blob: f05e85dfb0475c837f5f826adbd0283af63c3d49 [file] [log] [blame]
/*
* IO verification helpers
*/
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <assert.h>
#include <pthread.h>
#include <libgen.h>
#include "fio.h"
#include "verify.h"
#include "trim.h"
#include "lib/rand.h"
#include "lib/hweight.h"
#include "crc/md5.h"
#include "crc/crc64.h"
#include "crc/crc32.h"
#include "crc/crc32c.h"
#include "crc/crc16.h"
#include "crc/crc7.h"
#include "crc/sha256.h"
#include "crc/sha512.h"
#include "crc/sha1.h"
#include "crc/xxhash.h"
static void populate_hdr(struct thread_data *td, struct io_u *io_u,
struct verify_header *hdr, unsigned int header_num,
unsigned int header_len);
static void fill_pattern(struct thread_data *td, void *p, unsigned int len,
char *pattern, unsigned int pattern_bytes)
{
switch (pattern_bytes) {
case 0:
assert(0);
break;
case 1:
dprint(FD_VERIFY, "fill verify pattern b=0 len=%u\n", len);
memset(p, pattern[0], len);
break;
default: {
unsigned int i = 0, size = 0;
unsigned char *b = p;
dprint(FD_VERIFY, "fill verify pattern b=%d len=%u\n",
pattern_bytes, len);
while (i < len) {
size = pattern_bytes;
if (size > (len - i))
size = len - i;
memcpy(b+i, pattern, size);
i += size;
}
break;
}
}
}
void fill_buffer_pattern(struct thread_data *td, void *p, unsigned int len)
{
fill_pattern(td, p, len, td->o.buffer_pattern, td->o.buffer_pattern_bytes);
}
void fill_verify_pattern(struct thread_data *td, void *p, unsigned int len,
struct io_u *io_u, unsigned long seed, int use_seed)
{
if (!td->o.verify_pattern_bytes) {
dprint(FD_VERIFY, "fill random bytes len=%u\n", len);
if (use_seed)
__fill_random_buf(p, len, seed);
else
io_u->rand_seed = fill_random_buf(&td->verify_state, p, len);
return;
}
if (io_u->buf_filled_len >= len) {
dprint(FD_VERIFY, "using already filled verify pattern b=%d len=%u\n",
td->o.verify_pattern_bytes, len);
return;
}
fill_pattern(td, p, len, td->o.verify_pattern, td->o.verify_pattern_bytes);
io_u->buf_filled_len = len;
}
static unsigned int get_hdr_inc(struct thread_data *td, struct io_u *io_u)
{
unsigned int hdr_inc;
hdr_inc = io_u->buflen;
if (td->o.verify_interval && td->o.verify_interval <= io_u->buflen)
hdr_inc = td->o.verify_interval;
return hdr_inc;
}
static void fill_pattern_headers(struct thread_data *td, struct io_u *io_u,
unsigned long seed, int use_seed)
{
unsigned int hdr_inc, header_num;
struct verify_header *hdr;
void *p = io_u->buf;
fill_verify_pattern(td, p, io_u->buflen, io_u, seed, use_seed);
hdr_inc = get_hdr_inc(td, io_u);
header_num = 0;
for (; p < io_u->buf + io_u->buflen; p += hdr_inc) {
hdr = p;
populate_hdr(td, io_u, hdr, header_num, hdr_inc);
header_num++;
}
}
static void memswp(void *buf1, void *buf2, unsigned int len)
{
char swap[200];
assert(len <= sizeof(swap));
memcpy(&swap, buf1, len);
memcpy(buf1, buf2, len);
memcpy(buf2, &swap, len);
}
static void hexdump(void *buffer, int len)
{
unsigned char *p = buffer;
int i;
for (i = 0; i < len; i++)
log_err("%02x", p[i]);
log_err("\n");
}
/*
* Prepare for separation of verify_header and checksum header
*/
static inline unsigned int __hdr_size(int verify_type)
{
unsigned int len = 0;
switch (verify_type) {
case VERIFY_NONE:
case VERIFY_NULL:
len = 0;
break;
case VERIFY_MD5:
len = sizeof(struct vhdr_md5);
break;
case VERIFY_CRC64:
len = sizeof(struct vhdr_crc64);
break;
case VERIFY_CRC32C:
case VERIFY_CRC32:
case VERIFY_CRC32C_INTEL:
len = sizeof(struct vhdr_crc32);
break;
case VERIFY_CRC16:
len = sizeof(struct vhdr_crc16);
break;
case VERIFY_CRC7:
len = sizeof(struct vhdr_crc7);
break;
case VERIFY_SHA256:
len = sizeof(struct vhdr_sha256);
break;
case VERIFY_SHA512:
len = sizeof(struct vhdr_sha512);
break;
case VERIFY_XXHASH:
len = sizeof(struct vhdr_xxhash);
break;
case VERIFY_META:
len = sizeof(struct vhdr_meta);
break;
case VERIFY_SHA1:
len = sizeof(struct vhdr_sha1);
break;
case VERIFY_PATTERN:
len = 0;
break;
default:
log_err("fio: unknown verify header!\n");
assert(0);
}
return len + sizeof(struct verify_header);
}
static inline unsigned int hdr_size(struct verify_header *hdr)
{
return __hdr_size(hdr->verify_type);
}
static void *hdr_priv(struct verify_header *hdr)
{
void *priv = hdr;
return priv + sizeof(struct verify_header);
}
/*
* Verify container, pass info to verify handlers and allow them to
* pass info back in case of error
*/
struct vcont {
/*
* Input
*/
struct io_u *io_u;
unsigned int hdr_num;
struct thread_data *td;
/*
