blob: 332ccd0f55c3072e1d9732546e055e1ecbed5f0e [file] [log] [blame]
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <libgen.h>
#include <math.h>
#include "fio.h"
#include "diskutil.h"
#include "lib/ieee754.h"
#include "json.h"
#include "lib/getrusage.h"
#include "idletime.h"
static struct fio_mutex *stat_mutex;
void update_rusage_stat(struct thread_data *td)
{
struct thread_stat *ts = &td->ts;
fio_getrusage(&td->ru_end);
ts->usr_time += mtime_since(&td->ru_start.ru_utime,
&td->ru_end.ru_utime);
ts->sys_time += mtime_since(&td->ru_start.ru_stime,
&td->ru_end.ru_stime);
ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
- (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
}
/*
* Given a latency, return the index of the corresponding bucket in
* the structure tracking percentiles.
*
* (1) find the group (and error bits) that the value (latency)
* belongs to by looking at its MSB. (2) find the bucket number in the
* group by looking at the index bits.
*
*/
static unsigned int plat_val_to_idx(unsigned int val)
{
unsigned int msb, error_bits, base, offset, idx;
/* Find MSB starting from bit 0 */
if (val == 0)
msb = 0;
else
msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
/*
* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
* all bits of the sample as index
*/
if (msb <= FIO_IO_U_PLAT_BITS)
return val;
/* Compute the number of error bits to discard*/
error_bits = msb - FIO_IO_U_PLAT_BITS;
/* Compute the number of buckets before the group */
base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
/*
* Discard the error bits and apply the mask to find the
* index for the buckets in the group
*/
offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
/* Make sure the index does not exceed (array size - 1) */
idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
(base + offset) : (FIO_IO_U_PLAT_NR - 1);
return idx;
}
/*
* Convert the given index of the bucket array to the value
* represented by the bucket
*/
static unsigned int plat_idx_to_val(unsigned int idx)
{
unsigned int error_bits, k, base;
assert(idx < FIO_IO_U_PLAT_NR);
/* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
* all bits of the sample as index */
if (idx < (FIO_IO_U_PLAT_VAL << 1))
return idx;
/* Find the group and compute the minimum value of that group */
error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
/* Find its bucket number of the group */
k = idx % FIO_IO_U_PLAT_VAL;
/* Return the mean of the range of the bucket */
return base + ((k + 0.5) * (1 << error_bits));
}
static int double_cmp(const void *a, const void *b)
{
const fio_fp64_t fa = *(const fio_fp64_t *) a;
const fio_fp64_t fb = *(const fio_fp64_t *) b;
int cmp = 0;
if (fa.u.f > fb.u.f)
cmp = 1;
else if (fa.u.f < fb.u.f)
cmp = -1;
return cmp;
}
unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
fio_fp64_t *plist, unsigned int **output,
unsigned int *maxv, unsigned int *minv)
{
unsigned long sum = 0;
unsigned int len, i, j = 0;
unsigned int oval_len = 0;
unsigned int *ovals = NULL;
int is_last;
*minv = -1U;
*maxv = 0;
len = 0;
while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
len++;
if (!len)
return 0;
/*
* Sort the percentile list. Note that it may already be sorted if
* we are using the default values, but since it's a short list this
* isn't a worry. Also note that this does not work for NaN values.
*/
if (len > 1)
qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
/*
* Calculate bucket values, note down max and min values
*/
is_last = 0;
for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
sum += io_u_plat[i];
while (sum >= (plist[j].u.f / 100.0 * nr)) {
assert(plist[j].u.f <= 100.0);
if (j == oval_len) {
oval_len += 100;
ovals = realloc(ovals, oval_len * sizeof(unsigned int));
}
ovals[j] = plat_idx_to_val(i);
if (ovals[j] < *minv)
*minv = ovals[j];
if (ovals[j] > *maxv)
*maxv = ovals[j];
is_last = (j == len - 1);
if (is_last)
break;
j++;
}
}
*output = ovals;
return len;
}
/*
* Find and display the p-th percentile of clat
*/
static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
fio_fp64_t *plist, unsigned int precision)
{
unsigned int len, j = 0, minv, maxv;
unsigned int *ovals;
int is_last, per_line, scale_down;
char fmt[32];
len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
if (!len)
goto out;
/*
* We default to usecs, but if the value range is such that we
* should scale down to msecs, do that.
