blob: 3505fca1f60ddb50c0fbce4e4c7d2233e6f750a8 [file] [log] [blame]
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000,2001 Josh Coalson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h> /* for malloc() */
#include <string.h> /* for memcpy() */
#include "FLAC/encoder.h"
#include "private/bitbuffer.h"
#include "private/bitmath.h"
#include "private/crc.h"
#include "private/encoder_framing.h"
#include "private/fixed.h"
#include "private/lpc.h"
#include "private/md5.h"
#ifdef min
#undef min
#endif
#define min(x,y) ((x)<(y)?(x):(y))
#ifdef max
#undef max
#endif
#define max(x,y) ((x)>(y)?(x):(y))
typedef struct FLAC__EncoderPrivate {
unsigned input_capacity; /* current size (in samples) of the signal and residual buffers */
int32 *integer_signal[FLAC__MAX_CHANNELS]; /* the integer version of the input signal */
int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */
real *real_signal[FLAC__MAX_CHANNELS]; /* the floating-point version of the input signal */
real *real_signal_mid_side[2]; /* the floating-point version of the mid-side input signal (stereo only) */
unsigned subframe_bps[FLAC__MAX_CHANNELS]; /* the effective bits per sample of the input signal (stream bps - wasted bits) */
unsigned subframe_bps_mid_side[2]; /* the effective bits per sample of the mid-side input signal (stream bps - wasted bits + 0/1) */
int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */
int32 *residual_workspace_mid_side[2][2];
FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2];
FLAC__Subframe subframe_workspace_mid_side[2][2];
FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2];
FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2];
unsigned best_subframe[FLAC__MAX_CHANNELS]; /* index into the above workspaces */
unsigned best_subframe_mid_side[2];
unsigned best_subframe_bits[FLAC__MAX_CHANNELS]; /* size in bits of the best subframe for each channel */
unsigned best_subframe_bits_mid_side[2];
uint32 *abs_residual; /* workspace where abs(candidate residual) is stored */
unsigned *bits_per_residual_sample; /* workspace where silog2(candidate residual) is stored */
FLAC__BitBuffer frame; /* the current frame being worked on */
bool current_frame_can_do_mid_side; /* encoder sets this false when any given sample of a frame's side channel exceeds 16 bits */
double loose_mid_side_stereo_frames_exact; /* exact number of frames the encoder will use before trying both independent and mid/side frames again */
unsigned loose_mid_side_stereo_frames; /* rounded number of frames the encoder will use before trying both independent and mid/side frames again */
unsigned loose_mid_side_stereo_frame_count; /* number of frames using the current channel assignment */
FLAC__ChannelAssignment last_channel_assignment;
FLAC__StreamMetaData metadata;
unsigned current_sample_number;
unsigned current_frame_number;
struct MD5Context md5context;
bool use_slow; /* use slow 64-bit versions of some functions */
FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data);
void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data);
void *client_data;
} FLAC__EncoderPrivate;
static bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size);
static bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame);
static bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame);
static bool encoder_process_subframe_(FLAC__Encoder *encoder, unsigned max_partition_order, bool verbatim_only, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const int32 integer_signal[], const real real_signal[], FLAC__Subframe *subframe[2], int32 *residual[2], unsigned *best_subframe, unsigned *best_bits);
static bool encoder_add_subframe_(FLAC__Encoder *encoder, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame);
static unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned subframe_bps, FLAC__Subframe *subframe);
static unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned bits_per_residual_sample[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe);
static unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned bits_per_residual_sample[], const real lp_coeff[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe);
