| #include <unistd.h> |
| #include <fcntl.h> |
| #include <string.h> |
| #include <signal.h> |
| #include <time.h> |
| #include <assert.h> |
| |
| #include "fio.h" |
| #include "hash.h" |
| #include "verify.h" |
| #include "trim.h" |
| #include "lib/rand.h" |
| |
| struct io_completion_data { |
| int nr; /* input */ |
| |
| int error; /* output */ |
| unsigned long bytes_done[2]; /* output */ |
| struct timeval time; /* output */ |
| }; |
| |
| /* |
| * The ->file_map[] contains a map of blocks we have or have not done io |
| * to yet. Used to make sure we cover the entire range in a fair fashion. |
| */ |
| static int random_map_free(struct fio_file *f, const unsigned long long block) |
| { |
| unsigned int idx = RAND_MAP_IDX(f, block); |
| unsigned int bit = RAND_MAP_BIT(f, block); |
| |
| dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit); |
| |
| return (f->file_map[idx] & (1 << bit)) == 0; |
| } |
| |
| /* |
| * Mark a given offset as used in the map. |
| */ |
| static void mark_random_map(struct thread_data *td, struct io_u *io_u) |
| { |
| unsigned int min_bs = td->o.rw_min_bs; |
| struct fio_file *f = io_u->file; |
| unsigned long long block; |
| unsigned int blocks, nr_blocks; |
| int busy_check; |
| |
| block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs; |
| nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; |
| blocks = 0; |
| busy_check = !(io_u->flags & IO_U_F_BUSY_OK); |
| |
| while (nr_blocks) { |
| unsigned int this_blocks, mask; |
| unsigned int idx, bit; |
| |
| /* |
| * If we have a mixed random workload, we may |
| * encounter blocks we already did IO to. |
| */ |
| if (!busy_check) { |
| blocks = nr_blocks; |
| break; |
| } |
| if ((td->o.ddir_seq_nr == 1) && !random_map_free(f, block)) |
| break; |
| |
| idx = RAND_MAP_IDX(f, block); |
| bit = RAND_MAP_BIT(f, block); |
| |
| fio_assert(td, idx < f->num_maps); |
| |
| this_blocks = nr_blocks; |
| if (this_blocks + bit > BLOCKS_PER_MAP) |
| this_blocks = BLOCKS_PER_MAP - bit; |
| |
| do { |
| if (this_blocks == BLOCKS_PER_MAP) |
| mask = -1U; |
| else |
| mask = ((1U << this_blocks) - 1) << bit; |
| |
| if (!(f->file_map[idx] & mask)) |
| break; |
| |
| this_blocks--; |
| } while (this_blocks); |
| |
| if (!this_blocks) |
| break; |
| |
| f->file_map[idx] |= mask; |
| nr_blocks -= this_blocks; |
| blocks += this_blocks; |
| block += this_blocks; |
| } |
| |
| if ((blocks * min_bs) < io_u->buflen) |
| io_u->buflen = blocks * min_bs; |
| } |
| |
| static unsigned long long last_block(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir) |
| { |
| unsigned long long max_blocks; |
| unsigned long long max_size; |
| |
| assert(ddir_rw(ddir)); |
| |
| /* |
| * Hmm, should we make sure that ->io_size <= ->real_file_size? |
| */ |
| max_size = f->io_size; |
| if (max_size > f->real_file_size) |
| max_size = f->real_file_size; |
| |
| max_blocks = max_size / (unsigned long long) td->o.ba[ddir]; |
| if (!max_blocks) |
| return 0; |
| |
| return max_blocks; |
| } |
| |
| /* |
| * Return the next free block in the map. |
| */ |
| static int get_next_free_block(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir, unsigned long long *b) |
| { |
| unsigned long long min_bs = td->o.rw_min_bs, lastb; |
| int i; |
| |
| lastb = last_block(td, f, ddir); |
| if (!lastb) |
| return 1; |
| |
| i = f->last_free_lookup; |
| *b = (i * BLOCKS_PER_MAP); |
| while ((*b) * min_bs < f->real_file_size && |
| (*b) * min_bs < f->io_size) { |
| if (f->file_map[i] != (unsigned int) -1) { |
| *b += ffz(f->file_map[i]); |
| if (*b > lastb) |
| break; |
| f->last_free_lookup = i; |
| return 0; |
| } |
| |
| *b += BLOCKS_PER_MAP; |
| i++; |
| } |
| |
| dprint(FD_IO, "failed finding a free block\n"); |
| return 1; |
| } |
| |
| static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir, unsigned long long *b) |
| { |
| unsigned long long r, lastb; |
| int loops = 5; |
| |
| lastb = last_block(td, f, ddir); |
| if (!lastb) |
| return 1; |
| |
| do { |
| r = os_random_long(&td->random_state); |
| dprint(FD_RANDOM, "off rand %llu\n", r); |