* Output, only valid in case of error
*/
const char *name;
void *good_crc;
void *bad_crc;
unsigned int crc_len;
};
#define DUMP_BUF_SZ 255
static int dump_buf_warned;
static void dump_buf(char *buf, unsigned int len, unsigned long long offset,
const char *type, struct fio_file *f)
{
char *ptr, fname[DUMP_BUF_SZ];
size_t buf_left = DUMP_BUF_SZ;
int ret, fd;
ptr = strdup(f->file_name);
fname[DUMP_BUF_SZ - 1] = '\0';
strncpy(fname, basename(ptr), DUMP_BUF_SZ - 1);
buf_left -= strlen(fname);
if (buf_left <= 0) {
if (!dump_buf_warned) {
log_err("fio: verify failure dump buffer too small\n");
dump_buf_warned = 1;
}
free(ptr);
return;
}
snprintf(fname + strlen(fname), buf_left, ".%llu.%s", offset, type);
fd = open(fname, O_CREAT | O_TRUNC | O_WRONLY, 0644);
if (fd < 0) {
perror("open verify buf file");
return;
}
while (len) {
ret = write(fd, buf, len);
if (!ret)
break;
else if (ret < 0) {
perror("write verify buf file");
break;
}
len -= ret;
buf += ret;
}
close(fd);
log_err(" %s data dumped as %s\n", type, fname);
free(ptr);
}
/*
* Dump the contents of the read block and re-generate the correct data
* and dump that too.
*/
static void dump_verify_buffers(struct verify_header *hdr, struct vcont *vc)
{
struct thread_data *td = vc->td;
struct io_u *io_u = vc->io_u;
unsigned long hdr_offset;
struct io_u dummy;
void *buf;
if (!td->o.verify_dump)
return;
/*
* Dump the contents we just read off disk
*/
hdr_offset = vc->hdr_num * hdr->len;
dump_buf(io_u->buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
"received", vc->io_u->file);
/*
* Allocate a new buf and re-generate the original data
*/
buf = malloc(io_u->buflen);
dummy = *io_u;
dummy.buf = buf;
dummy.rand_seed = hdr->rand_seed;
dummy.buf_filled_len = 0;
dummy.buflen = io_u->buflen;
fill_pattern_headers(td, &dummy, hdr->rand_seed, 1);
dump_buf(buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
"expected", vc->io_u->file);
free(buf);
}
static void log_verify_failure(struct verify_header *hdr, struct vcont *vc)
{
unsigned long long offset;
offset = vc->io_u->offset;
offset += vc->hdr_num * hdr->len;
log_err("%.8s: verify failed at file %s offset %llu, length %u\n",
vc->name, vc->io_u->file->file_name, offset, hdr->len);
if (vc->good_crc && vc->bad_crc) {
log_err(" Expected CRC: ");
hexdump(vc->good_crc, vc->crc_len);
log_err(" Received CRC: ");
hexdump(vc->bad_crc, vc->crc_len);
}
dump_verify_buffers(hdr, vc);
}
/*
* Return data area 'header_num'
*/
static inline void *io_u_verify_off(struct verify_header *hdr, struct vcont *vc)
{
return vc->io_u->buf + vc->hdr_num * hdr->len + hdr_size(hdr);
}
static int verify_io_u_pattern(struct verify_header *hdr, struct vcont *vc)
{
struct thread_data *td = vc->td;
struct io_u *io_u = vc->io_u;
char *buf, *pattern;
unsigned int header_size = __hdr_size(td->o.verify);
unsigned int len, mod, i, size, pattern_size;
pattern = td->o.verify_pattern;
pattern_size = td->o.verify_pattern_bytes;
if (pattern_size <= 1)
pattern_size = MAX_PATTERN_SIZE;
buf = (void *) hdr + header_size;
len = get_hdr_inc(td, io_u) - header_size;
mod = header_size % pattern_size;
for (i = 0; i < len; i += size) {
size = pattern_size - mod;
if (size > (len - i))
size = len - i;
if (memcmp(buf + i, pattern + mod, size))
/* Let the slow compare find the first mismatch byte. */
break;
mod = 0;
}
for (; i < len; i++) {
if (buf[i] != pattern[mod]) {
unsigned int bits;
bits = hweight8(buf[i] ^ pattern[mod]);
log_err("fio: got pattern %x, wanted %x. Bad bits %d\n",
buf[i], pattern[mod], bits);
log_err("fio: bad pattern block offset %u\n", i);
dump_verify_buffers(hdr, vc);
return EILSEQ;
}
mod++;
if (mod == td->o.verify_pattern_bytes)
mod = 0;
}
return 0;
}
static int verify_io_u_meta(struct verify_header *hdr, struct vcont *vc)
{
struct thread_data *td = vc->td;
struct vhdr_meta *vh = hdr_priv(hdr);
struct io_u *io_u = vc->io_u;
int ret = EILSEQ;
dprint(FD_VERIFY, "meta verify io_u %p, len %u\n", io_u, hdr->len);
if (vh->offset == io_u->offset + vc->hdr_num * td->o.verify_interval)
ret = 0;
if (td->o.verify_pattern_bytes)
ret |= verify_io_u_pattern(hdr, vc);
/*
* For read-only workloads, the program cannot be certain of the
* last numberio written to a block. Checking of numberio will be
* done only for workloads that write data. For verify_only,
* numberio will be checked in the last iteration when the correct
* state of numberio, that would have been written to each block
* in a previous run of fio, has been reached.