static unsigned encoder_evaluate_verbatim_subframe_(const int32 signal[], unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe);
static unsigned encoder_find_best_partition_order_(const int32 residual[], uint32 abs_residual[], unsigned bits_per_residual_sample[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[], unsigned best_raw_bits[]);
static bool encoder_set_partitioned_rice_(const uint32 abs_residual[], const unsigned bits_per_residual_sample[], const unsigned residual_samples, const unsigned predictor_order, unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned raw_bits[], unsigned *bits);
static unsigned encoder_get_wasted_bits_(int32 signal[], unsigned samples);
const char *FLAC__EncoderWriteStatusString[] = {
"FLAC__ENCODER_WRITE_OK",
"FLAC__ENCODER_WRITE_FATAL_ERROR"
};
const char *FLAC__EncoderStateString[] = {
"FLAC__ENCODER_OK",
"FLAC__ENCODER_UNINITIALIZED",
"FLAC__ENCODER_INVALID_NUMBER_OF_CHANNELS",
"FLAC__ENCODER_INVALID_BITS_PER_SAMPLE",
"FLAC__ENCODER_INVALID_SAMPLE_RATE",
"FLAC__ENCODER_INVALID_BLOCK_SIZE",
"FLAC__ENCODER_INVALID_QLP_COEFF_PRECISION",
"FLAC__ENCODER_MID_SIDE_CHANNELS_MISMATCH",
"FLAC__ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH",
"FLAC__ENCODER_ILLEGAL_MID_SIDE_FORCE",
"FLAC__ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER",
"FLAC__ENCODER_NOT_STREAMABLE",
"FLAC__ENCODER_FRAMING_ERROR",
"FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING",
"FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING",
"FLAC__ENCODER_MEMORY_ALLOCATION_ERROR"
};
bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size)
{
bool ok;
unsigned i, channel;
int32 *previous_is, *current_is;
real *previous_rs, *current_rs;
int32 *residual;
uint32 *abs_residual;
unsigned *bits_per_residual_sample;
assert(new_size > 0);
assert(encoder->state == FLAC__ENCODER_OK);
assert(encoder->guts->current_sample_number == 0);
/* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */
if(new_size <= encoder->guts->input_capacity)
return true;
ok = 1;
if(ok) {
for(i = 0; ok && i < encoder->channels; i++) {
/* integer version of the signal */
previous_is = encoder->guts->integer_signal[i];
current_is = (int32*)malloc(sizeof(int32) * new_size);
if(0 == current_is) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
encoder->guts->integer_signal[i] = current_is;
if(previous_is != 0)
free(previous_is);
}
/* real version of the signal */
previous_rs = encoder->guts->real_signal[i];
current_rs = (real*)malloc(sizeof(real) * new_size);
if(0 == current_rs) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
encoder->guts->real_signal[i] = current_rs;
if(previous_rs != 0)
free(previous_rs);
}
}
}
if(ok) {
for(i = 0; ok && i < 2; i++) {
/* integer version of the signal */
previous_is = encoder->guts->integer_signal_mid_side[i];
current_is = (int32*)malloc(sizeof(int32) * new_size);
if(0 == current_is) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
encoder->guts->integer_signal_mid_side[i] = current_is;
if(previous_is != 0)
free(previous_is);
}
/* real version of the signal */
previous_rs = encoder->guts->real_signal_mid_side[i];
current_rs = (real*)malloc(sizeof(real) * new_size);
if(0 == current_rs) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
encoder->guts->real_signal_mid_side[i] = current_rs;
if(previous_rs != 0)
free(previous_rs);
}
}
}
if(ok) {
for(channel = 0; channel < encoder->channels; channel++) {
for(i = 0; i < 2; i++) {
residual = (int32*)malloc(sizeof(int32) * new_size);
if(0 == residual) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
if(encoder->guts->residual_workspace[channel][i] != 0)
free(encoder->guts->residual_workspace[channel][i]);
encoder->guts->residual_workspace[channel][i] = residual;
}
}
}
for(channel = 0; channel < 2; channel++) {
for(i = 0; i < 2; i++) {
residual = (int32*)malloc(sizeof(int32) * new_size);
if(0 == residual) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
if(encoder->guts->residual_workspace_mid_side[channel][i] != 0)
free(encoder->guts->residual_workspace_mid_side[channel][i]);
encoder->guts->residual_workspace_mid_side[channel][i] = residual;
}
}
}
abs_residual = (uint32*)malloc(sizeof(uint32) * new_size);
