| /* K=9 r=1/3 Viterbi decoder for PowerPC G4/G5 Altivec vector instructions |
| * 8-bit offset-binary soft decision samples |
| * Copyright Aug 2006, Phil Karn, KA9Q |
| * May be used under the terms of the GNU Lesser General Public License (LGPL) |
| */ |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <memory.h> |
| #include <limits.h> |
| #include "fec.h" |
| |
| typedef union { unsigned char c[2][16]; vector unsigned char v[2]; } decision_t; |
| typedef union { unsigned short s[256]; vector unsigned short v[32]; } metric_t; |
| |
| static union branchtab39 { unsigned short s[128]; vector unsigned short v[16];} Branchtab39[3]; |
| static int Init = 0; |
| |
| /* State info for instance of Viterbi decoder */ |
| struct v39 { |
| metric_t metrics1; /* path metric buffer 1 */ |
| metric_t metrics2; /* path metric buffer 2 */ |
| void *dp; /* Pointer to current decision */ |
| metric_t *old_metrics,*new_metrics; /* Pointers to path metrics, swapped on every bit */ |
| void *decisions; /* Beginning of decisions for block */ |
| }; |
| |
| /* Initialize Viterbi decoder for start of new frame */ |
| int init_viterbi39_av(void *p,int starting_state){ |
| struct v39 *vp = p; |
| int i; |
| |
| for(i=0;i<32;i++) |
| vp->metrics1.v[i] = (vector unsigned short)(1000); |
| |
| vp->old_metrics = &vp->metrics1; |
| vp->new_metrics = &vp->metrics2; |
| vp->dp = vp->decisions; |
| vp->old_metrics->s[starting_state & 255] = 0; /* Bias known start state */ |
| return 0; |
| } |
| |
| void set_viterbi39_polynomial_av(int polys[3]){ |
| int state; |
| |
| for(state=0;state < 128;state++){ |
| Branchtab39[0].s[state] = (polys[0] < 0) ^ parity((2*state) & abs(polys[0])) ? 255 : 0; |
| Branchtab39[1].s[state] = (polys[1] < 0) ^ parity((2*state) & abs(polys[1])) ? 255 : 0; |
| Branchtab39[2].s[state] = (polys[2] < 0) ^ parity((2*state) & abs(polys[2])) ? 255 : 0; |
| } |
| Init++; |
| } |
| |
| /* Create a new instance of a Viterbi decoder */ |
| void *create_viterbi39_av(int len){ |
| struct v39 *vp; |
| |
| if(!Init){ |
| int polys[3] = { V39POLYA, V39POLYB, V39POLYC }; |
| |
| set_viterbi39_polynomial_av(polys); |
| } |
| vp = (struct v39 *)malloc(sizeof(struct v39)); |
| vp->decisions = malloc(sizeof(decision_t)*(len+8)); |
| init_viterbi39_av(vp,0); |
| return vp; |
| } |
| |
| /* Viterbi chainback */ |
| int chainback_viterbi39_av( |
| void *p, |
| unsigned char *data, /* Decoded output data */ |
| unsigned int nbits, /* Number of data bits */ |
| unsigned int endstate){ /* Terminal encoder state */ |
| struct v39 *vp = p; |
| decision_t *d = (decision_t *)vp->decisions; |
| int path_metric; |
| |
| /* Make room beyond the end of the encoder register so we can |
| * accumulate a full byte of decoded data |
| */ |
| endstate %= 256; |
| |
| path_metric = vp->old_metrics->s[endstate]; |
| |
| /* The store into data[] only needs to be done every 8 bits. |
| * But this avoids a conditional branch, and the writes will |
| * combine in the cache anyway |
| */ |
| d += 8; /* Look past tail */ |
| while(nbits-- != 0){ |
| int k; |
| |
| k = (d[nbits].c[endstate >> 7][endstate & 15] & (0x80 >> ((endstate>>4)&7)) ) ? 1 : 0; |
| endstate = (k << 7) | (endstate >> 1); |
| data[nbits>>3] = endstate; |
| } |
| return path_metric; |
| } |
| |
| /* Delete instance of a Viterbi decoder */ |
| void delete_viterbi39_av(void *p){ |
| struct v39 *vp = p; |
| |
| if(vp != NULL){ |
| free(vp->decisions); |
| free(vp); |
| } |
| } |
| |
| int update_viterbi39_blk_av(void *p,unsigned char *syms,int nbits){ |
| struct v39 *vp = p; |
| decision_t *d = (decision_t *)vp->dp; |
| int path_metric = 0; |
| vector unsigned char decisions = (vector unsigned char)(0); |
| |
| while(nbits--){ |
| vector unsigned short symv,sym0v,sym1v,sym2v; |
| vector unsigned char s; |
| void *tmp; |
| int i; |
| |
| /* Splat the 0th symbol across sym0v, the 1st symbol across sym1v, etc */ |
| s = (vector unsigned char)vec_perm(vec_ld(0,syms),vec_ld(5,syms),vec_lvsl(0,syms)); |
| |
| symv = (vector unsigned short)vec_mergeh((vector unsigned char)(0),s); /* Unsigned byte->word unpack */ |
| sym0v = vec_splat(symv,0); |
| sym1v = vec_splat(symv,1); |
| sym2v = vec_splat(symv,2); |
| syms += 3; |
| |
| for(i=0;i<16;i++){ |
| vector bool short decision0,decision1; |
| vector unsigned short metric,m_metric,m0,m1,m2,m3,survivor0,survivor1; |
| |
| /* Form branch metrics |
| * Because Branchtab takes on values 0 and 255, and the values of sym?v are offset binary in the range 0-255, |
