blob: 5b912eb7166c81b1cb310e42a5c61701ecb6e9c0 [file] [log] [blame]
/*
* Status and ETA code
*/
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include "fio.h"
static char run_str[REAL_MAX_JOBS + 1];
/*
* Sets the status of the 'td' in the printed status map.
*/
static void check_str_update(struct thread_data *td)
{
char c = run_str[td->thread_number - 1];
switch (td->runstate) {
case TD_REAPED:
c = '_';
break;
case TD_EXITED:
c = 'E';
break;
case TD_RAMP:
c = '/';
break;
case TD_RUNNING:
if (td_rw(td)) {
if (td_random(td)) {
if (td->o.rwmix[DDIR_READ] == 100)
c = 'r';
else if (td->o.rwmix[DDIR_WRITE] == 100)
c = 'w';
else
c = 'm';
} else {
if (td->o.rwmix[DDIR_READ] == 100)
c = 'R';
else if (td->o.rwmix[DDIR_WRITE] == 100)
c = 'W';
else
c = 'M';
}
} else if (td_read(td)) {
if (td_random(td))
c = 'r';
else
c = 'R';
} else {
if (td_random(td))
c = 'w';
else
c = 'W';
}
break;
case TD_PRE_READING:
c = 'p';
break;
case TD_VERIFYING:
c = 'V';
break;
case TD_FSYNCING:
c = 'F';
break;
case TD_CREATED:
c = 'C';
break;
case TD_INITIALIZED:
c = 'I';
break;
case TD_NOT_CREATED:
c = 'P';
break;
default:
log_err("state %d\n", td->runstate);
}
run_str[td->thread_number - 1] = c;
}
/*
* Convert seconds to a printable string.
*/
static void eta_to_str(char *str, unsigned long eta_sec)
{
unsigned int d, h, m, s;
int disp_hour = 0;
s = eta_sec % 60;
eta_sec /= 60;
m = eta_sec % 60;
eta_sec /= 60;
h = eta_sec % 24;
eta_sec /= 24;
d = eta_sec;
if (d) {
disp_hour = 1;
str += sprintf(str, "%02ud:", d);
}
if (h || disp_hour)
str += sprintf(str, "%02uh:", h);
str += sprintf(str, "%02um:", m);
str += sprintf(str, "%02us", s);
}
/*
* Best effort calculation of the estimated pending runtime of a job.
*/
static int thread_eta(struct thread_data *td)
{
unsigned long long bytes_total, bytes_done;
unsigned long eta_sec = 0;
unsigned long elapsed;
elapsed = (mtime_since_now(&td->epoch) + 999) / 1000;
bytes_total = td->total_io_size;
if (td->o.fill_device && td->o.size == -1ULL) {
if (!td->fill_device_size || td->fill_device_size == -1ULL)
return 0;
bytes_total = td->fill_device_size;
}
/*
* if writing, bytes_total will be twice the size. If mixing,
* assume a 50/50 split and thus bytes_total will be 50% larger.
*/
if (td->o.do_verify && td->o.verify && td_write(td)) {
if (td_rw(td))
bytes_total = bytes_total * 3 / 2;
else
bytes_total <<= 1;
}
if (td->o.zone_size && td->o.zone_skip)
bytes_total /= (td->o.zone_skip / td->o.zone_size);
if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) {
double perc, perc_t;
bytes_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE];
perc = (double) bytes_done / (double) bytes_total;
if (perc > 1.0)
perc = 1.0;
if (td->o.time_based) {
perc_t = (double) elapsed / (double) td->o.timeout;
if (perc_t < perc)
perc = perc_t;
}
eta_sec = (unsigned long) (elapsed * (1.0 / perc)) - elapsed;
if (td->o.timeout &&
eta_sec > (td->o.timeout + done_secs - elapsed))
eta_sec = td->o.timeout + done_secs - elapsed;
} else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED
|| td->runstate == TD_INITIALIZED
|| td->runstate == TD_RAMP
|| td->runstate == TD_PRE_READING) {
int t_eta = 0, r_eta = 0;
/*
* We can only guess - assume it'll run the full timeout
* if given, otherwise assume it'll run at the specified rate.