*/
if (minv > 2000 && maxv > 99999) {
scale_down = 1;
log_info(" clat percentiles (msec):\n |");
} else {
scale_down = 0;
log_info(" clat percentiles (usec):\n |");
}
snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
per_line = (80 - 7) / (precision + 14);
for (j = 0; j < len; j++) {
char fbuf[16], *ptr = fbuf;
/* for formatting */
if (j != 0 && (j % per_line) == 0)
log_info(" |");
/* end of the list */
is_last = (j == len - 1);
if (plist[j].u.f < 10.0)
ptr += sprintf(fbuf, " ");
snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
if (scale_down)
ovals[j] = (ovals[j] + 999) / 1000;
log_info(" %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
if (is_last)
break;
if ((j % per_line) == per_line - 1) /* for formatting */
log_info("\n");
}
out:
if (ovals)
free(ovals);
}
int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
double *mean, double *dev)
{
double n = is->samples;
if (is->samples == 0)
return 0;
*min = is->min_val;
*max = is->max_val;
n = (double) is->samples;
*mean = is->mean.u.f;
if (n > 1.0)
*dev = sqrt(is->S.u.f / (n - 1.0));
else
*dev = 0;
return 1;
}
void show_group_stats(struct group_run_stats *rs)
{
char *p1, *p2, *p3, *p4;
const char *ddir_str[] = { " READ", " WRITE" , " TRIM"};
int i;
log_info("\nRun status group %d (all jobs):\n", rs->groupid);
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
const int i2p = is_power_of_2(rs->kb_base);
if (!rs->max_run[i])
continue;
p1 = num2str(rs->io_kb[i], 6, rs->kb_base, i2p, 8);
p2 = num2str(rs->agg[i], 6, rs->kb_base, i2p, rs->unit_base);
p3 = num2str(rs->min_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
p4 = num2str(rs->max_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
log_info("%s: io=%s, aggrb=%s/s, minb=%s/s, maxb=%s/s,"
" mint=%llumsec, maxt=%llumsec\n",
rs->unified_rw_rep ? " MIXED" : ddir_str[i],
p1, p2, p3, p4,
(unsigned long long) rs->min_run[i],
(unsigned long long) rs->max_run[i]);
free(p1);
free(p2);
free(p3);
free(p4);
}
}
void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
{
int i;
/*
* Do depth distribution calculations
*/
for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
if (total) {
io_u_dist[i] = (double) map[i] / (double) total;
io_u_dist[i] *= 100.0;
if (io_u_dist[i] < 0.1 && map[i])
io_u_dist[i] = 0.1;
} else
io_u_dist[i] = 0.0;
}
}
static void stat_calc_lat(struct thread_stat *ts, double *dst,
unsigned int *src, int nr)
{
unsigned long total = ddir_rw_sum(ts->total_io_u);
int i;
/*
* Do latency distribution calculations
*/
for (i = 0; i < nr; i++) {
if (total) {
dst[i] = (double) src[i] / (double) total;
dst[i] *= 100.0;
if (dst[i] < 0.01 && src[i])
dst[i] = 0.01;
} else
dst[i] = 0.0;
}
}
void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
{
stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
}
void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
{
stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
}
static void display_lat(const char *name, unsigned long min, unsigned long max,
double mean, double dev)
{
const char *base = "(usec)";
char *minp, *maxp;
if (!usec_to_msec(&min, &max, &mean, &dev))
base = "(msec)";
minp = num2str(min, 6, 1, 0, 0);
maxp = num2str(max, 6, 1, 0, 0);
log_info(" %s %s: min=%s, max=%s, avg=%5.02f,"
" stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
free(minp);
free(maxp);
}
static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
int ddir)
{
const char *ddir_str[] = { "read ", "write", "trim" };
unsigned long min, max, runt;
unsigned long long bw, iops;
double mean, dev;
char *io_p, *bw_p, *iops_p;
int i2p;
assert(ddir_rw(ddir));
if (!ts->runtime[ddir])
return;
i2p = is_power_of_2(rs->kb_base);
runt = ts->runtime[ddir];
bw = (1000 * ts->io_bytes[ddir]) / runt;
io_p = num2str(ts->io_bytes[ddir], 6, 1, i2p, 8);
bw_p = num2str(bw, 6, 1, i2p, ts->unit_base);
iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
iops_p = num2str(iops, 6, 1, 0, 0);
log_info(" %s: io=%s, bw=%s/s, iops=%s, runt=%6llumsec\n",
rs->unified_rw_rep ? "mixed" : ddir_str[ddir],
io_p, bw_p, iops_p,
(unsigned long long) ts->runtime[ddir]);
free(io_p);
free(bw_p);
free(iops_p);
if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
display_lat("slat", min, max, mean, dev);
if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
display_lat("clat", min, max, mean, dev);
if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
display_lat(" lat", min, max, mean, dev);
if (ts->clat_percentiles) {
show_clat_percentiles(ts->io_u_plat[ddir],
ts->clat_stat[ddir].samples,
ts->percentile_list,
ts->percentile_precision);
}
if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
const char *bw_str = (rs->unit_base == 1 ? "Kbit" : "KB");
if (rs->unit_base == 1) {
min *= 8.0;
max *= 8.0;
mean *= 8.0;
dev *= 8.0;
}
if (rs->agg[ddir]) {
p_of_agg = mean * 100 / (double) rs->agg[ddir];
if (p_of_agg > 100.0)
p_of_agg = 100.0;
}
if (mean > fkb_base * fkb_base) {
min /= fkb_base;
max /= fkb_base;
mean /= fkb_base;
dev /= fkb_base;
bw_str = (rs->unit_base == 1 ? "Mbit" : "MB");
}
log_info(" bw (%-4s/s): min=%5lu, max=%5lu, per=%3.2f%%,"
" avg=%5.02f, stdev=%5.02f\n", bw_str, min, max,
p_of_agg, mean, dev);
}
}
static int show_lat(double *io_u_lat, int nr, const char **ranges,
const char *msg)
{
int new_line = 1, i, line = 0, shown = 0;
for (i = 0; i < nr; i++) {
if (io_u_lat[i] <= 0.0)
continue;
shown = 1;
if (new_line) {
if (line)
log_info("\n");
log_info(" lat (%s) : ", msg);
new_line = 0;
line = 0;
}