if(0 == residual) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
if(encoder->guts->abs_residual != 0)
free(encoder->guts->abs_residual);
encoder->guts->abs_residual = abs_residual;
}
bits_per_residual_sample = (unsigned*)malloc(sizeof(unsigned) * new_size);
if(0 == residual) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
if(encoder->guts->bits_per_residual_sample != 0)
free(encoder->guts->bits_per_residual_sample);
encoder->guts->bits_per_residual_sample = bits_per_residual_sample;
}
}
if(ok)
encoder->guts->input_capacity = new_size;
return ok;
}
FLAC__Encoder *FLAC__encoder_get_new_instance()
{
FLAC__Encoder *encoder = (FLAC__Encoder*)malloc(sizeof(FLAC__Encoder));
if(encoder != 0) {
encoder->state = FLAC__ENCODER_UNINITIALIZED;
encoder->guts = 0;
}
return encoder;
}
void FLAC__encoder_free_instance(FLAC__Encoder *encoder)
{
assert(encoder != 0);
free(encoder);
}
FLAC__EncoderState FLAC__encoder_init(FLAC__Encoder *encoder, FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data), void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data), void *client_data)
{
unsigned i;
FLAC__StreamMetaData padding;
assert(sizeof(int) >= 4); /* we want to die right away if this is not true */
assert(encoder != 0);
assert(write_callback != 0);
assert(metadata_callback != 0);
assert(encoder->state == FLAC__ENCODER_UNINITIALIZED);
assert(encoder->guts == 0);
encoder->state = FLAC__ENCODER_OK;
if(encoder->channels == 0 || encoder->channels > FLAC__MAX_CHANNELS)
return encoder->state = FLAC__ENCODER_INVALID_NUMBER_OF_CHANNELS;
if(encoder->do_mid_side_stereo && encoder->channels != 2)
return encoder->state = FLAC__ENCODER_MID_SIDE_CHANNELS_MISMATCH;
if(encoder->loose_mid_side_stereo && !encoder->do_mid_side_stereo)
return encoder->state = FLAC__ENCODER_ILLEGAL_MID_SIDE_FORCE;
if(encoder->bits_per_sample < FLAC__MIN_BITS_PER_SAMPLE || encoder->bits_per_sample > FLAC__MAX_BITS_PER_SAMPLE)
return encoder->state = FLAC__ENCODER_INVALID_BITS_PER_SAMPLE;
if(encoder->sample_rate == 0 || encoder->sample_rate > FLAC__MAX_SAMPLE_RATE)
return encoder->state = FLAC__ENCODER_INVALID_SAMPLE_RATE;
if(encoder->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->blocksize > FLAC__MAX_BLOCK_SIZE)
return encoder->state = FLAC__ENCODER_INVALID_BLOCK_SIZE;
if(encoder->blocksize < encoder->max_lpc_order)
return encoder->state = FLAC__ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER;
if(encoder->qlp_coeff_precision == 0) {
if(encoder->bits_per_sample < 16) {
/* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */
/* @@@ until then we'll make a guess */
encoder->qlp_coeff_precision = max(5, 2 + encoder->bits_per_sample / 2);
}
else if(encoder->bits_per_sample == 16) {
if(encoder->blocksize <= 192)
encoder->qlp_coeff_precision = 7;
else if(encoder->blocksize <= 384)
encoder->qlp_coeff_precision = 8;
else if(encoder->blocksize <= 576)
encoder->qlp_coeff_precision = 9;
else if(encoder->blocksize <= 1152)
encoder->qlp_coeff_precision = 10;
else if(encoder->blocksize <= 2304)
encoder->qlp_coeff_precision = 11;
else if(encoder->blocksize <= 4608)
encoder->qlp_coeff_precision = 12;
else
encoder->qlp_coeff_precision = 13;
}
else {
encoder->qlp_coeff_precision = min(13, 8*sizeof(int32) - encoder->bits_per_sample - 1);
}
}
else if(encoder->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->qlp_coeff_precision + encoder->bits_per_sample >= 8*sizeof(uint32) || encoder->qlp_coeff_precision >= (1u<<FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN))
return encoder->state = FLAC__ENCODER_INVALID_QLP_COEFF_PRECISION;
if(encoder->streamable_subset) {
//@@@ add check for blocksize here
if(encoder->bits_per_sample != 8 && encoder->bits_per_sample != 12 && encoder->bits_per_sample != 16 && encoder->bits_per_sample != 20 && encoder->bits_per_sample != 24)
return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
if(encoder->sample_rate > 655350)
return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
}
if(encoder->rice_optimization_level >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
encoder->rice_optimization_level = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1;
encoder->guts = (FLAC__EncoderPrivate*)malloc(sizeof(FLAC__EncoderPrivate));
