| /* |
| * Status and ETA code |
| */ |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <string.h> |
| |
| #include "fio.h" |
| |
| static char run_str[REAL_MAX_JOBS + 1]; |
| |
| /* |
| * Sets the status of the 'td' in the printed status map. |
| */ |
| static void check_str_update(struct thread_data *td) |
| { |
| char c = run_str[td->thread_number - 1]; |
| |
| switch (td->runstate) { |
| case TD_REAPED: |
| c = '_'; |
| break; |
| case TD_EXITED: |
| c = 'E'; |
| break; |
| case TD_RAMP: |
| c = '/'; |
| break; |
| case TD_RUNNING: |
| if (td_rw(td)) { |
| if (td_random(td)) { |
| if (td->o.rwmix[DDIR_READ] == 100) |
| c = 'r'; |
| else if (td->o.rwmix[DDIR_WRITE] == 100) |
| c = 'w'; |
| else |
| c = 'm'; |
| } else { |
| if (td->o.rwmix[DDIR_READ] == 100) |
| c = 'R'; |
| else if (td->o.rwmix[DDIR_WRITE] == 100) |
| c = 'W'; |
| else |
| c = 'M'; |
| } |
| } else if (td_read(td)) { |
| if (td_random(td)) |
| c = 'r'; |
| else |
| c = 'R'; |
| } else { |
| if (td_random(td)) |
| c = 'w'; |
| else |
| c = 'W'; |
| } |
| break; |
| case TD_PRE_READING: |
| c = 'p'; |
| break; |
| case TD_VERIFYING: |
| c = 'V'; |
| break; |
| case TD_FSYNCING: |
| c = 'F'; |
| break; |
| case TD_CREATED: |
| c = 'C'; |
| break; |
| case TD_INITIALIZED: |
| c = 'I'; |
| break; |
| case TD_NOT_CREATED: |
| c = 'P'; |
| break; |
| default: |
| log_err("state %d\n", td->runstate); |
| } |
| |
| run_str[td->thread_number - 1] = c; |
| } |
| |
| /* |
| * Convert seconds to a printable string. |
| */ |
| static void eta_to_str(char *str, unsigned long eta_sec) |
| { |
| unsigned int d, h, m, s; |
| int disp_hour = 0; |
| |
| s = eta_sec % 60; |
| eta_sec /= 60; |
| m = eta_sec % 60; |
| eta_sec /= 60; |
| h = eta_sec % 24; |
| eta_sec /= 24; |
| d = eta_sec; |
| |
| if (d) { |
| disp_hour = 1; |
| str += sprintf(str, "%02ud:", d); |
| } |
| |
| if (h || disp_hour) |
| str += sprintf(str, "%02uh:", h); |
| |
| str += sprintf(str, "%02um:", m); |
| str += sprintf(str, "%02us", s); |
| } |
| |
| /* |
| * Best effort calculation of the estimated pending runtime of a job. |
| */ |
| static int thread_eta(struct thread_data *td) |
| { |
| unsigned long long bytes_total, bytes_done; |
| unsigned long eta_sec = 0; |
| unsigned long elapsed; |
| |
| elapsed = (mtime_since_now(&td->epoch) + 999) / 1000; |
| |
| bytes_total = td->total_io_size; |
| |
| if (td->o.fill_device && td->o.size == -1ULL) { |
| if (!td->fill_device_size || td->fill_device_size == -1ULL) |
| return 0; |
| |
| bytes_total = td->fill_device_size; |
| } |
| |
| /* |
| * if writing, bytes_total will be twice the size. If mixing, |
| * assume a 50/50 split and thus bytes_total will be 50% larger. |
| */ |
| if (td->o.do_verify && td->o.verify && td_write(td)) { |
| if (td_rw(td)) |
| bytes_total = bytes_total * 3 / 2; |
| else |
| bytes_total <<= 1; |
| } |
| |
| if (td->o.zone_size && td->o.zone_skip) |
| bytes_total /= (td->o.zone_skip / td->o.zone_size); |
| |
| if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) { |
| double perc, perc_t; |
| |
| bytes_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]; |
| perc = (double) bytes_done / (double) bytes_total; |
| if (perc > 1.0) |
| perc = 1.0; |
| |
| if (td->o.time_based) { |
| perc_t = (double) elapsed / (double) td->o.timeout; |
| if (perc_t < perc) |
| perc = perc_t; |
| } |
| |
| eta_sec = (unsigned long) (elapsed * (1.0 / perc)) - elapsed; |
| |
| if (td->o.timeout && |
| eta_sec > (td->o.timeout + done_secs - elapsed)) |
| eta_sec = td->o.timeout + done_secs - elapsed; |
| } else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED |
| || td->runstate == TD_INITIALIZED |
| || td->runstate == TD_RAMP |
| || td->runstate == TD_PRE_READING) { |