if (line)
log_info(", ");
log_info("%s%3.2f%%", ranges[i], io_u_lat[i]);
line++;
if (line == 5)
new_line = 1;
}
if (shown)
log_info("\n");
return shown;
}
static void show_lat_u(double *io_u_lat_u)
{
const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
"250=", "500=", "750=", "1000=", };
show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec");
}
static void show_lat_m(double *io_u_lat_m)
{
const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
"250=", "500=", "750=", "1000=", "2000=",
">=2000=", };
show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec");
}
static void show_latencies(struct thread_stat *ts)
{
double io_u_lat_u[FIO_IO_U_LAT_U_NR];
double io_u_lat_m[FIO_IO_U_LAT_M_NR];
stat_calc_lat_u(ts, io_u_lat_u);
stat_calc_lat_m(ts, io_u_lat_m);
show_lat_u(io_u_lat_u);
show_lat_m(io_u_lat_m);
}
void show_thread_status(struct thread_stat *ts, struct group_run_stats *rs)
{
double usr_cpu, sys_cpu;
unsigned long runtime;
double io_u_dist[FIO_IO_U_MAP_NR];
time_t time_p;
char time_buf[64];
if (!(ts->io_bytes[DDIR_READ] + ts->io_bytes[DDIR_WRITE] +
ts->io_bytes[DDIR_TRIM]) && !(ts->total_io_u[DDIR_READ] +
ts->total_io_u[DDIR_WRITE] + ts->total_io_u[DDIR_TRIM]))
return;
time(&time_p);
os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
if (!ts->error) {
log_info("%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
ts->name, ts->groupid, ts->members,
ts->error, (int) ts->pid, time_buf);
} else {
log_info("%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
ts->name, ts->groupid, ts->members,
ts->error, ts->verror, (int) ts->pid,
time_buf);
}
if (strlen(ts->description))
log_info(" Description : [%s]\n", ts->description);
if (ts->io_bytes[DDIR_READ])
show_ddir_status(rs, ts, DDIR_READ);
if (ts->io_bytes[DDIR_WRITE])
show_ddir_status(rs, ts, DDIR_WRITE);
if (ts->io_bytes[DDIR_TRIM])
show_ddir_status(rs, ts, DDIR_TRIM);
show_latencies(ts);
runtime = ts->total_run_time;
if (runtime) {
double runt = (double) runtime;
usr_cpu = (double) ts->usr_time * 100 / runt;
sys_cpu = (double) ts->sys_time * 100 / runt;
} else {
usr_cpu = 0;
sys_cpu = 0;
}
log_info(" cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
" majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
(unsigned long long) ts->ctx,
(unsigned long long) ts->majf,
(unsigned long long) ts->minf);
stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
log_info(" IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
" 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
io_u_dist[1], io_u_dist[2],
io_u_dist[3], io_u_dist[4],
io_u_dist[5], io_u_dist[6]);
stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
log_info(" submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
" 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
io_u_dist[1], io_u_dist[2],
io_u_dist[3], io_u_dist[4],
io_u_dist[5], io_u_dist[6]);
stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
log_info(" complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
" 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
io_u_dist[1], io_u_dist[2],
io_u_dist[3], io_u_dist[4],
io_u_dist[5], io_u_dist[6]);
log_info(" issued : total=r=%llu/w=%llu/d=%llu,"
" short=r=%llu/w=%llu/d=%llu\n",
(unsigned long long) ts->total_io_u[0],
(unsigned long long) ts->total_io_u[1],
(unsigned long long) ts->total_io_u[2],
(unsigned long long) ts->short_io_u[0],
(unsigned long long) ts->short_io_u[1],
(unsigned long long) ts->short_io_u[2]);
if (ts->continue_on_error) {
log_info(" errors : total=%llu, first_error=%d/<%s>\n",
(unsigned long long)ts->total_err_count,
ts->first_error,
strerror(ts->first_error));
}
}
static void show_ddir_status_terse(struct thread_stat *ts,
struct group_run_stats *rs, int ddir)
{
unsigned long min, max;
unsigned long long bw, iops;
unsigned int *ovals = NULL;
double mean, dev;
unsigned int len, minv, maxv;
int i;
assert(ddir_rw(ddir));
iops = bw = 0;
if (ts->runtime[ddir]) {
uint64_t runt = ts->runtime[ddir];
bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
}
log_info(";%llu;%llu;%llu;%llu",
(unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
(unsigned long long) ts->runtime[ddir]);
if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
log_info(";%lu;%lu;%f;%f", min, max, mean, dev);
else
log_info(";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
log_info(";%lu;%lu;%f;%f", min, max, mean, dev);
else
log_info(";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
if (ts->clat_percentiles) {
len = calc_clat_percentiles(ts->io_u_plat[ddir],
ts->clat_stat[ddir].samples,
ts->percentile_list, &ovals, &maxv,
&minv);
} else
len = 0;
for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
if (i >= len) {
log_info(";0%%=0");
continue;
}
log_info(";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
}
if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
log_info(";%lu;%lu;%f;%f", min, max, mean, dev);
else
log_info(";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
if (ovals)
free(ovals);
if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
double p_of_agg = 100.0;
if (rs->agg[ddir]) {
p_of_agg = mean * 100 / (double) rs->agg[ddir];
if (p_of_agg > 100.0)
p_of_agg = 100.0;
}
log_info(";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
} else
log_info(";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
}
static void add_ddir_status_json(struct thread_stat *ts,
struct group_run_stats *rs, int ddir, struct json_object *parent)
{
unsigned long min, max;