if(encoder->guts == 0)
return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
encoder->guts->input_capacity = 0;
for(i = 0; i < encoder->channels; i++) {
encoder->guts->integer_signal[i] = 0;
encoder->guts->real_signal[i] = 0;
}
for(i = 0; i < 2; i++) {
encoder->guts->integer_signal_mid_side[i] = 0;
encoder->guts->real_signal_mid_side[i] = 0;
}
for(i = 0; i < encoder->channels; i++) {
encoder->guts->residual_workspace[i][0] = encoder->guts->residual_workspace[i][1] = 0;
encoder->guts->best_subframe[i] = 0;
}
for(i = 0; i < 2; i++) {
encoder->guts->residual_workspace_mid_side[i][0] = encoder->guts->residual_workspace_mid_side[i][1] = 0;
encoder->guts->best_subframe_mid_side[i] = 0;
}
for(i = 0; i < encoder->channels; i++) {
encoder->guts->subframe_workspace_ptr[i][0] = &encoder->guts->subframe_workspace[i][0];
encoder->guts->subframe_workspace_ptr[i][1] = &encoder->guts->subframe_workspace[i][1];
}
for(i = 0; i < 2; i++) {
encoder->guts->subframe_workspace_ptr_mid_side[i][0] = &encoder->guts->subframe_workspace_mid_side[i][0];
encoder->guts->subframe_workspace_ptr_mid_side[i][1] = &encoder->guts->subframe_workspace_mid_side[i][1];
}
encoder->guts->abs_residual = 0;
encoder->guts->bits_per_residual_sample = 0;
encoder->guts->current_frame_can_do_mid_side = true;
encoder->guts->loose_mid_side_stereo_frames_exact = (double)encoder->sample_rate * 0.4 / (double)encoder->blocksize;
encoder->guts->loose_mid_side_stereo_frames = (unsigned)(encoder->guts->loose_mid_side_stereo_frames_exact + 0.5);
if(encoder->guts->loose_mid_side_stereo_frames == 0)
encoder->guts->loose_mid_side_stereo_frames = 1;
encoder->guts->loose_mid_side_stereo_frame_count = 0;
encoder->guts->current_sample_number = 0;
encoder->guts->current_frame_number = 0;
if(encoder->bits_per_sample + FLAC__bitmath_ilog2(encoder->blocksize)+1 > 30)
encoder->guts->use_slow = true;
else
encoder->guts->use_slow = false;
if(!encoder_resize_buffers_(encoder, encoder->blocksize)) {
/* the above function sets the state for us in case of an error */
return encoder->state;
}
FLAC__bitbuffer_init(&encoder->guts->frame);
encoder->guts->write_callback = write_callback;
encoder->guts->metadata_callback = metadata_callback;
encoder->guts->client_data = client_data;
/*
* write the stream header
*/
if(!FLAC__bitbuffer_clear(&encoder->guts->frame))
return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
if(!FLAC__bitbuffer_write_raw_uint32(&encoder->guts->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN))
return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
encoder->guts->metadata.type = FLAC__METADATA_TYPE_STREAMINFO;
encoder->guts->metadata.is_last = (encoder->padding == 0);
encoder->guts->metadata.length = FLAC__STREAM_METADATA_STREAMINFO_LENGTH;
encoder->guts->metadata.data.stream_info.min_blocksize = encoder->blocksize; /* this encoder uses the same blocksize for the whole stream */
encoder->guts->metadata.data.stream_info.max_blocksize = encoder->blocksize;
encoder->guts->metadata.data.stream_info.min_framesize = 0; /* we don't know this yet; have to fill it in later */
encoder->guts->metadata.data.stream_info.max_framesize = 0; /* we don't know this yet; have to fill it in later */
encoder->guts->metadata.data.stream_info.sample_rate = encoder->sample_rate;
encoder->guts->metadata.data.stream_info.channels = encoder->channels;
encoder->guts->metadata.data.stream_info.bits_per_sample = encoder->bits_per_sample;
encoder->guts->metadata.data.stream_info.total_samples = encoder->total_samples_estimate; /* we will replace this later with the real total */
memset(encoder->guts->metadata.data.stream_info.md5sum, 0, 16); /* we don't know this yet; have to fill it in later */
MD5Init(&encoder->guts->md5context);
if(!FLAC__add_metadata_block(&encoder->guts->metadata, &encoder->guts->frame))
return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
/* add a PADDING block if requested */
if(encoder->padding > 0) {
padding.type = FLAC__METADATA_TYPE_PADDING;
padding.is_last = true;
padding.length = encoder->padding;
if(!FLAC__add_metadata_block(&padding, &encoder->guts->frame))
return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
}