| int t_eta = 0, r_eta = 0; |
| |
| /* |
| * We can only guess - assume it'll run the full timeout |
| * if given, otherwise assume it'll run at the specified rate. |
| */ |
| if (td->o.timeout) { |
| t_eta = td->o.timeout + td->o.start_delay + |
| td->o.ramp_time; |
| |
| if (in_ramp_time(td)) { |
| unsigned long ramp_left; |
| |
| ramp_left = mtime_since_now(&td->epoch); |
| ramp_left = (ramp_left + 999) / 1000; |
| if (ramp_left <= t_eta) |
| t_eta -= ramp_left; |
| } |
| } |
| if (td->o.rate[0] || td->o.rate[1]) { |
| r_eta = (bytes_total / 1024) / |
| (td->o.rate[0] + td->o.rate[1]); |
| r_eta += td->o.start_delay; |
| } |
| |
| if (r_eta && t_eta) |
| eta_sec = min(r_eta, t_eta); |
| else if (r_eta) |
| eta_sec = r_eta; |
| else if (t_eta) |
| eta_sec = t_eta; |
| else |
| eta_sec = 0; |
| } else { |
| /* |
| * thread is already done or waiting for fsync |
| */ |
| eta_sec = 0; |
| } |
| |
| return eta_sec; |
| } |
| |
| static void calc_rate(unsigned long mtime, unsigned long long *io_bytes, |
| unsigned long long *prev_io_bytes, unsigned int *rate) |
| { |
| rate[0] = (io_bytes[0] - prev_io_bytes[0]) / mtime; |
| rate[1] = (io_bytes[1] - prev_io_bytes[1]) / mtime; |
| prev_io_bytes[0] = io_bytes[0]; |
| prev_io_bytes[1] = io_bytes[1]; |
| } |
| |
| static void calc_iops(unsigned long mtime, unsigned long long *io_iops, |
| unsigned long long *prev_io_iops, unsigned int *iops) |
| { |
| iops[0] = ((io_iops[0] - prev_io_iops[0]) * 1000) / mtime; |
| iops[1] = ((io_iops[1] - prev_io_iops[1]) * 1000) / mtime; |
| prev_io_iops[0] = io_iops[0]; |
| prev_io_iops[1] = io_iops[1]; |
| } |
| |
| /* |
| * Print status of the jobs we know about. This includes rate estimates, |
| * ETA, thread state, etc. |
| */ |
| int calc_thread_status(struct jobs_eta *je) |
| { |
| struct thread_data *td; |
| int i; |
| unsigned long rate_time, disp_time, bw_avg_time, *eta_secs; |
| unsigned long long io_bytes[2]; |
| unsigned long long io_iops[2]; |
| struct timeval now; |
| |
| static unsigned long long rate_io_bytes[2]; |
| static unsigned long long disp_io_bytes[2]; |
| static unsigned long long disp_io_iops[2]; |
| static struct timeval rate_prev_time, disp_prev_time; |
| int i2p = 0; |
| |
| if (temp_stall_ts || terse_output || eta_print == FIO_ETA_NEVER) |
| return 0; |
| |
| if (!isatty(STDOUT_FILENO) && (eta_print != FIO_ETA_ALWAYS)) |
| return 0; |
| |
| if (!rate_io_bytes[0] && !rate_io_bytes[1]) |
| fill_start_time(&rate_prev_time); |
| if (!disp_io_bytes[0] && !disp_io_bytes[1]) |
| fill_start_time(&disp_prev_time); |
| |
| eta_secs = malloc(thread_number * sizeof(unsigned long)); |
| memset(eta_secs, 0, thread_number * sizeof(unsigned long)); |
| |
| je->elapsed_sec = (mtime_since_genesis() + 999) / 1000; |
| |
| io_bytes[0] = io_bytes[1] = 0; |
| io_iops[0] = io_iops[1] = 0; |
| bw_avg_time = ULONG_MAX; |
| for_each_td(td, i) { |
| if (td->o.bw_avg_time < bw_avg_time) |
| bw_avg_time = td->o.bw_avg_time; |
| if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING |
| || td->runstate == TD_FSYNCING |
| || td->runstate == TD_PRE_READING) { |
| je->nr_running++; |
| je->t_rate += td->o.rate[0] + td->o.rate[1]; |
| je->m_rate += td->o.ratemin[0] + td->o.ratemin[1]; |
| je->t_iops += td->o.rate_iops[0] + td->o.rate_iops[1]; |
| je->m_iops += td->o.rate_iops_min[0] + |
| td->o.rate_iops_min[1]; |
| je->files_open += td->nr_open_files; |
| } else if (td->runstate == TD_RAMP) { |
| je->nr_running++; |
| je->nr_ramp++; |
| } else if (td->runstate < TD_RUNNING) |
| je->nr_pending++; |
| |
| if (je->elapsed_sec >= 3) |
| eta_secs[i] = thread_eta(td); |
| else |
| eta_secs[i] = INT_MAX; |
| |
| check_str_update(td); |
| |