| * the XOR operations constitute conditional negation. |
| * the metrics are in the range 0-765 |
| */ |
| m0 = vec_add(vec_xor(Branchtab39[0].v[i],sym0v),vec_xor(Branchtab39[1].v[i],sym1v)); |
| m1 = vec_xor(Branchtab39[2].v[i],sym2v); |
| metric = vec_add(m0,m1); |
| m_metric = vec_sub((vector unsigned short)(765),metric); |
| |
| /* Add branch metrics to path metrics */ |
| m0 = vec_adds(vp->old_metrics->v[i],metric); |
| m3 = vec_adds(vp->old_metrics->v[16+i],metric); |
| m1 = vec_adds(vp->old_metrics->v[16+i],m_metric); |
| m2 = vec_adds(vp->old_metrics->v[i],m_metric); |
| |
| /* Compare and select */ |
| decision0 = vec_cmpgt(m0,m1); |
| decision1 = vec_cmpgt(m2,m3); |
| survivor0 = vec_min(m0,m1); |
| survivor1 = vec_min(m2,m3); |
| |
| /* Store decisions and survivors. |
| * To save space without SSE2's handy PMOVMSKB instruction, we pack and store them in |
| * a funny interleaved fashion that we undo in the chainback function. |
| */ |
| decisions = vec_add(decisions,decisions); /* Shift each byte 1 bit to the left */ |
| |
| /* Booleans are either 0xff or 0x00. Subtracting 0x00 leaves the lsb zero; subtracting |
| * 0xff is equivalent to adding 1, which sets the lsb. |
| */ |
| decisions = vec_sub(decisions,(vector unsigned char)vec_pack(vec_mergeh(decision0,decision1),vec_mergel(decision0,decision1))); |
| |
| vp->new_metrics->v[2*i] = vec_mergeh(survivor0,survivor1); |
| vp->new_metrics->v[2*i+1] = vec_mergel(survivor0,survivor1); |
| |
| if((i % 8) == 7){ |
| /* We've accumulated a total of 128 decisions, stash and start again */ |
| d->v[i>>3] = decisions; /* No need to clear, the new bits will replace the old */ |
| } |
| } |
| #if 0 |
| /* Experimentally determine metric spread |
| * The results are fixed for a given code and input symbol size |
| */ |
| { |
| int i; |
| vector unsigned short min_metric; |
| vector unsigned short max_metric; |
| union { vector unsigned short v; unsigned short s[8];} t; |
| int minimum,maximum; |
| static int max_spread = 0; |
| |
| min_metric = max_metric = vp->new_metrics->v[0]; |
| for(i=1;i<32;i++){ |
| min_metric = vec_min(min_metric,vp->new_metrics->v[i]); |
| max_metric = vec_max(max_metric,vp->new_metrics->v[i]); |
| } |
| min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,8)); |
| max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,8)); |
| min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,4)); |
| max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,4)); |
| min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,2)); |
| max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,2)); |
| |
| t.v = min_metric; |
| minimum = t.s[0]; |
| t.v = max_metric; |
| maximum = t.s[0]; |
| if(maximum-minimum > max_spread){ |
| max_spread = maximum-minimum; |
| printf("metric spread = %d\n",max_spread); |
| } |
| } |
| #endif |
| |
| /* Renormalize if necessary. This deserves some explanation. |
| * The maximum possible spread, found by experiment, for 8 bit symbols is about 3825 |
| * So by looking at one arbitrary metric we can tell if any of them have possibly saturated. |
| * However, this is very conservative. Large spreads occur only at very high Eb/No, where |
| * saturating a bad path metric doesn't do much to increase its chances of being erroneously chosen as a survivor. |
| |
| * At more interesting (low) Eb/No ratios, the spreads are much smaller so our chances of saturating a metric |
| * by not not normalizing when we should are extremely low. So either way, the risk to performance is small. |
| |
| * All this is borne out by experiment. |
| */ |
| if(vp->new_metrics->s[0] >= USHRT_MAX-5000){ |
| vector unsigned short scale; |
| union { vector unsigned short v; unsigned short s[8];} t; |
| |
| /* Find smallest metric and splat */ |
| scale = vp->new_metrics->v[0]; |
| for(i=1;i<32;i++) |
| scale = vec_min(scale,vp->new_metrics->v[i]); |
| |
| scale = vec_min(scale,vec_sld(scale,scale,8)); |
| scale = vec_min(scale,vec_sld(scale,scale,4)); |
| scale = vec_min(scale,vec_sld(scale,scale,2)); |
| |
| /* Subtract it from all metrics |
| * Work backwards to try to improve the cache hit ratio, assuming LRU |
| */ |
| for(i=31;i>=0;i--) |
| vp->new_metrics->v[i] = vec_subs(vp->new_metrics->v[i],scale); |
| t.v = scale; |
| path_metric += t.s[0]; |
| } |
| d++; |
| /* Swap pointers to old and new metrics */ |
| tmp = vp->old_metrics; |
| vp->old_metrics = vp->new_metrics; |
| vp->new_metrics = tmp; |
| } |
| vp->dp = d; |
| return path_metric; |
| } |