| *b = (lastb - 1) * (r / ((unsigned long long) OS_RAND_MAX + 1.0)); |
| |
| /* |
| * if we are not maintaining a random map, we are done. |
| */ |
| if (!file_randommap(td, f)) |
| return 0; |
| |
| /* |
| * calculate map offset and check if it's free |
| */ |
| if (random_map_free(f, *b)) |
| return 0; |
| |
| dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", |
| *b); |
| } while (--loops); |
| |
| /* |
| * we get here, if we didn't suceed in looking up a block. generate |
| * a random start offset into the filemap, and find the first free |
| * block from there. |
| */ |
| loops = 10; |
| do { |
| f->last_free_lookup = (f->num_maps - 1) * |
| (r / (OS_RAND_MAX + 1.0)); |
| if (!get_next_free_block(td, f, ddir, b)) |
| return 0; |
| |
| r = os_random_long(&td->random_state); |
| } while (--loops); |
| |
| /* |
| * that didn't work either, try exhaustive search from the start |
| */ |
| f->last_free_lookup = 0; |
| return get_next_free_block(td, f, ddir, b); |
| } |
| |
| static int get_next_rand_block(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir, unsigned long long *b) |
| { |
| if (get_next_rand_offset(td, f, ddir, b)) { |
| dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", |
| f->file_name, f->last_pos, f->real_file_size); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int get_next_seq_block(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir, unsigned long long *b) |
| { |
| assert(ddir_rw(ddir)); |
| |
| if (f->last_pos < f->real_file_size) { |
| *b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir]; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int get_next_block(struct thread_data *td, struct io_u *io_u, |
| enum fio_ddir ddir, int rw_seq, unsigned long long *b) |
| { |
| struct fio_file *f = io_u->file; |
| int ret; |
| |
| assert(ddir_rw(ddir)); |
| |
| if (rw_seq) { |
| if (td_random(td)) |
| ret = get_next_rand_block(td, f, ddir, b); |
| else |
| ret = get_next_seq_block(td, f, ddir, b); |
| } else { |
| io_u->flags |= IO_U_F_BUSY_OK; |
| |
| if (td->o.rw_seq == RW_SEQ_SEQ) { |
| ret = get_next_seq_block(td, f, ddir, b); |
| if (ret) |
| ret = get_next_rand_block(td, f, ddir, b); |
| } else if (td->o.rw_seq == RW_SEQ_IDENT) { |
| if (f->last_start != -1ULL) |
| *b = (f->last_start - f->file_offset) |
| / td->o.min_bs[ddir]; |
| else |
| *b = 0; |
| ret = 0; |
| } else { |
| log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); |
| ret = 1; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * For random io, generate a random new block and see if it's used. Repeat |
| * until we find a free one. For sequential io, just return the end of |
| * the last io issued. |
| */ |
| static int __get_next_offset(struct thread_data *td, struct io_u *io_u) |
| { |
| struct fio_file *f = io_u->file; |
| unsigned long long b; |
| enum fio_ddir ddir = io_u->ddir; |
| int rw_seq_hit = 0; |
| |
| assert(ddir_rw(ddir)); |
| |
| if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { |
| rw_seq_hit = 1; |
| td->ddir_seq_nr = td->o.ddir_seq_nr; |
| } |
| |
| if (get_next_block(td, io_u, ddir, rw_seq_hit, &b)) |
| return 1; |
| |
| io_u->offset = b * td->o.ba[ddir]; |
| if (io_u->offset >= f->io_size) { |
| dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", |
| io_u->offset, f->io_size); |
| return 1; |
| } |
| |
| io_u->offset += f->file_offset; |
| if (io_u->offset >= f->real_file_size) { |
| dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", |
| io_u->offset, f->real_file_size); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int get_next_offset(struct thread_data *td, struct io_u *io_u) |
| { |
| struct prof_io_ops *ops = &td->prof_io_ops; |
| |
| if (ops->fill_io_u_off) |
| return ops->fill_io_u_off(td, io_u); |
| |
| return __get_next_offset(td, io_u); |
| } |
| |
| static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u) |
| { |
| const int ddir = io_u->ddir; |
| unsigned int uninitialized_var(buflen); |
| unsigned int minbs, maxbs; |
| long r; |
| |
| assert(ddir_rw(ddir)); |
| |
| minbs = td->o.min_bs[ddir]; |
| maxbs = td->o.max_bs[ddir]; |
