| #ifndef FIO_STAT_H |
| #define FIO_STAT_H |
| |
| #include "iolog.h" |
| |
| struct group_run_stats { |
| uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT]; |
| uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT]; |
| uint64_t io_kb[DDIR_RWDIR_CNT]; |
| uint64_t agg[DDIR_RWDIR_CNT]; |
| uint32_t kb_base; |
| uint32_t unit_base; |
| uint32_t groupid; |
| uint32_t unified_rw_rep; |
| } __attribute__((packed)); |
| |
| /* |
| * How many depth levels to log |
| */ |
| #define FIO_IO_U_MAP_NR 7 |
| #define FIO_IO_U_LAT_U_NR 10 |
| #define FIO_IO_U_LAT_M_NR 12 |
| |
| /* |
| * Aggregate clat samples to report percentile(s) of them. |
| * |
| * EXECUTIVE SUMMARY |
| * |
| * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the |
| * value of resulting percentiles. The error will be approximately |
| * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value. |
| * |
| * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum |
| * range being tracked for latency samples. The maximum value tracked |
| * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds. |
| * |
| * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory |
| * requirement of storing those aggregate counts. The memory used will |
| * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int) |
| * bytes. |
| * |
| * FIO_IO_U_PLAT_NR is the total number of buckets. |
| * |
| * DETAILS |
| * |
| * Suppose the clat varies from 0 to 999 (usec), the straightforward |
| * method is to keep an array of (999 + 1) buckets, in which a counter |
| * keeps the count of samples which fall in the bucket, e.g., |
| * {[0],[1],...,[999]}. However this consumes a huge amount of space, |
| * and can be avoided if an approximation is acceptable. |
| * |
| * One such method is to let the range of the bucket to be greater |
| * than one. This method has low accuracy when the value is small. For |
| * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and |
| * the represented value of each bucket be the mean of the range. Then |
| * a value 0 has an round-off error of 49.5. To improve on this, we |
| * use buckets with non-uniform ranges, while bounding the error of |
| * each bucket within a ratio of the sample value. A simple example |
| * would be when error_bound = 0.005, buckets are { |
| * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},.., |
| * {[900,909],[910,919]...} }. The total range is partitioned into |
| * groups with different ranges, then buckets with uniform ranges. An |
| * upper bound of the error is (range_of_bucket/2)/value_of_bucket |
| * |
| * For better efficiency, we implement this using base two. We group |
| * samples by their Most Significant Bit (MSB), extract the next M bit |
| * of them as an index within the group, and discard the rest of the |
| * bits. |
| * |
| * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0), |
| * and use M bit for indexing |
| * |
| * | n | M bits | bit (n-M-1) ... bit 0 | |
| * |
| * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most |
| * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off |
| * error |
| * |
| * 2^(n-M)-1 2^(n-M) 1 |
| * e <= --------- <= ------- = --- |
| * 2^n 2^n 2^M |
| * |
| * Furthermore, we use "mean" of the range to represent the bucket, |
| * the error e can be lowered by half to 1 / 2^(M+1). By using M bits |
| * as the index, each group must contains 2^M buckets. |
| * |
| * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6 |
| * Error bound is 1/2^(6+1) = 0.0078125 (< 1%) |
| * |
| * Group MSB #discarded range of #buckets |
| * error_bits value |
| * ---------------------------------------------------------------- |
| * 0* 0~5 0 [0,63] 64 |
| * 1* 6 0 [64,127] 64 |
| * 2 7 1 [128,255] 64 |
| * 3 8 2 [256,511] 64 |
| * 4 9 3 [512,1023] 64 |
| * ... ... ... [...,...] ... |
| * 18 23 17 [8838608,+inf]** 64 |
| * |
| * * Special cases: when n < (M-1) or when n == (M-1), in both cases, |
| * the value cannot be rounded off. Use all bits of the sample as |
| * index. |
| * |
| * ** If a sample's MSB is greater than 23, it will be counted as 23. |
| */ |
| |
| #define FIO_IO_U_PLAT_BITS 6 |
| #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS) |
| #define FIO_IO_U_PLAT_GROUP_NR 19 |
| #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL) |
| #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified |
| list of percentiles */ |
| |
| #define MAX_PATTERN_SIZE 512 |
| #define FIO_JOBNAME_SIZE 128 |
