blob: 27422a2eb7bfe37fad6896cd5e5ee882a0063cd1 [file] [log] [blame]
/* Intel SIMD (SSE2) implementations of Viterbi ACS butterflies
for 64-state (k=7) convolutional code
Copyright 2003 Phil Karn, KA9Q
This code may be used under the terms of the GNU Lesser General Public License (LGPL)
void update_viterbi27_blk_sse2(struct v27 *vp,unsigned char syms[],int nbits) ;
*/
# SSE2 (128-bit integer SIMD) version
# Requires Pentium 4 or better
# These are offsets into struct v27, defined in viterbi27.h
.set DP,128
.set OLDMETRICS,132
.set NEWMETRICS,136
.text
.global update_viterbi27_blk_sse2,Branchtab27_sse2
.type update_viterbi27_blk_sse2,@function
.align 16
update_viterbi27_blk_sse2:
pushl %ebp
movl %esp,%ebp
pushl %esi
pushl %edi
pushl %edx
pushl %ebx
movl 8(%ebp),%edx # edx = vp
testl %edx,%edx
jnz 0f
movl -1,%eax
jmp err
0: movl OLDMETRICS(%edx),%esi # esi -> old metrics
movl NEWMETRICS(%edx),%edi # edi -> new metrics
movl DP(%edx),%edx # edx -> decisions
1: movl 16(%ebp),%eax # eax = nbits
decl %eax
jl 2f # passed zero, we're done
movl %eax,16(%ebp)
xorl %eax,%eax
movl 12(%ebp),%ebx # ebx = syms
movb (%ebx),%al
movd %eax,%xmm6 # xmm6[0] = first symbol
movb 1(%ebx),%al
movd %eax,%xmm5 # xmm5[0] = second symbol
addl $2,%ebx
movl %ebx,12(%ebp)
punpcklbw %xmm6,%xmm6 # xmm6[1] = xmm6[0]
punpcklbw %xmm5,%xmm5
pshuflw $0,%xmm6,%xmm6 # copy low word to low 3
pshuflw $0,%xmm5,%xmm5
punpcklqdq %xmm6,%xmm6 # propagate to all 16
punpcklqdq %xmm5,%xmm5
# xmm6 now contains first symbol in each byte, xmm5 the second
movdqa thirtyones,%xmm7
# each invocation of this macro does 16 butterflies in parallel
.MACRO butterfly GROUP
# compute branch metrics
movdqa Branchtab27_sse2+(16*\GROUP),%xmm4
movdqa Branchtab27_sse2+32+(16*\GROUP),%xmm3
pxor %xmm6,%xmm4
pxor %xmm5,%xmm3
# compute 5-bit branch metric in xmm4 by adding the individual symbol metrics
# This is okay for this
# code because the worst-case metric spread (at high Eb/No) is only 120,
# well within the range of our unsigned 8-bit path metrics, and even within
# the range of signed 8-bit path metrics
pavgb %xmm3,%xmm4
psrlw $3,%xmm4
pand %xmm7,%xmm4
movdqa (16*\GROUP)(%esi),%xmm0 # Incoming path metric, high bit = 0
movdqa ((16*\GROUP)+32)(%esi),%xmm3 # Incoming path metric, high bit = 1
movdqa %xmm0,%xmm2
movdqa %xmm3,%xmm1
paddusb %xmm4,%xmm0 # note use of saturating arithmetic
paddusb %xmm4,%xmm3 # this shouldn't be necessary, but why not?