| |
| if (minbs == maxbs) |
| buflen = minbs; |
| else { |
| r = os_random_long(&td->bsrange_state); |
| if (!td->o.bssplit_nr[ddir]) { |
| buflen = 1 + (unsigned int) ((double) maxbs * |
| (r / (OS_RAND_MAX + 1.0))); |
| if (buflen < minbs) |
| buflen = minbs; |
| } else { |
| long perc = 0; |
| unsigned int i; |
| |
| for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { |
| struct bssplit *bsp = &td->o.bssplit[ddir][i]; |
| |
| buflen = bsp->bs; |
| perc += bsp->perc; |
| if (r <= ((OS_RAND_MAX / 100L) * perc)) |
| break; |
| } |
| } |
| if (!td->o.bs_unaligned && is_power_of_2(minbs)) |
| buflen = (buflen + minbs - 1) & ~(minbs - 1); |
| } |
| |
| if (io_u->offset + buflen > io_u->file->real_file_size) { |
| dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen, |
| minbs, ddir); |
| buflen = minbs; |
| } |
| |
| return buflen; |
| } |
| |
| static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) |
| { |
| struct prof_io_ops *ops = &td->prof_io_ops; |
| |
| if (ops->fill_io_u_size) |
| return ops->fill_io_u_size(td, io_u); |
| |
| return __get_next_buflen(td, io_u); |
| } |
| |
| static void set_rwmix_bytes(struct thread_data *td) |
| { |
| unsigned int diff; |
| |
| /* |
| * we do time or byte based switch. this is needed because |
| * buffered writes may issue a lot quicker than they complete, |
| * whereas reads do not. |
| */ |
| diff = td->o.rwmix[td->rwmix_ddir ^ 1]; |
| td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; |
| } |
| |
| static inline enum fio_ddir get_rand_ddir(struct thread_data *td) |
| { |
| unsigned int v; |
| long r; |
| |
| r = os_random_long(&td->rwmix_state); |
| v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); |
| if (v <= td->o.rwmix[DDIR_READ]) |
| return DDIR_READ; |
| |
| return DDIR_WRITE; |
| } |
| |
| static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) |
| { |
| enum fio_ddir odir = ddir ^ 1; |
| struct timeval t; |
| long usec; |
| |
| assert(ddir_rw(ddir)); |
| |
| if (td->rate_pending_usleep[ddir] <= 0) |
| return ddir; |
| |
| /* |
| * We have too much pending sleep in this direction. See if we |
| * should switch. |
| */ |
| if (td_rw(td)) { |
| /* |
| * Other direction does not have too much pending, switch |
| */ |
| if (td->rate_pending_usleep[odir] < 100000) |
| return odir; |
| |
| /* |
| * Both directions have pending sleep. Sleep the minimum time |
| * and deduct from both. |
| */ |
| if (td->rate_pending_usleep[ddir] <= |
| td->rate_pending_usleep[odir]) { |
| usec = td->rate_pending_usleep[ddir]; |
| } else { |
| usec = td->rate_pending_usleep[odir]; |
| ddir = odir; |
| } |
| } else |
| usec = td->rate_pending_usleep[ddir]; |
| |
| fio_gettime(&t, NULL); |
| usec_sleep(td, usec); |
| usec = utime_since_now(&t); |
| |
| td->rate_pending_usleep[ddir] -= usec; |
| |
| odir = ddir ^ 1; |
| if (td_rw(td) && __should_check_rate(td, odir)) |
| td->rate_pending_usleep[odir] -= usec; |
| |
| return ddir; |
| } |
| |
| /* |
| * Return the data direction for the next io_u. If the job is a |
| * mixed read/write workload, check the rwmix cycle and switch if |
| * necessary. |
| */ |
| static enum fio_ddir get_rw_ddir(struct thread_data *td) |
| { |
| enum fio_ddir ddir; |
| |
| /* |
| * see if it's time to fsync |
| */ |
| if (td->o.fsync_blocks && |
| !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && |
| td->io_issues[DDIR_WRITE] && should_fsync(td)) |
| return DDIR_SYNC; |
| |
| /* |
| * see if it's time to fdatasync |
| */ |
| if (td->o.fdatasync_blocks && |
| !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && |
| td->io_issues[DDIR_WRITE] && should_fsync(td)) |
| return DDIR_DATASYNC; |
| |
| /* |
| * see if it's time to sync_file_range |
| */ |
| if (td->sync_file_range_nr && |
| !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && |
| td->io_issues[DDIR_WRITE] && should_fsync(td)) |
| return DDIR_SYNC_FILE_RANGE; |
| |
| if (td_rw(td)) { |
| /* |
| * Check if it's time to seed a new data direction. |
| */ |
| if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { |
| /* |