*/
if ((td_write(td) || td_rw(td)) && (td_min_bs(td) == td_max_bs(td)) &&
!td->o.time_based)
if (!td->o.verify_only || td->o.loops == 0)
if (vh->numberio != io_u->numberio)
ret = EILSEQ;
if (!ret)
return 0;
vc->name = "meta";
log_verify_failure(hdr, vc);
return ret;
}
static int verify_io_u_xxhash(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_xxhash *vh = hdr_priv(hdr);
uint32_t hash;
void *state;
dprint(FD_VERIFY, "xxhash verify io_u %p, len %u\n", vc->io_u, hdr->len);
state = XXH32_init(1);
XXH32_update(state, p, hdr->len - hdr_size(hdr));
hash = XXH32_digest(state);
if (vh->hash == hash)
return 0;
vc->name = "xxhash";
vc->good_crc = &vh->hash;
vc->bad_crc = &hash;
vc->crc_len = sizeof(hash);
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_sha512(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_sha512 *vh = hdr_priv(hdr);
uint8_t sha512[128];
struct fio_sha512_ctx sha512_ctx = {
.buf = sha512,
};
dprint(FD_VERIFY, "sha512 verify io_u %p, len %u\n", vc->io_u, hdr->len);
fio_sha512_init(&sha512_ctx);
fio_sha512_update(&sha512_ctx, p, hdr->len - hdr_size(hdr));
if (!memcmp(vh->sha512, sha512_ctx.buf, sizeof(sha512)))
return 0;
vc->name = "sha512";
vc->good_crc = vh->sha512;
vc->bad_crc = sha512_ctx.buf;
vc->crc_len = sizeof(vh->sha512);
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_sha256(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_sha256 *vh = hdr_priv(hdr);
uint8_t sha256[64];
struct fio_sha256_ctx sha256_ctx = {
.buf = sha256,
};
dprint(FD_VERIFY, "sha256 verify io_u %p, len %u\n", vc->io_u, hdr->len);
fio_sha256_init(&sha256_ctx);
fio_sha256_update(&sha256_ctx, p, hdr->len - hdr_size(hdr));
if (!memcmp(vh->sha256, sha256_ctx.buf, sizeof(sha256)))
return 0;
vc->name = "sha256";
vc->good_crc = vh->sha256;
vc->bad_crc = sha256_ctx.buf;
vc->crc_len = sizeof(vh->sha256);
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_sha1(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_sha1 *vh = hdr_priv(hdr);
uint32_t sha1[5];
struct fio_sha1_ctx sha1_ctx = {
.H = sha1,
};
dprint(FD_VERIFY, "sha1 verify io_u %p, len %u\n", vc->io_u, hdr->len);
fio_sha1_init(&sha1_ctx);
fio_sha1_update(&sha1_ctx, p, hdr->len - hdr_size(hdr));
if (!memcmp(vh->sha1, sha1_ctx.H, sizeof(sha1)))
return 0;
vc->name = "sha1";
vc->good_crc = vh->sha1;
vc->bad_crc = sha1_ctx.H;
vc->crc_len = sizeof(vh->sha1);
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc7(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc7 *vh = hdr_priv(hdr);
unsigned char c;
dprint(FD_VERIFY, "crc7 verify io_u %p, len %u\n", vc->io_u, hdr->len);
c = fio_crc7(p, hdr->len - hdr_size(hdr));
if (c == vh->crc7)
return 0;
vc->name = "crc7";
vc->good_crc = &vh->crc7;
vc->bad_crc = &c;
vc->crc_len = 1;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc16(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc16 *vh = hdr_priv(hdr);
unsigned short c;
dprint(FD_VERIFY, "crc16 verify io_u %p, len %u\n", vc->io_u, hdr->len);
c = fio_crc16(p, hdr->len - hdr_size(hdr));
if (c == vh->crc16)
return 0;
vc->name = "crc16";
vc->good_crc = &vh->crc16;
vc->bad_crc = &c;
vc->crc_len = 2;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc64(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc64 *vh = hdr_priv(hdr);
unsigned long long c;
dprint(FD_VERIFY, "crc64 verify io_u %p, len %u\n", vc->io_u, hdr->len);
c = fio_crc64(p, hdr->len - hdr_size(hdr));
if (c == vh->crc64)
return 0;
vc->name = "crc64";
vc->good_crc = &vh->crc64;
vc->bad_crc = &c;
vc->crc_len = 8;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc32(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc32 *vh = hdr_priv(hdr);