*/
if (td->o.timeout) {
t_eta = td->o.timeout + td->o.start_delay +
td->o.ramp_time;
if (in_ramp_time(td)) {
unsigned long ramp_left;
ramp_left = mtime_since_now(&td->epoch);
ramp_left = (ramp_left + 999) / 1000;
if (ramp_left <= t_eta)
t_eta -= ramp_left;
}
}
if (td->o.rate[0] || td->o.rate[1]) {
r_eta = (bytes_total / 1024) /
(td->o.rate[0] + td->o.rate[1]);
r_eta += td->o.start_delay;
}
if (r_eta && t_eta)
eta_sec = min(r_eta, t_eta);
else if (r_eta)
eta_sec = r_eta;
else if (t_eta)
eta_sec = t_eta;
else
eta_sec = 0;
} else {
/*
* thread is already done or waiting for fsync
*/
eta_sec = 0;
}
return eta_sec;
}
static void calc_rate(unsigned long mtime, unsigned long long *io_bytes,
unsigned long long *prev_io_bytes, unsigned int *rate)
{
rate[0] = (io_bytes[0] - prev_io_bytes[0]) / mtime;
rate[1] = (io_bytes[1] - prev_io_bytes[1]) / mtime;
prev_io_bytes[0] = io_bytes[0];
prev_io_bytes[1] = io_bytes[1];
}
static void calc_iops(unsigned long mtime, unsigned long long *io_iops,
unsigned long long *prev_io_iops, unsigned int *iops)
{
iops[0] = ((io_iops[0] - prev_io_iops[0]) * 1000) / mtime;
iops[1] = ((io_iops[1] - prev_io_iops[1]) * 1000) / mtime;
prev_io_iops[0] = io_iops[0];
prev_io_iops[1] = io_iops[1];
}
/*
* Print status of the jobs we know about. This includes rate estimates,
* ETA, thread state, etc.
*/
int calc_thread_status(struct jobs_eta *je)
{
struct thread_data *td;
int i;
unsigned long rate_time, disp_time, bw_avg_time, *eta_secs;
unsigned long long io_bytes[2];
unsigned long long io_iops[2];
struct timeval now;
static unsigned long long rate_io_bytes[2];
static unsigned long long disp_io_bytes[2];
static unsigned long long disp_io_iops[2];
static struct timeval rate_prev_time, disp_prev_time;
int i2p = 0;
if (temp_stall_ts || terse_output || eta_print == FIO_ETA_NEVER)
return 0;
if (!isatty(STDOUT_FILENO) && (eta_print != FIO_ETA_ALWAYS))
return 0;
if (!rate_io_bytes[0] && !rate_io_bytes[1])
fill_start_time(&rate_prev_time);
if (!disp_io_bytes[0] && !disp_io_bytes[1])
fill_start_time(&disp_prev_time);
eta_secs = malloc(thread_number * sizeof(unsigned long));
memset(eta_secs, 0, thread_number * sizeof(unsigned long));
je->elapsed_sec = (mtime_since_genesis() + 999) / 1000;
io_bytes[0] = io_bytes[1] = 0;
io_iops[0] = io_iops[1] = 0;
bw_avg_time = ULONG_MAX;
for_each_td(td, i) {
if (td->o.bw_avg_time < bw_avg_time)
bw_avg_time = td->o.bw_avg_time;
if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING
|| td->runstate == TD_FSYNCING
|| td->runstate == TD_PRE_READING) {
je->nr_running++;
je->t_rate += td->o.rate[0] + td->o.rate[1];
je->m_rate += td->o.ratemin[0] + td->o.ratemin[1];
je->t_iops += td->o.rate_iops[0] + td->o.rate_iops[1];
je->m_iops += td->o.rate_iops_min[0] +
td->o.rate_iops_min[1];
je->files_open += td->nr_open_files;
} else if (td->runstate == TD_RAMP) {
je->nr_running++;
je->nr_ramp++;
} else if (td->runstate < TD_RUNNING)
je->nr_pending++;
if (je->elapsed_sec >= 3)
eta_secs[i] = thread_eta(td);
else
eta_secs[i] = INT_MAX;
check_str_update(td);
if (td->runstate > TD_RAMP) {
io_bytes[0] += td->io_bytes[0];