| * Put a top limit on how many bytes we do for |
| * one data direction, to avoid overflowing the |
| * ranges too much |
| */ |
| ddir = get_rand_ddir(td); |
| |
| if (ddir != td->rwmix_ddir) |
| set_rwmix_bytes(td); |
| |
| td->rwmix_ddir = ddir; |
| } |
| ddir = td->rwmix_ddir; |
| } else if (td_read(td)) |
| ddir = DDIR_READ; |
| else |
| ddir = DDIR_WRITE; |
| |
| td->rwmix_ddir = rate_ddir(td, ddir); |
| return td->rwmix_ddir; |
| } |
| |
| static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) |
| { |
| io_u->ddir = get_rw_ddir(td); |
| |
| if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) && |
| td->o.barrier_blocks && |
| !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && |
| td->io_issues[DDIR_WRITE]) |
| io_u->flags |= IO_U_F_BARRIER; |
| } |
| |
| void put_file_log(struct thread_data *td, struct fio_file *f) |
| { |
| int ret = put_file(td, f); |
| |
| if (ret) |
| td_verror(td, ret, "file close"); |
| } |
| |
| void put_io_u(struct thread_data *td, struct io_u *io_u) |
| { |
| td_io_u_lock(td); |
| |
| io_u->flags |= IO_U_F_FREE; |
| io_u->flags &= ~IO_U_F_FREE_DEF; |
| |
| if (io_u->file) |
| put_file_log(td, io_u->file); |
| |
| io_u->file = NULL; |
| if (io_u->flags & IO_U_F_IN_CUR_DEPTH) |
| td->cur_depth--; |
| flist_del_init(&io_u->list); |
| flist_add(&io_u->list, &td->io_u_freelist); |
| td_io_u_unlock(td); |
| td_io_u_free_notify(td); |
| } |
| |
| void clear_io_u(struct thread_data *td, struct io_u *io_u) |
| { |
| io_u->flags &= ~IO_U_F_FLIGHT; |
| put_io_u(td, io_u); |
| } |
| |
| void requeue_io_u(struct thread_data *td, struct io_u **io_u) |
| { |
| struct io_u *__io_u = *io_u; |
| |
| dprint(FD_IO, "requeue %p\n", __io_u); |
| |
| td_io_u_lock(td); |
| |
| __io_u->flags |= IO_U_F_FREE; |
| if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir)) |
| td->io_issues[__io_u->ddir]--; |
| |
| __io_u->flags &= ~IO_U_F_FLIGHT; |
| if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) |
| td->cur_depth--; |
| flist_del(&__io_u->list); |
| flist_add_tail(&__io_u->list, &td->io_u_requeues); |
| td_io_u_unlock(td); |
| *io_u = NULL; |
| } |
| |
| static int fill_io_u(struct thread_data *td, struct io_u *io_u) |
| { |
| if (td->io_ops->flags & FIO_NOIO) |
| goto out; |
| |
| set_rw_ddir(td, io_u); |
| |
| /* |
| * fsync() or fdatasync() or trim etc, we are done |
| */ |
| if (!ddir_rw(io_u->ddir)) |
| goto out; |
| |
| /* |
| * See if it's time to switch to a new zone |
| */ |
| if (td->zone_bytes >= td->o.zone_size) { |
| td->zone_bytes = 0; |
| io_u->file->last_pos += td->o.zone_skip; |
| td->io_skip_bytes += td->o.zone_skip; |
| } |
| |
| /* |
| * No log, let the seq/rand engine retrieve the next buflen and |
| * position. |
| */ |
| if (get_next_offset(td, io_u)) { |
| dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); |
| return 1; |
| } |
| |
| io_u->buflen = get_next_buflen(td, io_u); |
| if (!io_u->buflen) { |
| dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); |
| return 1; |
| } |
| |
| if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { |
| dprint(FD_IO, "io_u %p, offset too large\n", io_u); |
| dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset, |
| io_u->buflen, io_u->file->real_file_size); |
| return 1; |
| } |
| |
| /* |
| * mark entry before potentially trimming io_u |
| */ |
| if (td_random(td) && file_randommap(td, io_u->file)) |
| mark_random_map(td, io_u); |
| |
| /* |
| * If using a write iolog, store this entry. |
| */ |
| out: |
| dprint_io_u(io_u, "fill_io_u"); |
| td->zone_bytes += io_u->buflen; |
| log_io_u(td, io_u); |
| return 0; |
| } |
| |
| static void __io_u_mark_map(unsigned int *map, unsigned int nr) |
| { |
| int idx = 0; |
| |
| switch (nr) { |
| default: |
| idx = 6; |
| break; |
| case 33 ... 64: |
| idx = 5; |
| break; |
| case 17 ... 32: |
| idx = 4; |
| break; |
| case 9 ... 16: |
| idx = 3; |
| break; |
| case 5 ... 8: |
| idx = 2; |
| break; |
| case 1 ... 4: |
| idx = 1; |
| case 0: |
| break; |
| } |
| |
| map[idx]++; |
| } |
| |
| void io_u_mark_submit(struct thread_data *td, unsigned int nr) |
| { |