uint32_t c;
dprint(FD_VERIFY, "crc32 verify io_u %p, len %u\n", vc->io_u, hdr->len);
c = fio_crc32(p, hdr->len - hdr_size(hdr));
if (c == vh->crc32)
return 0;
vc->name = "crc32";
vc->good_crc = &vh->crc32;
vc->bad_crc = &c;
vc->crc_len = 4;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc32c(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc32 *vh = hdr_priv(hdr);
uint32_t c;
dprint(FD_VERIFY, "crc32c verify io_u %p, len %u\n", vc->io_u, hdr->len);
c = fio_crc32c(p, hdr->len - hdr_size(hdr));
if (c == vh->crc32)
return 0;
vc->name = "crc32c";
vc->good_crc = &vh->crc32;
vc->bad_crc = &c;
vc->crc_len = 4;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_md5(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_md5 *vh = hdr_priv(hdr);
uint32_t hash[MD5_HASH_WORDS];
struct fio_md5_ctx md5_ctx = {
.hash = hash,
};
dprint(FD_VERIFY, "md5 verify io_u %p, len %u\n", vc->io_u, hdr->len);
fio_md5_init(&md5_ctx);
fio_md5_update(&md5_ctx, p, hdr->len - hdr_size(hdr));
if (!memcmp(vh->md5_digest, md5_ctx.hash, sizeof(hash)))
return 0;
vc->name = "md5";
vc->good_crc = vh->md5_digest;
vc->bad_crc = md5_ctx.hash;
vc->crc_len = sizeof(hash);
log_verify_failure(hdr, vc);
return EILSEQ;
}
/*
* Push IO verification to a separate thread
*/
int verify_io_u_async(struct thread_data *td, struct io_u **io_u_ptr)
{
struct io_u *io_u = *io_u_ptr;
pthread_mutex_lock(&td->io_u_lock);
if (io_u->file)
put_file_log(td, io_u->file);
if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
td->cur_depth--;
io_u->flags &= ~IO_U_F_IN_CUR_DEPTH;
}
flist_add_tail(&io_u->verify_list, &td->verify_list);
*io_u_ptr = NULL;
pthread_mutex_unlock(&td->io_u_lock);
pthread_cond_signal(&td->verify_cond);
return 0;
}
static int verify_trimmed_io_u(struct thread_data *td, struct io_u *io_u)
{
static char zero_buf[1024];
unsigned int this_len, len;
int ret = 0;
void *p;
if (!td->o.trim_zero)
return 0;
len = io_u->buflen;
p = io_u->buf;
do {
this_len = sizeof(zero_buf);
if (this_len > len)
this_len = len;
if (memcmp(p, zero_buf, this_len)) {
ret = EILSEQ;
break;
}
len -= this_len;
p += this_len;
} while (len);
if (!ret)
return 0;
log_err("trim: verify failed at file %s offset %llu, length %lu"
", block offset %lu\n",
io_u->file->file_name, io_u->offset, io_u->buflen,
(unsigned long) (p - io_u->buf));
return ret;
}
static int verify_header(struct io_u *io_u, struct verify_header *hdr,
unsigned int hdr_num, unsigned int hdr_len)
{
void *p = hdr;
uint32_t crc;
if (hdr->magic != FIO_HDR_MAGIC) {
log_err("verify: bad magic header %x, wanted %x",
hdr->magic, FIO_HDR_MAGIC);
goto err;
}
if (hdr->len != hdr_len) {
log_err("verify: bad header length %u, wanted %u",
hdr->len, hdr_len);
goto err;
}
if (hdr->rand_seed != io_u->rand_seed) {
log_err("verify: bad header rand_seed %"PRIu64
", wanted %"PRIu64,
hdr->rand_seed, io_u->rand_seed);
goto err;
}
crc = fio_crc32c(p, offsetof(struct verify_header, crc32));
if (crc != hdr->crc32) {
log_err("verify: bad header crc %x, calculated %x",
hdr->crc32, crc);
goto err;
}
return 0;
err:
log_err(" at file %s offset %llu, length %u\n",
io_u->file->file_name,
io_u->offset + hdr_num * hdr_len, hdr_len);
return EILSEQ;
}
int verify_io_u(struct thread_data *td, struct io_u **io_u_ptr)
{
struct verify_header *hdr;
struct io_u *io_u = *io_u_ptr;
unsigned int header_size, hdr_inc, hdr_num = 0;
void *p;
int ret;
if (td->o.verify == VERIFY_NULL || io_u->ddir != DDIR_READ)
return 0;
/*
* If the IO engine is faking IO (like null), then just pretend
* we verified everything.