unsigned long long bw, iops;
unsigned int *ovals = NULL;
double mean, dev;
unsigned int len, minv, maxv;
int i;
const char *ddirname[] = {"read", "write", "trim"};
struct json_object *dir_object, *tmp_object, *percentile_object;
char buf[120];
double p_of_agg = 100.0;
assert(ddir_rw(ddir));
if (ts->unified_rw_rep && ddir != DDIR_READ)
return;
dir_object = json_create_object();
json_object_add_value_object(parent,
ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
iops = bw = 0;
if (ts->runtime[ddir]) {
uint64_t runt = ts->runtime[ddir];
bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
}
json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
json_object_add_value_int(dir_object, "bw", bw);
json_object_add_value_int(dir_object, "iops", iops);
json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
min = max = 0;
mean = dev = 0.0;
}
tmp_object = json_create_object();
json_object_add_value_object(dir_object, "slat", tmp_object);
json_object_add_value_int(tmp_object, "min", min);
json_object_add_value_int(tmp_object, "max", max);
json_object_add_value_float(tmp_object, "mean", mean);
json_object_add_value_float(tmp_object, "stddev", dev);
if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
min = max = 0;
mean = dev = 0.0;
}
tmp_object = json_create_object();
json_object_add_value_object(dir_object, "clat", tmp_object);
json_object_add_value_int(tmp_object, "min", min);
json_object_add_value_int(tmp_object, "max", max);
json_object_add_value_float(tmp_object, "mean", mean);
json_object_add_value_float(tmp_object, "stddev", dev);
if (ts->clat_percentiles) {
len = calc_clat_percentiles(ts->io_u_plat[ddir],
ts->clat_stat[ddir].samples,
ts->percentile_list, &ovals, &maxv,
&minv);
} else
len = 0;
percentile_object = json_create_object();
json_object_add_value_object(tmp_object, "percentile", percentile_object);
for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
if (i >= len) {
json_object_add_value_int(percentile_object, "0.00", 0);
continue;
}
snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
}
if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
min = max = 0;
mean = dev = 0.0;
}
tmp_object = json_create_object();
json_object_add_value_object(dir_object, "lat", tmp_object);
json_object_add_value_int(tmp_object, "min", min);
json_object_add_value_int(tmp_object, "max", max);
json_object_add_value_float(tmp_object, "mean", mean);
json_object_add_value_float(tmp_object, "stddev", dev);
if (ovals)
free(ovals);
if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
if (rs->agg[ddir]) {
p_of_agg = mean * 100 / (double) rs->agg[ddir];
if (p_of_agg > 100.0)
p_of_agg = 100.0;
}
} else {
min = max = 0;
p_of_agg = mean = dev = 0.0;
}
json_object_add_value_int(dir_object, "bw_min", min);
json_object_add_value_int(dir_object, "bw_max", max);
json_object_add_value_float(dir_object, "bw_agg", mean);
json_object_add_value_float(dir_object, "bw_mean", mean);
json_object_add_value_float(dir_object, "bw_dev", dev);
}
static void show_thread_status_terse_v2(struct thread_stat *ts,
struct group_run_stats *rs)
{
double io_u_dist[FIO_IO_U_MAP_NR];
double io_u_lat_u[FIO_IO_U_LAT_U_NR];
double io_u_lat_m[FIO_IO_U_LAT_M_NR];
double usr_cpu, sys_cpu;
int i;
/* General Info */
log_info("2;%s;%d;%d", ts->name, ts->groupid, ts->error);
/* Log Read Status */
show_ddir_status_terse(ts, rs, DDIR_READ);
/* Log Write Status */
show_ddir_status_terse(ts, rs, DDIR_WRITE);
/* Log Trim Status */
show_ddir_status_terse(ts, rs, DDIR_TRIM);
/* CPU Usage */
if (ts->total_run_time) {
double runt = (double) ts->total_run_time;
usr_cpu = (double) ts->usr_time * 100 / runt;
sys_cpu = (double) ts->sys_time * 100 / runt;
} else {
usr_cpu = 0;
sys_cpu = 0;
}
log_info(";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
(unsigned long long) ts->ctx,
(unsigned long long) ts->majf,
(unsigned long long) ts->minf);
/* Calc % distribution of IO depths, usecond, msecond latency */
stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
stat_calc_lat_u(ts, io_u_lat_u);
stat_calc_lat_m(ts, io_u_lat_m);
/* Only show fixed 7 I/O depth levels*/
log_info(";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
io_u_dist[4], io_u_dist[5], io_u_dist[6]);
/* Microsecond latency */
for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
log_info(";%3.2f%%", io_u_lat_u[i]);
/* Millisecond latency */
for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
log_info(";%3.2f%%", io_u_lat_m[i]);
/* Additional output if continue_on_error set - default off*/
if (ts->continue_on_error)
log_info(";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
log_info("\n");
/* Additional output if description is set */
if (ts->description)
log_info(";%s", ts->description);
log_info("\n");
}
static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
struct group_run_stats *rs, int ver)
{
double io_u_dist[FIO_IO_U_MAP_NR];
double io_u_lat_u[FIO_IO_U_LAT_U_NR];
double io_u_lat_m[FIO_IO_U_LAT_M_NR];
double usr_cpu, sys_cpu;
int i;
/* General Info */
log_info("%d;%s;%s;%d;%d", ver, fio_version_string,
ts->name, ts->groupid, ts->error);
/* Log Read Status */
show_ddir_status_terse(ts, rs, DDIR_READ);
/* Log Write Status */
show_ddir_status_terse(ts, rs, DDIR_WRITE);
/* Log Trim Status */
if (ver == 4)
show_ddir_status_terse(ts, rs, DDIR_TRIM);
/* CPU Usage */
if (ts->total_run_time) {
double runt = (double) ts->total_run_time;
usr_cpu = (double) ts->usr_time * 100 / runt;