| __io_u_mark_map(td->ts.io_u_submit, nr); |
| td->ts.total_submit++; |
| } |
| |
| void io_u_mark_complete(struct thread_data *td, unsigned int nr) |
| { |
| __io_u_mark_map(td->ts.io_u_complete, nr); |
| td->ts.total_complete++; |
| } |
| |
| void io_u_mark_depth(struct thread_data *td, unsigned int nr) |
| { |
| int idx = 0; |
| |
| switch (td->cur_depth) { |
| default: |
| idx = 6; |
| break; |
| case 32 ... 63: |
| idx = 5; |
| break; |
| case 16 ... 31: |
| idx = 4; |
| break; |
| case 8 ... 15: |
| idx = 3; |
| break; |
| case 4 ... 7: |
| idx = 2; |
| break; |
| case 2 ... 3: |
| idx = 1; |
| case 1: |
| break; |
| } |
| |
| td->ts.io_u_map[idx] += nr; |
| } |
| |
| static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) |
| { |
| int idx = 0; |
| |
| assert(usec < 1000); |
| |
| switch (usec) { |
| case 750 ... 999: |
| idx = 9; |
| break; |
| case 500 ... 749: |
| idx = 8; |
| break; |
| case 250 ... 499: |
| idx = 7; |
| break; |
| case 100 ... 249: |
| idx = 6; |
| break; |
| case 50 ... 99: |
| idx = 5; |
| break; |
| case 20 ... 49: |
| idx = 4; |
| break; |
| case 10 ... 19: |
| idx = 3; |
| break; |
| case 4 ... 9: |
| idx = 2; |
| break; |
| case 2 ... 3: |
| idx = 1; |
| case 0 ... 1: |
| break; |
| } |
| |
| assert(idx < FIO_IO_U_LAT_U_NR); |
| td->ts.io_u_lat_u[idx]++; |
| } |
| |
| static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) |
| { |
| int idx = 0; |
| |
| switch (msec) { |
| default: |
| idx = 11; |
| break; |
| case 1000 ... 1999: |
| idx = 10; |
| break; |
| case 750 ... 999: |
| idx = 9; |
| break; |
| case 500 ... 749: |
| idx = 8; |
| break; |
| case 250 ... 499: |
| idx = 7; |
| break; |
| case 100 ... 249: |
| idx = 6; |
| break; |
| case 50 ... 99: |
| idx = 5; |
| break; |
| case 20 ... 49: |
| idx = 4; |
| break; |
| case 10 ... 19: |
| idx = 3; |
| break; |
| case 4 ... 9: |
| idx = 2; |
| break; |
| case 2 ... 3: |
| idx = 1; |
| case 0 ... 1: |
| break; |
| } |
| |
| assert(idx < FIO_IO_U_LAT_M_NR); |
| td->ts.io_u_lat_m[idx]++; |
| } |
| |
| static void io_u_mark_latency(struct thread_data *td, unsigned long usec) |
| { |
| if (usec < 1000) |
| io_u_mark_lat_usec(td, usec); |
| else |
| io_u_mark_lat_msec(td, usec / 1000); |
| } |
| |
| /* |
| * Get next file to service by choosing one at random |
| */ |
| static struct fio_file *get_next_file_rand(struct thread_data *td, |
| enum fio_file_flags goodf, |
| enum fio_file_flags badf) |
| { |
| struct fio_file *f; |
| int fno; |
| |
| do { |
| long r = os_random_long(&td->next_file_state); |
| int opened = 0; |
| |
| fno = (unsigned int) ((double) td->o.nr_files |
| * (r / (OS_RAND_MAX + 1.0))); |
| f = td->files[fno]; |
| if (fio_file_done(f)) |
| continue; |
| |
| if (!fio_file_open(f)) { |
| int err; |
| |
| err = td_io_open_file(td, f); |
| if (err) |
| continue; |
| opened = 1; |
| } |
| |
| if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { |
| dprint(FD_FILE, "get_next_file_rand: %p\n", f); |
| return f; |
| } |
| if (opened) |
| td_io_close_file(td, f); |
| } while (1); |
| } |
| |
| /* |
| * Get next file to service by doing round robin between all available ones |
| */ |
| static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, |
| int badf) |
| { |
| unsigned int old_next_file = td->next_file; |
| struct fio_file *f; |
| |
| do { |
| int opened = 0; |
| |
| f = td->files[td->next_file]; |
| |
| td->next_file++; |
| if (td->next_file >= td->o.nr_files) |
| td->next_file = 0; |
| |
| dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); |
| if (fio_file_done(f)) { |
| f = NULL; |
| continue; |
| } |
| |
| if (!fio_file_open(f)) { |
| int err; |
| |
| err = td_io_open_file(td, f); |
| if (err) { |
| dprint(FD_FILE, "error %d on open of %s\n", |
| err, f->file_name); |
| f = NULL; |
| continue; |
| } |
| opened = 1; |
| } |
| |
| dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, |
| f->flags); |
| if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) |
| break; |
| |
| if (opened) |
| td_io_close_file(td, f); |
| |
| f = NULL; |
| } while (td->next_file != old_next_file); |
| |