# negate branch metrics
pxor %xmm7,%xmm4
paddusb %xmm4,%xmm1
paddusb %xmm4,%xmm2
# Find survivors, leave in mm0,2
pminub %xmm1,%xmm0
pminub %xmm3,%xmm2
# get decisions, leave in mm1,3
pcmpeqb %xmm0,%xmm1
pcmpeqb %xmm2,%xmm3
# interleave and store new branch metrics in mm0,2
movdqa %xmm0,%xmm4
punpckhbw %xmm2,%xmm0 # interleave second 16 new metrics
punpcklbw %xmm2,%xmm4 # interleave first 16 new metrics
movdqa %xmm0,(32*\GROUP+16)(%edi)
movdqa %xmm4,(32*\GROUP)(%edi)
# interleave decisions & store
movdqa %xmm1,%xmm4
punpckhbw %xmm3,%xmm1
punpcklbw %xmm3,%xmm4
# work around bug in gas due to Intel doc error
.byte 0x66,0x0f,0xd7,0xd9 # pmovmskb %xmm1,%ebx
shll $16,%ebx
.byte 0x66,0x0f,0xd7,0xc4 # pmovmskb %xmm4,%eax
orl %eax,%ebx
movl %ebx,(4*\GROUP)(%edx)
.endm
# invoke macro 2 times for a total of 32 butterflies
butterfly GROUP=0
butterfly GROUP=1
addl $8,%edx # bump decision pointer
# See if we have to normalize. This requires an explanation. We don't want
# our path metrics to exceed 255 on the *next* iteration. Since the
# largest branch metric is 30, that means we don't want any to exceed 225
# on *this* iteration. Rather than look them all, we just pick an arbitrary one
# (the first) and see if it exceeds 225-120=105, where 120 is the experimentally-
# determined worst-case metric spread for this code and branch metrics in the range 0-30.
# This is extremely conservative, and empirical testing at a variety of Eb/Nos might
# show that a higher threshold could be used without affecting BER performance
movl (%edi),%eax # extract first output metric
andl $255,%eax
cmp $105,%eax
jle done # No, no need to normalize
# Normalize by finding smallest metric and subtracting it
# from all metrics. We can't just pick an arbitrary small constant because
# the minimum metric might be zero!
movdqa (%edi),%xmm0
movdqa %xmm0,%xmm4
movdqa 16(%edi),%xmm1
pminub %xmm1,%xmm4
movdqa 32(%edi),%xmm2
pminub %xmm2,%xmm4
movdqa 48(%edi),%xmm3
pminub %xmm3,%xmm4
# crunch down to single lowest metric
movdqa %xmm4,%xmm5
psrldq $8,%xmm5 # the count to psrldq is bytes, not bits!
pminub %xmm5,%xmm4
movdqa %xmm4,%xmm5
psrlq $32,%xmm5
pminub %xmm5,%xmm4
movdqa %xmm4,%xmm5
psrlq $16,%xmm5
pminub %xmm5,%xmm4
movdqa %xmm4,%xmm5
psrlq $8,%xmm5
pminub %xmm5,%xmm4 # now in lowest byte of %xmm4
punpcklbw %xmm4,%xmm4 # lowest 2 bytes
pshuflw $0,%xmm4,%xmm4 # lowest 8 bytes
punpcklqdq %xmm4,%xmm4 # all 16 bytes
# xmm4 now contains lowest metric in all 16 bytes
# subtract it from every output metric
psubusb %xmm4,%xmm0
psubusb %xmm4,%xmm1
psubusb %xmm4,%xmm2
psubusb %xmm4,%xmm3
movdqa %xmm0,(%edi)
movdqa %xmm1,16(%edi)
movdqa %xmm2,32(%edi)
movdqa %xmm3,48(%edi)
done:
# swap metrics
movl %esi,%eax
movl %edi,%esi
movl %eax,%edi
jmp 1b
2: movl 8(%ebp),%ebx # ebx = vp
# stash metric pointers
movl %esi,OLDMETRICS(%ebx)
movl %edi,NEWMETRICS(%ebx)
movl %edx,DP(%ebx) # stash incremented value of vp->dp
xorl %eax,%eax
err: popl %ebx
popl %edx
popl %edi
popl %esi
popl %ebp
ret
.data
.align 16
thirtyones:
.byte 31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31