*/
if (td->io_ops->flags & FIO_FAKEIO)
return 0;
if (io_u->flags & IO_U_F_TRIMMED) {
ret = verify_trimmed_io_u(td, io_u);
goto done;
}
hdr_inc = get_hdr_inc(td, io_u);
ret = 0;
for (p = io_u->buf; p < io_u->buf + io_u->buflen;
p += hdr_inc, hdr_num++) {
struct vcont vc = {
.io_u = io_u,
.hdr_num = hdr_num,
.td = td,
};
unsigned int verify_type;
if (ret && td->o.verify_fatal)
break;
header_size = __hdr_size(td->o.verify);
if (td->o.verify_offset)
memswp(p, p + td->o.verify_offset, header_size);
hdr = p;
/*
* Make rand_seed check pass when have verifysort or
* verify_backlog.
*/
if (td->o.verifysort || (td->flags & TD_F_VER_BACKLOG))
io_u->rand_seed = hdr->rand_seed;
ret = verify_header(io_u, hdr, hdr_num, hdr_inc);
if (ret)
return ret;
if (td->o.verify != VERIFY_NONE)
verify_type = td->o.verify;
else
verify_type = hdr->verify_type;
switch (verify_type) {
case VERIFY_MD5:
ret = verify_io_u_md5(hdr, &vc);
break;
case VERIFY_CRC64:
ret = verify_io_u_crc64(hdr, &vc);
break;
case VERIFY_CRC32C:
case VERIFY_CRC32C_INTEL:
ret = verify_io_u_crc32c(hdr, &vc);
break;
case VERIFY_CRC32:
ret = verify_io_u_crc32(hdr, &vc);
break;
case VERIFY_CRC16:
ret = verify_io_u_crc16(hdr, &vc);
break;
case VERIFY_CRC7:
ret = verify_io_u_crc7(hdr, &vc);
break;
case VERIFY_SHA256:
ret = verify_io_u_sha256(hdr, &vc);
break;
case VERIFY_SHA512:
ret = verify_io_u_sha512(hdr, &vc);
break;
case VERIFY_XXHASH:
ret = verify_io_u_xxhash(hdr, &vc);
break;
case VERIFY_META:
ret = verify_io_u_meta(hdr, &vc);
break;
case VERIFY_SHA1:
ret = verify_io_u_sha1(hdr, &vc);
break;
case VERIFY_PATTERN:
ret = verify_io_u_pattern(hdr, &vc);
break;
default:
log_err("Bad verify type %u\n", hdr->verify_type);
ret = EINVAL;
}
if (ret && verify_type != hdr->verify_type)
log_err("fio: verify type mismatch (%u media, %u given)\n",
hdr->verify_type, verify_type);
}
done:
if (ret && td->o.verify_fatal)
fio_mark_td_terminate(td);
return ret;
}
static void fill_meta(struct verify_header *hdr, struct thread_data *td,
struct io_u *io_u, unsigned int header_num)
{
struct vhdr_meta *vh = hdr_priv(hdr);
vh->thread = td->thread_number;
vh->time_sec = io_u->start_time.tv_sec;
vh->time_usec = io_u->start_time.tv_usec;
vh->numberio = io_u->numberio;
vh->offset = io_u->offset + header_num * td->o.verify_interval;
}
static void fill_xxhash(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_xxhash *vh = hdr_priv(hdr);
void *state;
state = XXH32_init(1);
XXH32_update(state, p, len);
vh->hash = XXH32_digest(state);
}
static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_sha512 *vh = hdr_priv(hdr);
struct fio_sha512_ctx sha512_ctx = {
.buf = vh->sha512,
};
fio_sha512_init(&sha512_ctx);
fio_sha512_update(&sha512_ctx, p, len);
}
static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_sha256 *vh = hdr_priv(hdr);
struct fio_sha256_ctx sha256_ctx = {
.buf = vh->sha256,
};
fio_sha256_init(&sha256_ctx);
fio_sha256_update(&sha256_ctx, p, len);
}
static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_sha1 *vh = hdr_priv(hdr);
struct fio_sha1_ctx sha1_ctx = {
.H = vh->sha1,
};
fio_sha1_init(&sha1_ctx);
fio_sha1_update(&sha1_ctx, p, len);
}
static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc7 *vh = hdr_priv(hdr);
vh->crc7 = fio_crc7(p, len);
}
static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc16 *vh = hdr_priv(hdr);
vh->crc16 = fio_crc16(p, len);
}
static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc32 *vh = hdr_priv(hdr);
vh->crc32 = fio_crc32(p, len);
}
static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc32 *vh = hdr_priv(hdr);
vh->crc32 = fio_crc32c(p, len);
}
static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc64 *vh = hdr_priv(hdr);
vh->crc64 = fio_crc64(p, len);
}
static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_md5 *vh = hdr_priv(hdr);
struct fio_md5_ctx md5_ctx = {
.hash = (uint32_t *) vh->md5_digest,
};
fio_md5_init(&md5_ctx);
fio_md5_update(&md5_ctx, p, len);
}
static void populate_hdr(struct thread_data *td, struct io_u *io_u,
struct verify_header *hdr, unsigned int header_num,
unsigned int header_len)
{
unsigned int data_len;
void *data, *p;