| dprint(FD_FILE, "get_next_file_rr: %p\n", f); |
| return f; |
| } |
| |
| static struct fio_file *__get_next_file(struct thread_data *td) |
| { |
| struct fio_file *f; |
| |
| assert(td->o.nr_files <= td->files_index); |
| |
| if (td->nr_done_files >= td->o.nr_files) { |
| dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," |
| " nr_files=%d\n", td->nr_open_files, |
| td->nr_done_files, |
| td->o.nr_files); |
| return NULL; |
| } |
| |
| f = td->file_service_file; |
| if (f && fio_file_open(f) && !fio_file_closing(f)) { |
| if (td->o.file_service_type == FIO_FSERVICE_SEQ) |
| goto out; |
| if (td->file_service_left--) |
| goto out; |
| } |
| |
| if (td->o.file_service_type == FIO_FSERVICE_RR || |
| td->o.file_service_type == FIO_FSERVICE_SEQ) |
| f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); |
| else |
| f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); |
| |
| td->file_service_file = f; |
| td->file_service_left = td->file_service_nr - 1; |
| out: |
| dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); |
| return f; |
| } |
| |
| static struct fio_file *get_next_file(struct thread_data *td) |
| { |
| struct prof_io_ops *ops = &td->prof_io_ops; |
| |
| if (ops->get_next_file) |
| return ops->get_next_file(td); |
| |
| return __get_next_file(td); |
| } |
| |
| static int set_io_u_file(struct thread_data *td, struct io_u *io_u) |
| { |
| struct fio_file *f; |
| |
| do { |
| f = get_next_file(td); |
| if (!f) |
| return 1; |
| |
| io_u->file = f; |
| get_file(f); |
| |
| if (!fill_io_u(td, io_u)) |
| break; |
| |
| put_file_log(td, f); |
| td_io_close_file(td, f); |
| io_u->file = NULL; |
| fio_file_set_done(f); |
| td->nr_done_files++; |
| dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, |
| td->nr_done_files, td->o.nr_files); |
| } while (1); |
| |
| return 0; |
| } |
| |
| |
| struct io_u *__get_io_u(struct thread_data *td) |
| { |
| struct io_u *io_u = NULL; |
| |
| td_io_u_lock(td); |
| |
| again: |
| if (!flist_empty(&td->io_u_requeues)) |
| io_u = flist_entry(td->io_u_requeues.next, struct io_u, list); |
| else if (!queue_full(td)) { |
| io_u = flist_entry(td->io_u_freelist.next, struct io_u, list); |
| |
| io_u->buflen = 0; |
| io_u->resid = 0; |
| io_u->file = NULL; |
| io_u->end_io = NULL; |
| } |
| |
| if (io_u) { |
| assert(io_u->flags & IO_U_F_FREE); |
| io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF); |
| io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER); |
| |
| io_u->error = 0; |
| flist_del(&io_u->list); |
| flist_add(&io_u->list, &td->io_u_busylist); |
| td->cur_depth++; |
| io_u->flags |= IO_U_F_IN_CUR_DEPTH; |
| } else if (td->o.verify_async) { |
| /* |
| * We ran out, wait for async verify threads to finish and |
| * return one |
| */ |
| pthread_cond_wait(&td->free_cond, &td->io_u_lock); |
| goto again; |
| } |
| |
| td_io_u_unlock(td); |
| return io_u; |
| } |
| |
| static int check_get_trim(struct thread_data *td, struct io_u *io_u) |
| { |
| if (td->o.trim_backlog && td->trim_entries) { |
| int get_trim = 0; |
| |
| if (td->trim_batch) { |
| td->trim_batch--; |
| get_trim = 1; |
| } else if (!(td->io_hist_len % td->o.trim_backlog) && |
| td->last_ddir != DDIR_READ) { |
| td->trim_batch = td->o.trim_batch; |
| if (!td->trim_batch) |
| td->trim_batch = td->o.trim_backlog; |
| get_trim = 1; |
| } |
| |
| if (get_trim && !get_next_trim(td, io_u)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int check_get_verify(struct thread_data *td, struct io_u *io_u) |
| { |
| if (td->o.verify_backlog && td->io_hist_len) { |
| int get_verify = 0; |
| |
| if (td->verify_batch) { |
| td->verify_batch--; |
| get_verify = 1; |
| } else if (!(td->io_hist_len % td->o.verify_backlog) && |
| td->last_ddir != DDIR_READ) { |
| td->verify_batch = td->o.verify_batch; |
| if (!td->verify_batch) |
| td->verify_batch = td->o.verify_backlog; |
| get_verify = 1; |
| } |
| |
| if (get_verify && !get_next_verify(td, io_u)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Return an io_u to be processed. Gets a buflen and offset, sets direction, |
