| #include <stdio.h> |
| #include <math.h> |
| |
| #include "lfsr.h" |
| |
| /* |
| * LFSR taps retrieved from: |
| * http://home1.gte.net/res0658s/electronics/LFSRtaps.html |
| * |
| * The memory overhead of the following tap table should be relatively small, |
| * no more than 400 bytes. |
| */ |
| static uint8_t taps[64][FIO_MAX_TAPS] = |
| { |
| {0}, {0}, {0}, //LFSRs with less that 3-bits cannot exist |
| {3, 2}, //Tap position for 3-bit LFSR |
| {4, 3}, //Tap position for 4-bit LFSR |
| {5, 3}, //Tap position for 5-bit LFSR |
| {6, 5}, //Tap position for 6-bit LFSR |
| {7, 6}, //Tap position for 7-bit LFSR |
| {8, 6, 5 ,4}, //Tap position for 8-bit LFSR |
| {9, 5}, //Tap position for 9-bit LFSR |
| {10, 7}, //Tap position for 10-bit LFSR |
| {11, 9}, //Tap position for 11-bit LFSR |
| {12, 6, 4, 1}, //Tap position for 12-bit LFSR |
| {13, 4, 3, 1}, //Tap position for 13-bit LFSR |
| {14, 5, 3, 1}, //Tap position for 14-bit LFSR |
| {15, 14}, //Tap position for 15-bit LFSR |
| {16, 15, 13, 4}, //Tap position for 16-bit LFSR |
| {17, 14}, //Tap position for 17-bit LFSR |
| {18, 11}, //Tap position for 18-bit LFSR |
| {19, 6, 2, 1}, //Tap position for 19-bit LFSR |
| {20, 17}, //Tap position for 20-bit LFSR |
| {21, 19}, //Tap position for 21-bit LFSR |
| {22, 21}, //Tap position for 22-bit LFSR |
| {23, 18}, //Tap position for 23-bit LFSR |
| {24, 23, 22, 17}, //Tap position for 24-bit LFSR |
| {25, 22}, //Tap position for 25-bit LFSR |
| {26, 6, 2, 1}, //Tap position for 26-bit LFSR |
| {27, 5, 2, 1}, //Tap position for 27-bit LFSR |
| {28, 25}, //Tap position for 28-bit LFSR |
| {29, 27}, //Tap position for 29-bit LFSR |
| {30, 6, 4, 1}, //Tap position for 30-bit LFSR |
| {31, 28}, //Tap position for 31-bit LFSR |
| {32, 31, 29, 1}, //Tap position for 32-bit LFSR |
| {33, 20}, //Tap position for 33-bit LFSR |
| {34, 27, 2, 1}, //Tap position for 34-bit LFSR |
| {35, 33}, //Tap position for 35-bit LFSR |
| {36, 25}, //Tap position for 36-bit LFSR |
| {37, 5, 4, 3, 2, 1}, //Tap position for 37-bit LFSR |
| {38, 6, 5, 1}, //Tap position for 38-bit LFSR |
| {39, 35}, //Tap position for 39-bit LFSR |
| {40, 38, 21, 19}, //Tap position for 40-bit LFSR |
| {41, 38}, //Tap position for 41-bit LFSR |
| {42, 41, 20, 19}, //Tap position for 42-bit LFSR |
| {43, 42, 38, 37}, //Tap position for 43-bit LFSR |
| {44, 43, 18, 17}, //Tap position for 44-bit LFSR |
| {45, 44, 42, 41}, //Tap position for 45-bit LFSR |
| {46, 45, 26, 25}, //Tap position for 46-bit LFSR |
| {47, 42}, //Tap position for 47-bit LFSR |
| {48, 47, 21, 20}, //Tap position for 48-bit LFSR |
| {49, 40}, //Tap position for 49-bit LFSR |
| {50, 49, 24, 23}, //Tap position for 50-bit LFSR |
| {51, 50, 36, 35}, //Tap position for 51-bit LFSR |
| {52, 49}, //Tap position for 52-bit LFSR |
| {53, 52, 38, 37}, //Tap position for 53-bit LFSR |
| {54, 53, 18, 17}, //Tap position for 54-bit LFSR |
| {55, 31}, //Tap position for 55-bit LFSR |
| {56, 55, 35, 34}, //Tap position for 56-bit LFSR |
| {57, 50}, //Tap position for 57-bit LFSR |
| {58, 39}, //Tap position for 58-bit LFSR |
| {59, 58, 38, 37}, //Tap position for 59-bit LFSR |
| {60, 59}, //Tap position for 60-bit LFSR |
| {61, 60, 46, 45}, //Tap position for 61-bit LFSR |
| {62, 61, 6, 5}, //Tap position for 62-bit LFSR |
| {63, 62}, //Tap position for 63-bit LFSR |
| }; |
| |
| #define __LFSR_NEXT(__fl, __v) \ |
| __v = ((__v >> 1) | __fl->cached_bit) ^ \ |
| (((__v & 1UL) - 1UL) & __fl->xormask); |
| |
| static inline void __lfsr_next(struct fio_lfsr *fl, unsigned int spin) |
| { |
| /* |
| * This should be O(1) since most compilers will create a jump table for |
| * this switch. |
| */ |
| switch (spin) { |
| case 15: __LFSR_NEXT(fl, fl->last_val); |
| case 14: __LFSR_NEXT(fl, fl->last_val); |
| case 13: __LFSR_NEXT(fl, fl->last_val); |
| case 12: __LFSR_NEXT(fl, fl->last_val); |
| case 11: __LFSR_NEXT(fl, fl->last_val); |
| case 10: __LFSR_NEXT(fl, fl->last_val); |
| case 9: __LFSR_NEXT(fl, fl->last_val); |
| case 8: __LFSR_NEXT(fl, fl->last_val); |
| case 7: __LFSR_NEXT(fl, fl->last_val); |
| case 6: __LFSR_NEXT(fl, fl->last_val); |
| case 5: __LFSR_NEXT(fl, fl->last_val); |
| case 4: __LFSR_NEXT(fl, fl->last_val); |