p = (void *) hdr;
hdr->magic = FIO_HDR_MAGIC;
hdr->verify_type = td->o.verify;
hdr->len = header_len;
hdr->rand_seed = io_u->rand_seed;
hdr->crc32 = fio_crc32c(p, offsetof(struct verify_header, crc32));
data_len = header_len - hdr_size(hdr);
data = p + hdr_size(hdr);
switch (td->o.verify) {
case VERIFY_MD5:
dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n",
io_u, hdr->len);
fill_md5(hdr, data, data_len);
break;
case VERIFY_CRC64:
dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n",
io_u, hdr->len);
fill_crc64(hdr, data, data_len);
break;
case VERIFY_CRC32C:
case VERIFY_CRC32C_INTEL:
dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n",
io_u, hdr->len);
fill_crc32c(hdr, data, data_len);
break;
case VERIFY_CRC32:
dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n",
io_u, hdr->len);
fill_crc32(hdr, data, data_len);
break;
case VERIFY_CRC16:
dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n",
io_u, hdr->len);
fill_crc16(hdr, data, data_len);
break;
case VERIFY_CRC7:
dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n",
io_u, hdr->len);
fill_crc7(hdr, data, data_len);
break;
case VERIFY_SHA256:
dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n",
io_u, hdr->len);
fill_sha256(hdr, data, data_len);
break;
case VERIFY_SHA512:
dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n",
io_u, hdr->len);
fill_sha512(hdr, data, data_len);
break;
case VERIFY_XXHASH:
dprint(FD_VERIFY, "fill xxhash io_u %p, len %u\n",
io_u, hdr->len);
fill_xxhash(hdr, data, data_len);
break;
case VERIFY_META:
dprint(FD_VERIFY, "fill meta io_u %p, len %u\n",
io_u, hdr->len);
fill_meta(hdr, td, io_u, header_num);
break;
case VERIFY_SHA1:
dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n",
io_u, hdr->len);
fill_sha1(hdr, data, data_len);
break;
case VERIFY_PATTERN:
/* nothing to do here */
break;
default:
log_err("fio: bad verify type: %d\n", td->o.verify);
assert(0);
}
if (td->o.verify_offset)
memswp(p, p + td->o.verify_offset, hdr_size(hdr));
}
/*
* fill body of io_u->buf with random data and add a header with the
* checksum of choice
*/
void populate_verify_io_u(struct thread_data *td, struct io_u *io_u)
{
if (td->o.verify == VERIFY_NULL)
return;
io_u->numberio = td->io_issues[io_u->ddir];
fill_pattern_headers(td, io_u, 0, 0);
}
int get_next_verify(struct thread_data *td, struct io_u *io_u)
{
struct io_piece *ipo = NULL;
/*
* this io_u is from a requeue, we already filled the offsets
*/
if (io_u->file)
return 0;
if (!RB_EMPTY_ROOT(&td->io_hist_tree)) {
struct rb_node *n = rb_first(&td->io_hist_tree);
ipo = rb_entry(n, struct io_piece, rb_node);
/*
* Ensure that the associated IO has completed
*/
read_barrier();
if (ipo->flags & IP_F_IN_FLIGHT)
goto nothing;
rb_erase(n, &td->io_hist_tree);
assert(ipo->flags & IP_F_ONRB);
ipo->flags &= ~IP_F_ONRB;
} else if (!flist_empty(&td->io_hist_list)) {
ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list);
/*
* Ensure that the associated IO has completed
*/
read_barrier();
if (ipo->flags & IP_F_IN_FLIGHT)
goto nothing;
flist_del(&ipo->list);
assert(ipo->flags & IP_F_ONLIST);
ipo->flags &= ~IP_F_ONLIST;
}
if (ipo) {
td->io_hist_len--;
io_u->offset = ipo->offset;
io_u->buflen = ipo->len;
io_u->numberio = ipo->numberio;
io_u->file = ipo->file;
io_u->flags |= IO_U_F_VER_LIST;
if (ipo->flags & IP_F_TRIMMED)
io_u->flags |= IO_U_F_TRIMMED;
if (!fio_file_open(io_u->file)) {
int r = td_io_open_file(td, io_u->file);
if (r) {
dprint(FD_VERIFY, "failed file %s open\n",
io_u->file->file_name);
return 1;
}
}
get_file(ipo->file);
assert(fio_file_open(io_u->file));
io_u->ddir = DDIR_READ;
io_u->xfer_buf = io_u->buf;
io_u->xfer_buflen = io_u->buflen;
remove_trim_entry(td, ipo);
free(ipo);
dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u);
if (!td->o.verify_pattern_bytes) {
io_u->rand_seed = __rand(&td->verify_state);
if (sizeof(int) != sizeof(long *))
io_u->rand_seed *= __rand(&td->verify_state);
}
return 0;
}
nothing:
dprint(FD_VERIFY, "get_next_verify: empty\n");
return 1;
}
void fio_verify_init(struct thread_data *td)
{
if (td->o.verify == VERIFY_CRC32C_INTEL ||
td->o.verify == VERIFY_CRC32C) {