sys_cpu = (double) ts->sys_time * 100 / runt;
} else {
usr_cpu = 0;
sys_cpu = 0;
}
log_info(";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
(unsigned long long) ts->ctx,
(unsigned long long) ts->majf,
(unsigned long long) ts->minf);
/* Calc % distribution of IO depths, usecond, msecond latency */
stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
stat_calc_lat_u(ts, io_u_lat_u);
stat_calc_lat_m(ts, io_u_lat_m);
/* Only show fixed 7 I/O depth levels*/
log_info(";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
io_u_dist[4], io_u_dist[5], io_u_dist[6]);
/* Microsecond latency */
for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
log_info(";%3.2f%%", io_u_lat_u[i]);
/* Millisecond latency */
for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
log_info(";%3.2f%%", io_u_lat_m[i]);
/* disk util stats, if any */
show_disk_util(1, NULL);
/* Additional output if continue_on_error set - default off*/
if (ts->continue_on_error)
log_info(";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
/* Additional output if description is set */
if (strlen(ts->description))
log_info(";%s", ts->description);
log_info("\n");
}
static struct json_object *show_thread_status_json(struct thread_stat *ts,
struct group_run_stats *rs)
{
struct json_object *root, *tmp;
double io_u_dist[FIO_IO_U_MAP_NR];
double io_u_lat_u[FIO_IO_U_LAT_U_NR];
double io_u_lat_m[FIO_IO_U_LAT_M_NR];
double usr_cpu, sys_cpu;
int i;
root = json_create_object();
json_object_add_value_string(root, "jobname", ts->name);
json_object_add_value_int(root, "groupid", ts->groupid);
json_object_add_value_int(root, "error", ts->error);
add_ddir_status_json(ts, rs, DDIR_READ, root);
add_ddir_status_json(ts, rs, DDIR_WRITE, root);
add_ddir_status_json(ts, rs, DDIR_TRIM, root);
/* CPU Usage */
if (ts->total_run_time) {
double runt = (double) ts->total_run_time;
usr_cpu = (double) ts->usr_time * 100 / runt;
sys_cpu = (double) ts->sys_time * 100 / runt;
} else {
usr_cpu = 0;
sys_cpu = 0;
}
json_object_add_value_float(root, "usr_cpu", usr_cpu);
json_object_add_value_float(root, "sys_cpu", sys_cpu);
json_object_add_value_int(root, "ctx", ts->ctx);
json_object_add_value_int(root, "majf", ts->majf);
json_object_add_value_int(root, "minf", ts->minf);
/* Calc % distribution of IO depths, usecond, msecond latency */
stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
stat_calc_lat_u(ts, io_u_lat_u);
stat_calc_lat_m(ts, io_u_lat_m);
tmp = json_create_object();
json_object_add_value_object(root, "iodepth_level", tmp);
/* Only show fixed 7 I/O depth levels*/
for (i = 0; i < 7; i++) {
char name[20];
if (i < 6)
snprintf(name, 20, "%d", 1 << i);
else
snprintf(name, 20, ">=%d", 1 << i);
json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
}
tmp = json_create_object();
json_object_add_value_object(root, "latency_us", tmp);
/* Microsecond latency */
for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
const char *ranges[] = { "2", "4", "10", "20", "50", "100",
"250", "500", "750", "1000", };
json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
}
/* Millisecond latency */
tmp = json_create_object();
json_object_add_value_object(root, "latency_ms", tmp);
for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
const char *ranges[] = { "2", "4", "10", "20", "50", "100",
"250", "500", "750", "1000", "2000",
">=2000", };
json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
}
/* Additional output if continue_on_error set - default off*/
if (ts->continue_on_error) {
json_object_add_value_int(root, "total_err", ts->total_err_count);
json_object_add_value_int(root, "total_err", ts->first_error);
}
/* Additional output if description is set */
if (strlen(ts->description))
json_object_add_value_string(root, "desc", ts->description);
return root;
}
static void show_thread_status_terse(struct thread_stat *ts,
struct group_run_stats *rs)
{
if (terse_version == 2)
show_thread_status_terse_v2(ts, rs);
else if (terse_version == 3 || terse_version == 4)
show_thread_status_terse_v3_v4(ts, rs, terse_version);
else
log_err("fio: bad terse version!? %d\n", terse_version);
}
static void sum_stat(struct io_stat *dst, struct io_stat *src, int nr)
{
double mean, S;
if (src->samples == 0)
return;
dst->min_val = min(dst->min_val, src->min_val);
dst->max_val = max(dst->max_val, src->max_val);
/*
* Compute new mean and S after the merge
* <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
* #Parallel_algorithm>
*/
if (nr == 1) {
mean = src->mean.u.f;
S = src->S.u.f;
} else {
double delta = src->mean.u.f - dst->mean.u.f;
mean = ((src->mean.u.f * src->samples) +
(dst->mean.u.f * dst->samples)) /
(dst->samples + src->samples);
S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
(dst->samples * src->samples) /
(dst->samples + src->samples);
}
dst->samples += src->samples;
dst->mean.u.f = mean;
dst->S.u.f = S;
}
void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
{
int i;
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
if (dst->max_run[i] < src->max_run[i])
dst->max_run[i] = src->max_run[i];
if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
dst->min_run[i] = src->min_run[i];
if (dst->max_bw[i] < src->max_bw[i])
dst->max_bw[i] = src->max_bw[i];
if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
dst->min_bw[i] = src->min_bw[i];
dst->io_kb[i] += src->io_kb[i];
dst->agg[i] += src->agg[i];
}
}
void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr)
{
int l, k;
for (l = 0; l < DDIR_RWDIR_CNT; l++) {