| * etc. The returned io_u is fully ready to be prepped and submitted. |
| */ |
| struct io_u *get_io_u(struct thread_data *td) |
| { |
| struct fio_file *f; |
| struct io_u *io_u; |
| |
| io_u = __get_io_u(td); |
| if (!io_u) { |
| dprint(FD_IO, "__get_io_u failed\n"); |
| return NULL; |
| } |
| |
| if (check_get_verify(td, io_u)) |
| goto out; |
| if (check_get_trim(td, io_u)) |
| goto out; |
| |
| /* |
| * from a requeue, io_u already setup |
| */ |
| if (io_u->file) |
| goto out; |
| |
| /* |
| * If using an iolog, grab next piece if any available. |
| */ |
| if (td->o.read_iolog_file) { |
| if (read_iolog_get(td, io_u)) |
| goto err_put; |
| } else if (set_io_u_file(td, io_u)) { |
| dprint(FD_IO, "io_u %p, setting file failed\n", io_u); |
| goto err_put; |
| } |
| |
| f = io_u->file; |
| assert(fio_file_open(f)); |
| |
| if (ddir_rw(io_u->ddir)) { |
| if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { |
| dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); |
| goto err_put; |
| } |
| |
| f->last_start = io_u->offset; |
| f->last_pos = io_u->offset + io_u->buflen; |
| |
| if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_WRITE) |
| populate_verify_io_u(td, io_u); |
| else if (td->o.refill_buffers && io_u->ddir == DDIR_WRITE) |
| io_u_fill_buffer(td, io_u, io_u->xfer_buflen); |
| else if (io_u->ddir == DDIR_READ) { |
| /* |
| * Reset the buf_filled parameters so next time if the |
| * buffer is used for writes it is refilled. |
| */ |
| io_u->buf_filled_len = 0; |
| } |
| } |
| |
| /* |
| * Set io data pointers. |
| */ |
| io_u->xfer_buf = io_u->buf; |
| io_u->xfer_buflen = io_u->buflen; |
| |
| out: |
| assert(io_u->file); |
| if (!td_io_prep(td, io_u)) { |
| if (!td->o.disable_slat) |
| fio_gettime(&io_u->start_time, NULL); |
| return io_u; |
| } |
| err_put: |
| dprint(FD_IO, "get_io_u failed\n"); |
| put_io_u(td, io_u); |
| return NULL; |
| } |
| |
| void io_u_log_error(struct thread_data *td, struct io_u *io_u) |
| { |
| const char *msg[] = { "read", "write", "sync", "datasync", |
| "sync_file_range", "wait", "trim" }; |
| |
| |
| |
| log_err("fio: io_u error"); |
| |
| if (io_u->file) |
| log_err(" on file %s", io_u->file->file_name); |
| |
| log_err(": %s\n", strerror(io_u->error)); |
| |
| log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], |
| io_u->offset, io_u->xfer_buflen); |
| |
| if (!td->error) |
| td_verror(td, io_u->error, "io_u error"); |
| } |
| |
| static void io_completed(struct thread_data *td, struct io_u *io_u, |
| struct io_completion_data *icd) |
| { |
| /* |
| * Older gcc's are too dumb to realize that usec is always used |
| * initialized, silence that warning. |
| */ |
| unsigned long uninitialized_var(usec); |
| struct fio_file *f; |
| |
| dprint_io_u(io_u, "io complete"); |
| |
| td_io_u_lock(td); |
| assert(io_u->flags & IO_U_F_FLIGHT); |
| io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK); |
| td_io_u_unlock(td); |
| |
| if (ddir_sync(io_u->ddir)) { |
| td->last_was_sync = 1; |
| f = io_u->file; |
| if (f) { |
| f->first_write = -1ULL; |
| f->last_write = -1ULL; |
| } |
| return; |
| } |
| |
| td->last_was_sync = 0; |
| td->last_ddir = io_u->ddir; |
| |
| if (!io_u->error && ddir_rw(io_u->ddir)) { |
| unsigned int bytes = io_u->buflen - io_u->resid; |
| const enum fio_ddir idx = io_u->ddir; |
| const enum fio_ddir odx = io_u->ddir ^ 1; |
| int ret; |
| |
| td->io_blocks[idx]++; |
| td->io_bytes[idx] += bytes; |
| td->this_io_bytes[idx] += bytes; |
| |
| if (idx == DDIR_WRITE) { |
| f = io_u->file; |
| if (f) { |
| if (f->first_write == -1ULL || |
| io_u->offset < f->first_write) |
| f->first_write = io_u->offset; |
| if (f->last_write == -1ULL || |
| ((io_u->offset + bytes) > f->last_write)) |
| f->last_write = io_u->offset + bytes; |
| } |
| } |
| |
| if (ramp_time_over(td)) { |
| unsigned long uninitialized_var(lusec); |
| |
| if (!td->o.disable_clat || !td->o.disable_bw) |
| lusec = utime_since(&io_u->issue_time, |
| &icd->time); |
| if (!td->o.disable_lat) { |
| unsigned long tusec; |
| |
| tusec = utime_since(&io_u->start_time, |
| &icd->time); |