| if (td->runstate > TD_RAMP) { |
| io_bytes[0] += td->io_bytes[0]; |
| io_bytes[1] += td->io_bytes[1]; |
| io_iops[0] += td->io_blocks[0]; |
| io_iops[1] += td->io_blocks[1]; |
| } |
| } |
| |
| if (exitall_on_terminate) |
| je->eta_sec = INT_MAX; |
| else |
| je->eta_sec = 0; |
| |
| for_each_td(td, i) { |
| if (!i2p && is_power_of_2(td->o.kb_base)) |
| i2p = 1; |
| if (exitall_on_terminate) { |
| if (eta_secs[i] < je->eta_sec) |
| je->eta_sec = eta_secs[i]; |
| } else { |
| if (eta_secs[i] > je->eta_sec) |
| je->eta_sec = eta_secs[i]; |
| } |
| } |
| |
| free(eta_secs); |
| |
| fio_gettime(&now, NULL); |
| rate_time = mtime_since(&rate_prev_time, &now); |
| |
| if (write_bw_log && rate_time > bw_avg_time && !in_ramp_time(td)) { |
| calc_rate(rate_time, io_bytes, rate_io_bytes, je->rate); |
| memcpy(&rate_prev_time, &now, sizeof(now)); |
| add_agg_sample(je->rate[DDIR_READ], DDIR_READ, 0); |
| add_agg_sample(je->rate[DDIR_WRITE], DDIR_WRITE, 0); |
| } |
| |
| disp_time = mtime_since(&disp_prev_time, &now); |
| |
| /* |
| * Allow a little slack, the target is to print it every 1000 msecs |
| */ |
| if (disp_time < 900) |
| return 0; |
| |
| calc_rate(disp_time, io_bytes, disp_io_bytes, je->rate); |
| calc_iops(disp_time, io_iops, disp_io_iops, je->iops); |
| |
| memcpy(&disp_prev_time, &now, sizeof(now)); |
| |
| if (!je->nr_running && !je->nr_pending) |
| return 0; |
| |
| je->nr_threads = thread_number; |
| memcpy(je->run_str, run_str, thread_number * sizeof(char)); |
| |
| return 1; |
| } |
| |
| void display_thread_status(struct jobs_eta *je) |
| { |
| static int linelen_last; |
| static int eta_good; |
| char output[512], *p = output; |
| char eta_str[128]; |
| double perc = 0.0; |
| int i2p = 0; |
| |
| if (je->eta_sec != INT_MAX && je->elapsed_sec) { |
| perc = (double) je->elapsed_sec / (double) (je->elapsed_sec + je->eta_sec); |
| eta_to_str(eta_str, je->eta_sec); |
| } |
| |
| p += sprintf(p, "Jobs: %d (f=%d)", je->nr_running, je->files_open); |
| if (je->m_rate || je->t_rate) { |
| char *tr, *mr; |
| |
| mr = num2str(je->m_rate, 4, 0, i2p); |
| tr = num2str(je->t_rate, 4, 0, i2p); |
| p += sprintf(p, ", CR=%s/%s KB/s", tr, mr); |
| free(tr); |
| free(mr); |
| } else if (je->m_iops || je->t_iops) |
| p += sprintf(p, ", CR=%d/%d IOPS", je->t_iops, je->m_iops); |
| if (je->eta_sec != INT_MAX && je->nr_running) { |
| char perc_str[32]; |
| char *iops_str[2]; |
| char *rate_str[2]; |
| int l; |
| |
| if ((!je->eta_sec && !eta_good) || je->nr_ramp == je->nr_running) |
| strcpy(perc_str, "-.-% done"); |
| else { |
| eta_good = 1; |
| perc *= 100.0; |
| sprintf(perc_str, "%3.1f%% done", perc); |
| } |
| |
| rate_str[0] = num2str(je->rate[0], 5, 10, i2p); |
| rate_str[1] = num2str(je->rate[1], 5, 10, i2p); |
| |
| iops_str[0] = num2str(je->iops[0], 4, 1, 0); |
| iops_str[1] = num2str(je->iops[1], 4, 1, 0); |
| |
| l = sprintf(p, ": [%s] [%s] [%s/%s /s] [%s/%s iops] [eta %s]", |
| je->run_str, perc_str, rate_str[0], |
| rate_str[1], iops_str[0], iops_str[1], eta_str); |
| p += l; |
| if (l >= 0 && l < linelen_last) |
| p += sprintf(p, "%*s", linelen_last - l, ""); |
| linelen_last = l; |
| |
| free(rate_str[0]); |
| free(rate_str[1]); |
| free(iops_str[0]); |
| free(iops_str[1]); |
| } |
| p += sprintf(p, "\r"); |
| |
| printf("%s", output); |
| fflush(stdout); |
| } |
| |
| void print_thread_status(void) |
| { |
| struct jobs_eta *je; |
| |
| je = malloc(sizeof(*je) + thread_number * sizeof(char)); |
| |
| memset(je, 0, sizeof(*je) + thread_number * sizeof(char)); |
| |
| if (calc_thread_status(je)) |
| display_thread_status(je); |
| |
| free(je); |
| } |
| |
| void print_status_init(int thr_number) |
| { |
| run_str[thr_number] = 'P'; |
| } |