| case 3: __LFSR_NEXT(fl, fl->last_val); |
| case 2: __LFSR_NEXT(fl, fl->last_val); |
| case 1: __LFSR_NEXT(fl, fl->last_val); |
| case 0: __LFSR_NEXT(fl, fl->last_val); |
| default: break; |
| } |
| } |
| |
| /* |
| * lfsr_next does the following: |
| * |
| * a. Return if the number of max values has been exceeded. |
| * b. Check if we have a spin value that produces a repeating subsequence. |
| * This is previously calculated in `prepare_spin` and cycle_length should |
| * be > 0. If we do have such a spin: |
| * |
| * i. Decrement the calculated cycle. |
| * ii. If it reaches zero, add "+1" to the spin and reset the cycle_length |
| * (we have it cached in the struct fio_lfsr) |
| * |
| * In either case, continue with the calculation of the next value. |
| * c. Check if the calculated value exceeds the desirable range. In this case, |
| * go back to b, else return. |
| */ |
| int lfsr_next(struct fio_lfsr *fl, uint64_t *off, uint64_t last) |
| { |
| if (fl->num_vals++ > fl->max_val) |
| return 1; |
| |
| do { |
| if (fl->cycle_length && !--fl->cycle_length) { |
| __lfsr_next(fl, fl->spin + 1); |
| fl->cycle_length = fl->cached_cycle_length; |
| goto check; |
| } |
| __lfsr_next(fl, fl->spin); |
| check: ; |
| } while (fl->last_val > fl->max_val); |
| |
| *off = fl->last_val; |
| return 0; |
| } |
| |
| static uint64_t lfsr_create_xormask(uint8_t *taps) |
| { |
| int i; |
| uint64_t xormask = 0; |
| |
| for(i = 0; i < FIO_MAX_TAPS && taps[i] != 0; i++) |
| xormask |= 1UL << (taps[i] - 1); |
| |
| return xormask; |
| } |
| |
| static uint8_t *find_lfsr(uint64_t size) |
| { |
| int i; |
| |
| /* |
| * For an LFSR, there is always a prohibited state (all ones). |
| * Thus, if we need to find the proper LFSR for our size, we must take that |
| * into account. |
| */ |
| for (i = 3; i < 64; i++) |
| if ((1UL << i) > size) |
| return taps[i]; |
| |
| return NULL; |
| } |
| |
| /* |
| * It is well-known that all maximal n-bit LFSRs will start repeating |
| * themselves after their 2^n iteration. The introduction of spins however, is |
| * possible to create a repetition of a sub-sequence before we hit that mark. |
| * This happens if: |
| * |
| * [1]: ((2^n - 1) * i) % (spin + 1) == 0, |
| * where "n" is LFSR's bits and "i" any number within the range [1,spin] |
| * |
| * It is important to know beforehand if a spin can cause a repetition of a |
| * sub-sequence (cycle) and its length. However, calculating (2^n - 1) * i may |
| * produce a buffer overflow for "n" close to 64, so we expand the above to: |
| * |
| * [2]: (2^n - 1) -> (x * (spin + 1) + y), where x >= 0 and 0 <= y <= spin |
| * |
| * Thus, [1] is equivalent to (y * i) % (spin + 1) == 0; |
| * Also, the cycle's length will be (x * i) + (y * i) / (spin + 1) |
| */ |
| int prepare_spin(struct fio_lfsr *fl, unsigned int spin) |
| { |
| uint64_t max = (fl->cached_bit << 1) - 1; |
| uint64_t x, y; |
| int i; |
| |
| if (spin > 15) |
| return 1; |
| |
| x = max / (spin + 1); |
| y = max % (spin + 1); |
| fl->cycle_length = 0; /* No cycle occurs, other than the expected */ |
| fl->spin = spin; |
| |
| for (i = 1; i <= spin; i++) { |
| if ((y * i) % (spin + 1) == 0) { |
| fl->cycle_length = (x * i) + (y * i) / (spin + 1); |
| break; |
| } |
| } |
| fl->cached_cycle_length = fl->cycle_length; |
| |
| /* |
| * Increment cycle length for the first time only since the stored value |
| * will not be printed otherwise. |
| */ |
| fl->cycle_length++; |
| |
| return 0; |
| } |
| |
| int lfsr_reset(struct fio_lfsr *fl, unsigned long seed) |
| { |
| uint64_t bitmask = (fl->cached_bit << 1) - 1; |
| |
| fl->num_vals = 0; |
| fl->last_val = seed & bitmask; |
| |
| /* All-ones state is illegal for XNOR LFSRs */ |
| if (fl->last_val == bitmask) |
| return 1; |
| |
| return 0; |
| } |
| |
| int lfsr_init(struct fio_lfsr *fl, uint64_t nums, unsigned long seed, |
| unsigned int spin) |
| { |
| uint8_t *lfsr_taps; |
| |
| lfsr_taps = find_lfsr(nums); |
| if (!lfsr_taps) |
| return 1; |
| |
| fl->max_val = nums - 1; |
| fl->xormask = lfsr_create_xormask(lfsr_taps); |
| fl->cached_bit = 1UL << (lfsr_taps[0] - 1); |
| |
| if (prepare_spin(fl, spin)) |
| return 1; |
| |
| if (lfsr_reset(fl, seed)) |
| return 1; |
| |
| return 0; |
| } |