if (!dst->unified_rw_rep) {
sum_stat(&dst->clat_stat[l], &src->clat_stat[l], nr);
sum_stat(&dst->slat_stat[l], &src->slat_stat[l], nr);
sum_stat(&dst->lat_stat[l], &src->lat_stat[l], nr);
sum_stat(&dst->bw_stat[l], &src->bw_stat[l], nr);
dst->io_bytes[l] += src->io_bytes[l];
if (dst->runtime[l] < src->runtime[l])
dst->runtime[l] = src->runtime[l];
} else {
sum_stat(&dst->clat_stat[0], &src->clat_stat[l], nr);
sum_stat(&dst->slat_stat[0], &src->slat_stat[l], nr);
sum_stat(&dst->lat_stat[0], &src->lat_stat[l], nr);
sum_stat(&dst->bw_stat[0], &src->bw_stat[l], nr);
dst->io_bytes[0] += src->io_bytes[l];
if (dst->runtime[0] < src->runtime[l])
dst->runtime[0] = src->runtime[l];
}
}
dst->usr_time += src->usr_time;
dst->sys_time += src->sys_time;
dst->ctx += src->ctx;
dst->majf += src->majf;
dst->minf += src->minf;
for (k = 0; k < FIO_IO_U_MAP_NR; k++)
dst->io_u_map[k] += src->io_u_map[k];
for (k = 0; k < FIO_IO_U_MAP_NR; k++)
dst->io_u_submit[k] += src->io_u_submit[k];
for (k = 0; k < FIO_IO_U_MAP_NR; k++)
dst->io_u_complete[k] += src->io_u_complete[k];
for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
dst->io_u_lat_u[k] += src->io_u_lat_u[k];
for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
dst->io_u_lat_m[k] += src->io_u_lat_m[k];
for (k = 0; k < DDIR_RWDIR_CNT; k++) {
if (!dst->unified_rw_rep) {
dst->total_io_u[k] += src->total_io_u[k];
dst->short_io_u[k] += src->short_io_u[k];
} else {
dst->total_io_u[0] += src->total_io_u[k];
dst->short_io_u[0] += src->short_io_u[k];
}
}
for (k = 0; k < DDIR_RWDIR_CNT; k++) {
int m;
for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
if (!dst->unified_rw_rep)
dst->io_u_plat[k][m] += src->io_u_plat[k][m];
else
dst->io_u_plat[0][m] += src->io_u_plat[k][m];
}
}
dst->total_run_time += src->total_run_time;
dst->total_submit += src->total_submit;
dst->total_complete += src->total_complete;
}
void init_group_run_stat(struct group_run_stats *gs)
{
int i;
memset(gs, 0, sizeof(*gs));
for (i = 0; i < DDIR_RWDIR_CNT; i++)
gs->min_bw[i] = gs->min_run[i] = ~0UL;
}
void init_thread_stat(struct thread_stat *ts)
{
int j;
memset(ts, 0, sizeof(*ts));
for (j = 0; j < DDIR_RWDIR_CNT; j++) {
ts->lat_stat[j].min_val = -1UL;
ts->clat_stat[j].min_val = -1UL;
ts->slat_stat[j].min_val = -1UL;
ts->bw_stat[j].min_val = -1UL;
}
ts->groupid = -1;
}
static void __show_run_stats(void)
{
struct group_run_stats *runstats, *rs;
struct thread_data *td;
struct thread_stat *threadstats, *ts;
int i, j, nr_ts, last_ts, idx;
int kb_base_warned = 0;
int unit_base_warned = 0;
struct json_object *root = NULL;
struct json_array *array = NULL;
runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
for (i = 0; i < groupid + 1; i++)
init_group_run_stat(&runstats[i]);
/*
* find out how many threads stats we need. if group reporting isn't
* enabled, it's one-per-td.
*/
nr_ts = 0;
last_ts = -1;
for_each_td(td, i) {
if (!td->o.group_reporting) {
nr_ts++;
continue;
}
if (last_ts == td->groupid)
continue;
last_ts = td->groupid;
nr_ts++;
}
threadstats = malloc(nr_ts * sizeof(struct thread_stat));
for (i = 0; i < nr_ts; i++)
init_thread_stat(&threadstats[i]);
j = 0;
last_ts = -1;
idx = 0;
for_each_td(td, i) {
if (idx && (!td->o.group_reporting ||
(td->o.group_reporting && last_ts != td->groupid))) {
idx = 0;
j++;
}
last_ts = td->groupid;
ts = &threadstats[j];
ts->clat_percentiles = td->o.clat_percentiles;
ts->percentile_precision = td->o.percentile_precision;
memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
idx++;
ts->members++;
if (ts->groupid == -1) {
/*
* These are per-group shared already
*/
strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE);
if (td->o.description)
strncpy(ts->description, td->o.description,
FIO_JOBNAME_SIZE);
else
memset(ts->description, 0, FIO_JOBNAME_SIZE);
/*
* If multiple entries in this group, this is
* the first member.
*/
ts->thread_number = td->thread_number;
ts->groupid = td->groupid;
/*
* first pid in group, not very useful...
*/
ts->pid = td->pid;
ts->kb_base = td->o.kb_base;
ts->unit_base = td->o.unit_base;
ts->unified_rw_rep = td->o.unified_rw_rep;
} else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
log_info("fio: kb_base differs for jobs in group, using"
" %u as the base\n", ts->kb_base);
kb_base_warned = 1;
} else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
log_info("fio: unit_base differs for jobs in group, using"
" %u as the base\n", ts->unit_base);
unit_base_warned = 1;
}
ts->continue_on_error = td->o.continue_on_error;
ts->total_err_count += td->total_err_count;
ts->first_error = td->first_error;
if (!ts->error) {
if (!td->error && td->o.continue_on_error &&
td->first_error) {
ts->error = td->first_error;
strcpy(ts->verror, td->verror);
} else if (td->error) {
ts->error = td->error;
strcpy(ts->verror, td->verror);
}
}
sum_thread_stats(ts, &td->ts, idx);
}
for (i = 0; i < nr_ts; i++) {
unsigned long long bw;
ts = &threadstats[i];
rs = &runstats[ts->groupid];
rs->kb_base = ts->kb_base;
rs->unit_base = ts->unit_base;
rs->unified_rw_rep += ts->unified_rw_rep;
for (j = 0; j < DDIR_RWDIR_CNT; j++) {
if (!ts->runtime[j])
continue;
if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
rs->min_run[j] = ts->runtime[j];
if (ts->runtime[j] > rs->max_run[j])
rs->max_run[j] = ts->runtime[j];
bw = 0;
if (ts->runtime[j]) {
unsigned long runt = ts->runtime[j];
unsigned long long kb;
kb = ts->io_bytes[j] / rs->kb_base;
bw = kb * 1000 / runt;
}
if (bw < rs->min_bw[j])