| add_lat_sample(td, idx, tusec, bytes); |
| } |
| if (!td->o.disable_clat) { |
| add_clat_sample(td, idx, lusec, bytes); |
| io_u_mark_latency(td, lusec); |
| } |
| if (!td->o.disable_bw) |
| add_bw_sample(td, idx, bytes, &icd->time); |
| if (__should_check_rate(td, idx)) { |
| td->rate_pending_usleep[idx] = |
| ((td->this_io_bytes[idx] * |
| td->rate_nsec_cycle[idx]) / 1000 - |
| utime_since_now(&td->start)); |
| } |
| if (__should_check_rate(td, idx ^ 1)) |
| td->rate_pending_usleep[odx] = |
| ((td->this_io_bytes[odx] * |
| td->rate_nsec_cycle[odx]) / 1000 - |
| utime_since_now(&td->start)); |
| } |
| |
| if (td_write(td) && idx == DDIR_WRITE && |
| td->o.do_verify && |
| td->o.verify != VERIFY_NONE) |
| log_io_piece(td, io_u); |
| |
| icd->bytes_done[idx] += bytes; |
| |
| if (io_u->end_io) { |
| ret = io_u->end_io(td, io_u); |
| if (ret && !icd->error) |
| icd->error = ret; |
| } |
| } else if (io_u->error) { |
| icd->error = io_u->error; |
| io_u_log_error(td, io_u); |
| } |
| if (td->o.continue_on_error && icd->error && |
| td_non_fatal_error(icd->error)) { |
| /* |
| * If there is a non_fatal error, then add to the error count |
| * and clear all the errors. |
| */ |
| update_error_count(td, icd->error); |
| td_clear_error(td); |
| icd->error = 0; |
| io_u->error = 0; |
| } |
| } |
| |
| static void init_icd(struct thread_data *td, struct io_completion_data *icd, |
| int nr) |
| { |
| if (!td->o.disable_clat || !td->o.disable_bw) |
| fio_gettime(&icd->time, NULL); |
| |
| icd->nr = nr; |
| |
| icd->error = 0; |
| icd->bytes_done[0] = icd->bytes_done[1] = 0; |
| } |
| |
| static void ios_completed(struct thread_data *td, |
| struct io_completion_data *icd) |
| { |
| struct io_u *io_u; |
| int i; |
| |
| for (i = 0; i < icd->nr; i++) { |
| io_u = td->io_ops->event(td, i); |
| |
| io_completed(td, io_u, icd); |
| |
| if (!(io_u->flags & IO_U_F_FREE_DEF)) |
| put_io_u(td, io_u); |
| } |
| } |
| |
| /* |
| * Complete a single io_u for the sync engines. |
| */ |
| int io_u_sync_complete(struct thread_data *td, struct io_u *io_u, |
| unsigned long *bytes) |
| { |
| struct io_completion_data icd; |
| |
| init_icd(td, &icd, 1); |
| io_completed(td, io_u, &icd); |
| |
| if (!(io_u->flags & IO_U_F_FREE_DEF)) |
| put_io_u(td, io_u); |
| |
| if (icd.error) { |
| td_verror(td, icd.error, "io_u_sync_complete"); |
| return -1; |
| } |
| |
| if (bytes) { |
| bytes[0] += icd.bytes_done[0]; |
| bytes[1] += icd.bytes_done[1]; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Called to complete min_events number of io for the async engines. |
| */ |
| int io_u_queued_complete(struct thread_data *td, int min_evts, |
| unsigned long *bytes) |
| { |
| struct io_completion_data icd; |
| struct timespec *tvp = NULL; |
| int ret; |
| struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; |
| |
| dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); |
| |
| if (!min_evts) |
| tvp = &ts; |
| |
| ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); |
| if (ret < 0) { |
| td_verror(td, -ret, "td_io_getevents"); |
| return ret; |
| } else if (!ret) |
| return ret; |
| |
| init_icd(td, &icd, ret); |
| ios_completed(td, &icd); |
| if (icd.error) { |
| td_verror(td, icd.error, "io_u_queued_complete"); |
| return -1; |
| } |
| |
| if (bytes) { |
| bytes[0] += icd.bytes_done[0]; |
| bytes[1] += icd.bytes_done[1]; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Call when io_u is really queued, to update the submission latency. |
| */ |
| void io_u_queued(struct thread_data *td, struct io_u *io_u) |
| { |
| if (!td->o.disable_slat) { |
| unsigned long slat_time; |
| |
| slat_time = utime_since(&io_u->start_time, &io_u->issue_time); |
| add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen); |
| } |
| } |
| |
| /* |
| * "randomly" fill the buffer contents |
| */ |
| void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, |
| unsigned int max_bs) |
| { |
| io_u->buf_filled_len = 0; |
| |
| if (!td->o.zero_buffers) |
| fill_random_buf(io_u->buf, max_bs); |
| else |
| memset(io_u->buf, 0, max_bs); |
| } |