152 }
153 if(x > o_threshold) return huge*huge; /* overflow */
154 }
155 if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
156 if(x+tiny<0.0) /* raise inexact */
157 return tiny-one; /* return -1 */
158 }
159 }
160
161 /* argument reduction */
162 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
163 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
164 if(xsb==0)
165 {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
166 else
167 {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
168 } else {
169 k = invln2*x+((xsb==0)?0.5:-0.5);
170 t = k;
171 hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
172 lo = t*ln2_lo;
173 }
174 x = hi - lo;
175 c = (hi-x)-lo;
176 }
177 else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
178 // t = huge+x; /* return x with inexact flags when x!=0 */
179 // return x - (t-(huge+x));
180 return x; // inexact flag is not set, but Java ignors this flag anyway
181 }
182 else k = 0;
183
184 /* x is now in primary range */
185 hfx = 0.5*x;
186 hxs = x*hfx;
187 r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
188 t = 3.0-r1*hfx;
189 e = hxs*((r1-t)/(6.0 - x*t));
190 if(k==0) return x - (x*e-hxs); /* c is 0 */
191 else {
192 e = (x*(e-c)-c);
193 e -= hxs;
194 if(k== -1) return 0.5*(x-e)-0.5;
195 if(k==1)
196 if(x < -0.25) return -2.0*(e-(x+0.5));
197 else return one+2.0*(x-e);
198 if (k <= -2 || k>56) { /* suffice to return ieee_exp(x)-1 */
199 y = one-(e-x);
200 __HI(y) += (k<<20); /* add k to y's exponent */
201 return y-one;
202 }
203 t = one;
204 if(k<20) {
205 __HI(t) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */
206 y = t-(e-x);
207 __HI(y) += (k<<20); /* add k to y's exponent */
208 } else {
209 __HI(t) = ((0x3ff-k)<<20); /* 2^-k */
210 y = x-(e+t);
211 y += one;
212 __HI(y) += (k<<20); /* add k to y's exponent */
213 }
214 }
215 return y;
216}