io_bytes[1] += td->io_bytes[1];
io_iops[0] += td->io_blocks[0];
io_iops[1] += td->io_blocks[1];
}
}
if (exitall_on_terminate)
je->eta_sec = INT_MAX;
else
je->eta_sec = 0;
for_each_td(td, i) {
if (!i2p && is_power_of_2(td->o.kb_base))
i2p = 1;
if (exitall_on_terminate) {
if (eta_secs[i] < je->eta_sec)
je->eta_sec = eta_secs[i];
} else {
if (eta_secs[i] > je->eta_sec)
je->eta_sec = eta_secs[i];
}
}
free(eta_secs);
fio_gettime(&now, NULL);
rate_time = mtime_since(&rate_prev_time, &now);
if (write_bw_log && rate_time > bw_avg_time && !in_ramp_time(td)) {
calc_rate(rate_time, io_bytes, rate_io_bytes, je->rate);
memcpy(&rate_prev_time, &now, sizeof(now));
add_agg_sample(je->rate[DDIR_READ], DDIR_READ, 0);
add_agg_sample(je->rate[DDIR_WRITE], DDIR_WRITE, 0);
}
disp_time = mtime_since(&disp_prev_time, &now);
/*
* Allow a little slack, the target is to print it every 1000 msecs
*/
if (disp_time < 900)
return 0;
calc_rate(disp_time, io_bytes, disp_io_bytes, je->rate);
calc_iops(disp_time, io_iops, disp_io_iops, je->iops);
memcpy(&disp_prev_time, &now, sizeof(now));
if (!je->nr_running && !je->nr_pending)
return 0;
je->nr_threads = thread_number;
memcpy(je->run_str, run_str, thread_number * sizeof(char));
return 1;
}
void display_thread_status(struct jobs_eta *je)
{
static int linelen_last;
static int eta_good;
char output[512], *p = output;
char eta_str[128];
double perc = 0.0;
int i2p = 0;
if (je->eta_sec != INT_MAX && je->elapsed_sec) {
perc = (double) je->elapsed_sec / (double) (je->elapsed_sec + je->eta_sec);
eta_to_str(eta_str, je->eta_sec);
}
p += sprintf(p, "Jobs: %d (f=%d)", je->nr_running, je->files_open);
if (je->m_rate || je->t_rate) {
char *tr, *mr;
mr = num2str(je->m_rate, 4, 0, i2p);
tr = num2str(je->t_rate, 4, 0, i2p);
p += sprintf(p, ", CR=%s/%s KB/s", tr, mr);
free(tr);
free(mr);
} else if (je->m_iops || je->t_iops)
p += sprintf(p, ", CR=%d/%d IOPS", je->t_iops, je->m_iops);
if (je->eta_sec != INT_MAX && je->nr_running) {
char perc_str[32];
char *iops_str[2];
char *rate_str[2];
int l;
if ((!je->eta_sec && !eta_good) || je->nr_ramp == je->nr_running)
strcpy(perc_str, "-.-% done");
else {
eta_good = 1;
perc *= 100.0;
sprintf(perc_str, "%3.1f%% done", perc);
}
rate_str[0] = num2str(je->rate[0], 5, 10, i2p);
rate_str[1] = num2str(je->rate[1], 5, 10, i2p);
iops_str[0] = num2str(je->iops[0], 4, 1, 0);
iops_str[1] = num2str(je->iops[1], 4, 1, 0);
l = sprintf(p, ": [%s] [%s] [%s/%s /s] [%s/%s iops] [eta %s]",
je->run_str, perc_str, rate_str[0],
rate_str[1], iops_str[0], iops_str[1], eta_str);
p += l;
if (l >= 0 && l < linelen_last)
p += sprintf(p, "%*s", linelen_last - l, "");
linelen_last = l;
free(rate_str[0]);
free(rate_str[1]);
free(iops_str[0]);
free(iops_str[1]);
}
p += sprintf(p, "\r");
printf("%s", output);
fflush(stdout);
}
void print_thread_status(void)
{
struct jobs_eta *je;
je = malloc(sizeof(*je) + thread_number * sizeof(char));
memset(je, 0, sizeof(*je) + thread_number * sizeof(char));
if (calc_thread_status(je))
display_thread_status(je);
free(je);
}
void print_status_init(int thr_number)
{
run_str[thr_number] = 'P';
}