rs->min_bw[j] = bw;
if (bw > rs->max_bw[j])
rs->max_bw[j] = bw;
rs->io_kb[j] += ts->io_bytes[j] / rs->kb_base;
}
}
for (i = 0; i < groupid + 1; i++) {
int ddir;
rs = &runstats[i];
for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
if (rs->max_run[ddir])
rs->agg[ddir] = (rs->io_kb[ddir] * 1000) /
rs->max_run[ddir];
}
}
/*
* don't overwrite last signal output
*/
if (output_format == FIO_OUTPUT_NORMAL)
log_info("\n");
else if (output_format == FIO_OUTPUT_JSON) {
root = json_create_object();
json_object_add_value_string(root, "fio version", fio_version_string);
array = json_create_array();
json_object_add_value_array(root, "jobs", array);
}
for (i = 0; i < nr_ts; i++) {
ts = &threadstats[i];
rs = &runstats[ts->groupid];
if (is_backend)
fio_server_send_ts(ts, rs);
else if (output_format == FIO_OUTPUT_TERSE)
show_thread_status_terse(ts, rs);
else if (output_format == FIO_OUTPUT_JSON) {
struct json_object *tmp = show_thread_status_json(ts, rs);
json_array_add_value_object(array, tmp);
} else
show_thread_status(ts, rs);
}
if (output_format == FIO_OUTPUT_JSON) {
/* disk util stats, if any */
show_disk_util(1, root);
show_idle_prof_stats(FIO_OUTPUT_JSON, root);
json_print_object(root);
log_info("\n");
json_free_object(root);
}
for (i = 0; i < groupid + 1; i++) {
rs = &runstats[i];
rs->groupid = i;
if (is_backend)
fio_server_send_gs(rs);
else if (output_format == FIO_OUTPUT_NORMAL)
show_group_stats(rs);
}
if (is_backend)
fio_server_send_du();
else if (output_format == FIO_OUTPUT_NORMAL) {
show_disk_util(0, NULL);
show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL);
}
log_info_flush();
free(runstats);
free(threadstats);
}
void show_run_stats(void)
{
fio_mutex_down(stat_mutex);
__show_run_stats();
fio_mutex_up(stat_mutex);
}
static void *__show_running_run_stats(void fio_unused *arg)
{
struct thread_data *td;
unsigned long long *rt;
struct timeval tv;
int i;
rt = malloc(thread_number * sizeof(unsigned long long));
fio_gettime(&tv, NULL);
for_each_td(td, i) {
rt[i] = mtime_since(&td->start, &tv);
if (td_read(td) && td->io_bytes[DDIR_READ])
td->ts.runtime[DDIR_READ] += rt[i];
if (td_write(td) && td->io_bytes[DDIR_WRITE])
td->ts.runtime[DDIR_WRITE] += rt[i];
if (td_trim(td) && td->io_bytes[DDIR_TRIM])
td->ts.runtime[DDIR_TRIM] += rt[i];
td->update_rusage = 1;
td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
td->ts.total_run_time = mtime_since(&td->epoch, &tv);
}
for_each_td(td, i) {
if (td->rusage_sem) {
td->update_rusage = 1;
fio_mutex_down(td->rusage_sem);
}
td->update_rusage = 0;
}
__show_run_stats();
for_each_td(td, i) {
if (td_read(td) && td->io_bytes[DDIR_READ])
td->ts.runtime[DDIR_READ] -= rt[i];
if (td_write(td) && td->io_bytes[DDIR_WRITE])
td->ts.runtime[DDIR_WRITE] -= rt[i];
if (td_trim(td) && td->io_bytes[DDIR_TRIM])
td->ts.runtime[DDIR_TRIM] -= rt[i];
}
free(rt);
fio_mutex_up(stat_mutex);
return NULL;
}
/*
* Called from signal handler. It _should_ be safe to just run this inline
* in the sig handler, but we should be disturbing the system less by just
* creating a thread to do it.
*/
void show_running_run_stats(void)
{
pthread_t thread;
fio_mutex_down(stat_mutex);
if (!pthread_create(&thread, NULL, __show_running_run_stats, NULL)) {
pthread_detach(thread);
return;
}
fio_mutex_up(stat_mutex);
}
static int status_interval_init;
static struct timeval status_time;
#define FIO_STATUS_FILE "/tmp/fio-dump-status"
static int check_status_file(void)
{
struct stat sb;
const char *temp_dir;
char fio_status_file_path[PATH_MAX];
temp_dir = getenv("TMPDIR");
if (temp_dir == NULL)
temp_dir = getenv("TEMP");
if (temp_dir == NULL)
temp_dir = "/tmp";
snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
if (stat(fio_status_file_path, &sb))
return 0;
unlink(fio_status_file_path);
return 1;
}
void check_for_running_stats(void)
{
if (status_interval) {
if (!status_interval_init) {
fio_gettime(&status_time, NULL);
status_interval_init = 1;
} else if (mtime_since_now(&status_time) >= status_interval) {
show_running_run_stats();
fio_gettime(&status_time, NULL);
return;
}
}
if (check_status_file()) {
show_running_run_stats();
return;
}
}
static inline void add_stat_sample(struct io_stat *is, unsigned long data)
{
double val = data;
double delta;
if (data > is->max_val)
is->max_val = data;
if (data < is->min_val)
is->min_val = data;
delta = val - is->mean.u.f;
if (delta) {
is->mean.u.f += delta / (is->samples + 1.0);
is->S.u.f += delta * (val - is->mean.u.f);
}
is->samples++;
}
static void __add_log_sample(struct io_log *iolog, unsigned long val,
enum fio_ddir ddir, unsigned int bs,
unsigned long t)
{
const int nr_samples = iolog->nr_samples;
if (!iolog->nr_samples)
iolog->avg_last = t;
if (iolog->nr_samples == iolog->max_samples) {
int new_size = sizeof(struct io_sample) * iolog->max_samples*2;
iolog->log = realloc(iolog->log, new_size);
iolog->max_samples <<= 1;
}
iolog->log[nr_samples].val = val;
iolog->log[nr_samples].time = t;
iolog->log[nr_samples].ddir = ddir;
iolog->log[nr_samples].bs = bs;
iolog->nr_samples++;
}
static inline void reset_io_stat(struct io_stat *ios)
{
ios->max_val = ios->min_val = ios->samples = 0;
ios->mean.u.f = ios->S.u.f = 0;
}
static void add_log_sample(struct thread_data *td, struct io_log *iolog,
unsigned long val, enum fio_ddir ddir,
unsigned int bs)
{
unsigned long elapsed, this_window;
if (!ddir_rw(ddir))
return;
elapsed = mtime_since_now(&td->epoch);
/*
* If no time averaging, just add the log sample.