crc32c_intel_probe();
}
}
static void *verify_async_thread(void *data)
{
struct thread_data *td = data;
struct io_u *io_u;
int ret = 0;
if (td->o.verify_cpumask_set &&
fio_setaffinity(td->pid, td->o.verify_cpumask)) {
log_err("fio: failed setting verify thread affinity\n");
goto done;
}
do {
FLIST_HEAD(list);
read_barrier();
if (td->verify_thread_exit)
break;
pthread_mutex_lock(&td->io_u_lock);
while (flist_empty(&td->verify_list) &&
!td->verify_thread_exit) {
ret = pthread_cond_wait(&td->verify_cond,
&td->io_u_lock);
if (ret) {
pthread_mutex_unlock(&td->io_u_lock);
break;
}
}
flist_splice_init(&td->verify_list, &list);
pthread_mutex_unlock(&td->io_u_lock);
if (flist_empty(&list))
continue;
while (!flist_empty(&list)) {
io_u = flist_first_entry(&list, struct io_u, verify_list);
flist_del_init(&io_u->verify_list);
io_u->flags |= IO_U_F_NO_FILE_PUT;
ret = verify_io_u(td, &io_u);
put_io_u(td, io_u);
if (!ret)
continue;
if (td_non_fatal_error(td, ERROR_TYPE_VERIFY_BIT, ret)) {
update_error_count(td, ret);
td_clear_error(td);
ret = 0;
}
}
} while (!ret);
if (ret) {
td_verror(td, ret, "async_verify");
if (td->o.verify_fatal)
fio_mark_td_terminate(td);
}
done:
pthread_mutex_lock(&td->io_u_lock);
td->nr_verify_threads--;
pthread_mutex_unlock(&td->io_u_lock);
pthread_cond_signal(&td->free_cond);
return NULL;
}
int verify_async_init(struct thread_data *td)
{
int i, ret;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
td->verify_thread_exit = 0;
td->verify_threads = malloc(sizeof(pthread_t) * td->o.verify_async);
for (i = 0; i < td->o.verify_async; i++) {
ret = pthread_create(&td->verify_threads[i], &attr,
verify_async_thread, td);
if (ret) {
log_err("fio: async verify creation failed: %s\n",
strerror(ret));
break;
}
ret = pthread_detach(td->verify_threads[i]);
if (ret) {
log_err("fio: async verify thread detach failed: %s\n",
strerror(ret));
break;
}
td->nr_verify_threads++;
}
pthread_attr_destroy(&attr);
if (i != td->o.verify_async) {
log_err("fio: only %d verify threads started, exiting\n", i);
td->verify_thread_exit = 1;
write_barrier();
pthread_cond_broadcast(&td->verify_cond);
return 1;
}
return 0;
}
void verify_async_exit(struct thread_data *td)
{
td->verify_thread_exit = 1;
write_barrier();
pthread_cond_broadcast(&td->verify_cond);
pthread_mutex_lock(&td->io_u_lock);
while (td->nr_verify_threads)
pthread_cond_wait(&td->free_cond, &td->io_u_lock);
pthread_mutex_unlock(&td->io_u_lock);
free(td->verify_threads);
td->verify_threads = NULL;
}
struct all_io_list *get_all_io_list(int save_mask, size_t *sz)
{
struct all_io_list *rep;
struct thread_data *td;
size_t depth;
void *next;
int i, nr;
compiletime_assert(sizeof(struct all_io_list) == 8, "all_io_list");
/*
* Calculate reply space needed. We need one 'io_state' per thread,
* and the size will vary depending on depth.
*/
depth = 0;
nr = 0;
for_each_td(td, i) {
if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
continue;
td->stop_io = 1;
td->flags |= TD_F_VSTATE_SAVED;
depth += td->o.iodepth;
nr++;
}
if (!nr)
return NULL;
*sz = sizeof(*rep);
*sz += nr * sizeof(struct thread_io_list);
*sz += depth * sizeof(uint64_t);
rep = malloc(*sz);
rep->threads = cpu_to_le64((uint64_t) nr);
next = &rep->state[0];
for_each_td(td, i) {
struct thread_io_list *s = next;
unsigned int comps;
if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
continue;
if (td->last_write_comp) {
int j, k;
if (td->io_blocks[DDIR_WRITE] < td->o.iodepth)
comps = td->io_blocks[DDIR_WRITE];
else
comps = td->o.iodepth;
k = td->last_write_idx - 1;
for (j = 0; j < comps; j++) {
if (k == -1)
k = td->o.iodepth - 1;
s->offsets[j] = cpu_to_le64(td->last_write_comp[k]);
k--;
}
} else
comps = 0;
s->no_comps = cpu_to_le64((uint64_t) comps);
s->depth = cpu_to_le64((uint64_t) td->o.iodepth);
s->numberio = cpu_to_le64((uint64_t) td->io_issues[DDIR_WRITE]);
s->index = cpu_to_le64((uint64_t) i);
s->rand.s[0] = cpu_to_le32(td->random_state.s1);
s->rand.s[1] = cpu_to_le32(td->random_state.s2);
s->rand.s[2] = cpu_to_le32(td->random_state.s3);
s->rand.s[3] = 0;
strncpy((char *) s->name, td->o.name, sizeof(s->name));