assert(encoder->guts->frame.bits == 0); /* assert that we're byte-aligned before writing */
assert(encoder->guts->frame.total_consumed_bits == 0); /* assert that no reading of the buffer was done */
if(encoder->guts->write_callback(encoder, encoder->guts->frame.buffer, encoder->guts->frame.bytes, 0, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK)
return encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
/* now that the metadata block is written, we can init this to an absurdly-high value... */
encoder->guts->metadata.data.stream_info.min_framesize = (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1;
/* ... and clear this to 0 */
encoder->guts->metadata.data.stream_info.total_samples = 0;
return encoder->state;
}
void FLAC__encoder_finish(FLAC__Encoder *encoder)
{
unsigned i, channel;
assert(encoder != 0);
if(encoder->state == FLAC__ENCODER_UNINITIALIZED)
return;
if(encoder->guts->current_sample_number != 0) {
encoder->blocksize = encoder->guts->current_sample_number;
encoder_process_frame_(encoder, true); /* true => is last frame */
}
MD5Final(encoder->guts->metadata.data.stream_info.md5sum, &encoder->guts->md5context);
encoder->guts->metadata_callback(encoder, &encoder->guts->metadata, encoder->guts->client_data);
if(encoder->guts != 0) {
for(i = 0; i < encoder->channels; i++) {
if(encoder->guts->integer_signal[i] != 0) {
free(encoder->guts->integer_signal[i]);
encoder->guts->integer_signal[i] = 0;
}
if(encoder->guts->real_signal[i] != 0) {
free(encoder->guts->real_signal[i]);
encoder->guts->real_signal[i] = 0;
}
}
for(i = 0; i < 2; i++) {
if(encoder->guts->integer_signal_mid_side[i] != 0) {
free(encoder->guts->integer_signal_mid_side[i]);
encoder->guts->integer_signal_mid_side[i] = 0;
}
if(encoder->guts->real_signal_mid_side[i] != 0) {
free(encoder->guts->real_signal_mid_side[i]);
encoder->guts->real_signal_mid_side[i] = 0;
}
}
for(channel = 0; channel < encoder->channels; channel++) {
for(i = 0; i < 2; i++) {
if(encoder->guts->residual_workspace[channel][i] != 0) {
free(encoder->guts->residual_workspace[channel][i]);
encoder->guts->residual_workspace[channel][i] = 0;
}
}
}
for(channel = 0; channel < 2; channel++) {
for(i = 0; i < 2; i++) {
if(encoder->guts->residual_workspace_mid_side[channel][i] != 0) {
free(encoder->guts->residual_workspace_mid_side[channel][i]);
encoder->guts->residual_workspace_mid_side[channel][i] = 0;
}
}
}
if(encoder->guts->abs_residual != 0) {
free(encoder->guts->abs_residual);
encoder->guts->abs_residual = 0;
}
if(encoder->guts->bits_per_residual_sample != 0) {
free(encoder->guts->bits_per_residual_sample);
encoder->guts->bits_per_residual_sample = 0;
}
FLAC__bitbuffer_free(&encoder->guts->frame);
free(encoder->guts);
encoder->guts = 0;
}
encoder->state = FLAC__ENCODER_UNINITIALIZED;
}
bool FLAC__encoder_process(FLAC__Encoder *encoder, const int32 *buf[], unsigned samples)
{
unsigned i, j, channel;
int32 x, mid, side;
const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
const int32 max_side = ((int64)1 << (encoder->bits_per_sample-1)) - 1;
assert(encoder != 0);
assert(encoder->state == FLAC__ENCODER_OK);
j = 0;
do {
for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++) {
for(channel = 0; channel < encoder->channels; channel++) {
x = buf[channel][j];
encoder->guts->integer_signal[channel][i] = x;
encoder->guts->real_signal[channel][i] = (real)x;
}
if(ms && encoder->guts->current_frame_can_do_mid_side) {
side = buf[0][j] - buf[1][j];
if(side < min_side || side > max_side) {
encoder->guts->current_frame_can_do_mid_side = false;
}
else {
mid = (buf[0][j] + buf[1][j]) >> 1; /* NOTE: not the same as 'mid = (buf[0][j] + buf[1][j]) / 2' ! */
encoder->guts->integer_signal_mid_side[0][i] = mid;
encoder->guts->integer_signal_mid_side[1][i] = side;
encoder->guts->real_signal_mid_side[0][i] = (real)mid;
encoder->guts->real_signal_mid_side[1][i] = (real)side;
}
}
encoder->guts->current_sample_number++;
}
if(i == encoder->blocksize) {
if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
return true;
}
/* 'samples' is channel-wide samples, e.g. for 1 second at 44100Hz, 'samples' = 44100 regardless of the number of channels */
bool FLAC__encoder_process_interleaved(FLAC__Encoder *encoder, const int32 buf[], unsigned samples)