*/
if (!iolog->avg_msec) {
__add_log_sample(iolog, val, ddir, bs, elapsed);
return;
}
/*
* Add the sample. If the time period has passed, then
* add that entry to the log and clear.
*/
add_stat_sample(&iolog->avg_window[ddir], val);
/*
* If period hasn't passed, adding the above sample is all we
* need to do.
*/
this_window = elapsed - iolog->avg_last;
if (this_window < iolog->avg_msec)
return;
/*
* Note an entry in the log. Use the mean from the logged samples,
* making sure to properly round up. Only write a log entry if we
* had actual samples done.
*/
if (iolog->avg_window[DDIR_READ].samples) {
unsigned long mr;
mr = iolog->avg_window[DDIR_READ].mean.u.f + 0.50;
__add_log_sample(iolog, mr, DDIR_READ, 0, elapsed);
}
if (iolog->avg_window[DDIR_WRITE].samples) {
unsigned long mw;
mw = iolog->avg_window[DDIR_WRITE].mean.u.f + 0.50;
__add_log_sample(iolog, mw, DDIR_WRITE, 0, elapsed);
}
if (iolog->avg_window[DDIR_TRIM].samples) {
unsigned long mw;
mw = iolog->avg_window[DDIR_TRIM].mean.u.f + 0.50;
__add_log_sample(iolog, mw, DDIR_TRIM, 0, elapsed);
}
reset_io_stat(&iolog->avg_window[DDIR_READ]);
reset_io_stat(&iolog->avg_window[DDIR_WRITE]);
reset_io_stat(&iolog->avg_window[DDIR_TRIM]);
iolog->avg_last = elapsed;
}
void add_agg_sample(unsigned long val, enum fio_ddir ddir, unsigned int bs)
{
struct io_log *iolog;
if (!ddir_rw(ddir))
return;
iolog = agg_io_log[ddir];
__add_log_sample(iolog, val, ddir, bs, mtime_since_genesis());
}
static void add_clat_percentile_sample(struct thread_stat *ts,
unsigned long usec, enum fio_ddir ddir)
{
unsigned int idx = plat_val_to_idx(usec);
assert(idx < FIO_IO_U_PLAT_NR);
ts->io_u_plat[ddir][idx]++;
}
void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
unsigned long usec, unsigned int bs)
{
struct thread_stat *ts = &td->ts;
if (!ddir_rw(ddir))
return;
add_stat_sample(&ts->clat_stat[ddir], usec);
if (td->clat_log)
add_log_sample(td, td->clat_log, usec, ddir, bs);
if (ts->clat_percentiles)
add_clat_percentile_sample(ts, usec, ddir);
}
void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
unsigned long usec, unsigned int bs)
{
struct thread_stat *ts = &td->ts;
if (!ddir_rw(ddir))
return;
add_stat_sample(&ts->slat_stat[ddir], usec);
if (td->slat_log)
add_log_sample(td, td->slat_log, usec, ddir, bs);
}
void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
unsigned long usec, unsigned int bs)
{
struct thread_stat *ts = &td->ts;
if (!ddir_rw(ddir))
return;
add_stat_sample(&ts->lat_stat[ddir], usec);
if (td->lat_log)
add_log_sample(td, td->lat_log, usec, ddir, bs);
}
void add_bw_sample(struct thread_data *td, enum fio_ddir ddir, unsigned int bs,
struct timeval *t)
{
struct thread_stat *ts = &td->ts;
unsigned long spent, rate;
if (!ddir_rw(ddir))
return;
spent = mtime_since(&td->bw_sample_time, t);
if (spent < td->o.bw_avg_time)
return;
/*
* Compute both read and write rates for the interval.
*/
for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
uint64_t delta;
delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir];
if (!delta)
continue; /* No entries for interval */
rate = delta * 1000 / spent / 1024;
add_stat_sample(&ts->bw_stat[ddir], rate);
if (td->bw_log)
add_log_sample(td, td->bw_log, rate, ddir, bs);
td->stat_io_bytes[ddir] = td->this_io_bytes[ddir];
}
fio_gettime(&td->bw_sample_time, NULL);
}
void add_iops_sample(struct thread_data *td, enum fio_ddir ddir,
struct timeval *t)
{
struct thread_stat *ts = &td->ts;
unsigned long spent, iops;
if (!ddir_rw(ddir))
return;
spent = mtime_since(&td->iops_sample_time, t);
if (spent < td->o.iops_avg_time)
return;
/*
* Compute both read and write rates for the interval.
*/
for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
uint64_t delta;
delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir];
if (!delta)
continue; /* No entries for interval */
iops = (delta * 1000) / spent;
add_stat_sample(&ts->iops_stat[ddir], iops);
if (td->iops_log)
add_log_sample(td, td->iops_log, iops, ddir, 0);
td->stat_io_blocks[ddir] = td->this_io_blocks[ddir];
}
fio_gettime(&td->iops_sample_time, NULL);
}
void stat_init(void)
{
stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
}
void stat_exit(void)
{
/*
* When we have the mutex, we know out-of-band access to it
* have ended.
*/
fio_mutex_down(stat_mutex);
fio_mutex_remove(stat_mutex);
}