next = io_list_next(s);
}
return rep;
}
static int open_state_file(const char *name, const char *prefix, int num,
int for_write)
{
char out[64];
int flags;
int fd;
if (for_write)
flags = O_CREAT | O_TRUNC | O_WRONLY | O_SYNC;
else
flags = O_RDONLY;
verify_state_gen_name(out, sizeof(out), name, prefix, num);
fd = open(out, flags, 0644);
if (fd == -1) {
perror("fio: open state file");
return -1;
}
return fd;
}
static int write_thread_list_state(struct thread_io_list *s,
const char *prefix)
{
struct verify_state_hdr hdr;
uint64_t crc;
ssize_t ret;
int fd;
fd = open_state_file((const char *) s->name, prefix, s->index, 1);
if (fd == -1)
return 1;
crc = fio_crc32c((void *)s, thread_io_list_sz(s));
hdr.version = cpu_to_le64((uint64_t) VSTATE_HDR_VERSION);
hdr.size = cpu_to_le64((uint64_t) thread_io_list_sz(s));
hdr.crc = cpu_to_le64(crc);
ret = write(fd, &hdr, sizeof(hdr));
if (ret != sizeof(hdr))
goto write_fail;
ret = write(fd, s, thread_io_list_sz(s));
if (ret != thread_io_list_sz(s)) {
write_fail:
if (ret < 0)
perror("fio: write state file");
log_err("fio: failed to write state file\n");
ret = 1;
} else
ret = 0;
close(fd);
return ret;
}
void __verify_save_state(struct all_io_list *state, const char *prefix)
{
struct thread_io_list *s = &state->state[0];
unsigned int i;
for (i = 0; i < le64_to_cpu(state->threads); i++) {
write_thread_list_state(s, prefix);
s = io_list_next(s);
}
}
void verify_save_state(void)
{
struct all_io_list *state;
size_t sz;
state = get_all_io_list(IO_LIST_ALL, &sz);
if (state) {
__verify_save_state(state, "local");
free(state);
}
}
void verify_free_state(struct thread_data *td)
{
if (td->vstate)
free(td->vstate);
}
void verify_convert_assign_state(struct thread_data *td,
struct thread_io_list *s)
{
int i;
s->no_comps = le64_to_cpu(s->no_comps);
s->depth = le64_to_cpu(s->depth);
s->numberio = le64_to_cpu(s->numberio);
for (i = 0; i < 4; i++)
s->rand.s[i] = le32_to_cpu(s->rand.s[i]);
for (i = 0; i < s->no_comps; i++)
s->offsets[i] = le64_to_cpu(s->offsets[i]);
td->vstate = s;
}
int verify_state_hdr(struct verify_state_hdr *hdr, struct thread_io_list *s)
{
uint64_t crc;
hdr->version = le64_to_cpu(hdr->version);
hdr->size = le64_to_cpu(hdr->size);
hdr->crc = le64_to_cpu(hdr->crc);
if (hdr->version != VSTATE_HDR_VERSION)
return 1;
crc = fio_crc32c((void *)s, hdr->size);
if (crc != hdr->crc)
return 1;
return 0;
}
int verify_load_state(struct thread_data *td, const char *prefix)
{
struct thread_io_list *s = NULL;
struct verify_state_hdr hdr;
uint64_t crc;
ssize_t ret;
int fd;
if (!td->o.verify_state)
return 0;
fd = open_state_file(td->o.name, prefix, td->thread_number - 1, 0);
if (fd == -1)
return 1;
ret = read(fd, &hdr, sizeof(hdr));
if (ret != sizeof(hdr)) {
if (ret < 0)
td_verror(td, errno, "read verify state hdr");
log_err("fio: failed reading verify state header\n");
goto err;
}
hdr.version = le64_to_cpu(hdr.version);
hdr.size = le64_to_cpu(hdr.size);
hdr.crc = le64_to_cpu(hdr.crc);
if (hdr.version != VSTATE_HDR_VERSION) {
log_err("fio: bad version in verify state header\n");
goto err;
}
s = malloc(hdr.size);
ret = read(fd, s, hdr.size);
if (ret != hdr.size) {
if (ret < 0)
td_verror(td, errno, "read verify state");
log_err("fio: failed reading verity state\n");
goto err;
}
crc = fio_crc32c((void *)s, hdr.size);
if (crc != hdr.crc) {
log_err("fio: verify state is corrupt\n");
goto err;
}
close(fd);
verify_convert_assign_state(td, s);
return 0;
err:
if (s)
free(s);
close(fd);
return 1;
}
/*
* Use the loaded verify state to know when to stop doing verification
*/
int verify_state_should_stop(struct thread_data *td, struct io_u *io_u)
{
struct thread_io_list *s = td->vstate;
int i;
if (!s)
return 0;
/*
* If we're not into the window of issues - depth yet, continue
*/
if (td->io_blocks[DDIR_READ] < s->depth ||
s->numberio - td->io_blocks[DDIR_READ] > s->depth)
return 0;
/*
* We're in the window of having to check if this io was
* completed or not. If the IO was seen as completed, then
* lets verify it.
*/
for (i = 0; i < s->no_comps; i++)
if (io_u->offset == s->offsets[i])
return 0;
/*
* Not found, we have to stop
*/
return 1;
}