| #define FIO_JOBDESC_SIZE 256 |
| #define FIO_VERROR_SIZE 128 |
| |
| struct thread_stat { |
| char name[FIO_JOBNAME_SIZE]; |
| char verror[FIO_VERROR_SIZE]; |
| uint32_t error; |
| uint32_t thread_number; |
| uint32_t groupid; |
| uint32_t pid; |
| char description[FIO_JOBDESC_SIZE]; |
| uint32_t members; |
| uint32_t unified_rw_rep; |
| |
| /* |
| * bandwidth and latency stats |
| */ |
| struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */ |
| struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */ |
| struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */ |
| struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */ |
| struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */ |
| |
| /* |
| * fio system usage accounting |
| */ |
| uint64_t usr_time; |
| uint64_t sys_time; |
| uint64_t ctx; |
| uint64_t minf, majf; |
| |
| /* |
| * IO depth and latency stats |
| */ |
| uint64_t clat_percentiles; |
| uint64_t percentile_precision; |
| fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN]; |
| |
| uint32_t io_u_map[FIO_IO_U_MAP_NR]; |
| uint32_t io_u_submit[FIO_IO_U_MAP_NR]; |
| uint32_t io_u_complete[FIO_IO_U_MAP_NR]; |
| uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR]; |
| uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR]; |
| uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR]; |
| uint32_t pad; |
| |
| uint64_t total_io_u[3]; |
| uint64_t short_io_u[3]; |
| uint64_t drop_io_u[3]; |
| uint64_t total_submit; |
| uint64_t total_complete; |
| |
| uint64_t io_bytes[DDIR_RWDIR_CNT]; |
| uint64_t runtime[DDIR_RWDIR_CNT]; |
| uint64_t total_run_time; |
| |
| /* |
| * IO Error related stats |
| */ |
| union { |
| uint16_t continue_on_error; |
| uint64_t pad2; |
| }; |
| uint64_t total_err_count; |
| uint32_t first_error; |
| |
| uint32_t kb_base; |
| uint32_t unit_base; |
| |
| uint32_t latency_depth; |
| uint64_t latency_target; |
| fio_fp64_t latency_percentile; |
| uint64_t latency_window; |
| } __attribute__((packed)); |
| |
| struct jobs_eta { |
| uint32_t nr_running; |
| uint32_t nr_ramp; |
| |
| uint32_t nr_pending; |
| uint32_t nr_setting_up; |
| |
| uint32_t files_open; |
| |
| uint32_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT]; |
| uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT]; |
| uint32_t rate[DDIR_RWDIR_CNT]; |
| uint32_t iops[DDIR_RWDIR_CNT]; |
| uint64_t elapsed_sec; |
| uint64_t eta_sec; |
| uint32_t is_pow2; |
| uint32_t unit_base; |
| |
| /* |
| * Network 'copy' of run_str[] |
| */ |
| uint32_t nr_threads; |
| uint8_t run_str[]; |
| } __attribute__((packed)); |
| |
| extern struct fio_mutex *stat_mutex; |
| |
| extern struct jobs_eta *get_jobs_eta(int force, size_t *size); |
| |
| extern void stat_init(void); |
| extern void stat_exit(void); |
| |
| extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs); |
| extern void show_group_stats(struct group_run_stats *rs); |
| extern int calc_thread_status(struct jobs_eta *je, int force); |
| extern void display_thread_status(struct jobs_eta *je); |
| extern void show_run_stats(void); |
| extern void __show_run_stats(void); |
| extern void __show_running_run_stats(void); |
| extern void show_running_run_stats(void); |
| extern void check_for_running_stats(void); |
| extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr); |
| extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src); |
| extern void init_thread_stat(struct thread_stat *ts); |
| extern void init_group_run_stat(struct group_run_stats *gs); |
| extern void eta_to_str(char *str, unsigned long eta_sec); |
| extern int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev); |
| extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv); |
| extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat); |
| extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat); |
| extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist); |
| extern void reset_io_stats(struct thread_data *); |
| |
| static inline int usec_to_msec(unsigned long *min, unsigned long *max, |
| double *mean, double *dev) |
| { |
| if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) { |
| *min /= 1000; |
| *max /= 1000; |
| *mean /= 1000.0; |
| *dev /= 1000.0; |
| return 0; |
| } |
| |
| return 1; |
| } |
| /* |
| * Worst level condensing would be 1:5, so allow enough room for that |
| */ |
| #define __THREAD_RUNSTR_SZ(nr) ((nr) * 5) |
| #define THREAD_RUNSTR_SZ __THREAD_RUNSTR_SZ(thread_number) |
| |
| #endif |