{
unsigned i, j, k, channel;
int32 x, left = 0, mid, side;
const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
const int32 max_side = ((int64)1 << (encoder->bits_per_sample-1)) - 1;
assert(encoder != 0);
assert(encoder->state == FLAC__ENCODER_OK);
j = k = 0;
do {
for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++, k++) {
for(channel = 0; channel < encoder->channels; channel++, k++) {
x = buf[k];
encoder->guts->integer_signal[channel][i] = x;
encoder->guts->real_signal[channel][i] = (real)x;
if(ms && encoder->guts->current_frame_can_do_mid_side) {
if(channel == 0) {
left = x;
}
else {
side = left - x;
if(side < min_side || side > max_side) {
encoder->guts->current_frame_can_do_mid_side = false;
}
else {
mid = (left + x) >> 1; /* NOTE: not the same as 'mid = (left + x) / 2' ! */
encoder->guts->integer_signal_mid_side[0][i] = mid;
encoder->guts->integer_signal_mid_side[1][i] = side;
encoder->guts->real_signal_mid_side[0][i] = (real)mid;
encoder->guts->real_signal_mid_side[1][i] = (real)side;
}
}
}
}
encoder->guts->current_sample_number++;
}
if(i == encoder->blocksize) {
if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
return true;
}
bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame)
{
assert(encoder->state == FLAC__ENCODER_OK);
/*
* Accumulate raw signal to the MD5 signature
*/
if(!FLAC__MD5Accumulate(&encoder->guts->md5context, encoder->guts->integer_signal, encoder->channels, encoder->blocksize, (encoder->bits_per_sample+7) / 8)) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
/*
* Process the frame header and subframes into the frame bitbuffer
*/
if(!encoder_process_subframes_(encoder, is_last_frame)) {
/* the above function sets the state for us in case of an error */
return false;
}
/*
* Zero-pad the frame to a byte_boundary
*/
if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(&encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
/*
* CRC-16 the whole thing
*/
assert(encoder->guts->frame.bits == 0); /* assert that we're byte-aligned */
assert(encoder->guts->frame.total_consumed_bits == 0); /* assert that no reading of the buffer was done */
FLAC__bitbuffer_write_raw_uint32(&encoder->guts->frame, FLAC__crc16(encoder->guts->frame.buffer, encoder->guts->frame.bytes), FLAC__FRAME_FOOTER_CRC_LEN);
/*
* Write it
*/
if(encoder->guts->write_callback(encoder, encoder->guts->frame.buffer, encoder->guts->frame.bytes, encoder->blocksize, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
return false;
}
/*
* Get ready for the next frame
*/
encoder->guts->current_frame_can_do_mid_side = true;
encoder->guts->current_sample_number = 0;
encoder->guts->current_frame_number++;
encoder->guts->metadata.data.stream_info.total_samples += (uint64)encoder->blocksize;
encoder->guts->metadata.data.stream_info.min_framesize = min(encoder->guts->frame.bytes, encoder->guts->metadata.data.stream_info.min_framesize);
encoder->guts->metadata.data.stream_info.max_framesize = max(encoder->guts->frame.bytes, encoder->guts->metadata.data.stream_info.max_framesize);
return true;
}
bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame)
{
FLAC__FrameHeader frame_header;
unsigned channel, max_partition_order;
bool do_independent, do_mid_side;
/*
* Calculate the max Rice partition order
*/
if(is_last_frame) {
max_partition_order = 0;
}
else {
unsigned limit = 0, b = encoder->blocksize;
while(!(b & 1)) {
limit++;
b >>= 1;
}
max_partition_order = min(encoder->rice_optimization_level, limit);
}
/*
* Setup the frame
*/
if(!FLAC__bitbuffer_clear(&encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
frame_header.blocksize = encoder->blocksize;
frame_header.sample_rate = encoder->sample_rate;
frame_header.channels = encoder->channels;
frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */
frame_header.bits_per_sample = encoder->bits_per_sample;
frame_header.number.frame_number = encoder->guts->current_frame_number;
/*
* Figure out what channel assignments to try
*/
if(encoder->do_mid_side_stereo) {
if(encoder->loose_mid_side_stereo) {
if(encoder->guts->loose_mid_side_stereo_frame_count == 0) {
do_independent = true;
do_mid_side = true;
}
else {
do_independent = (encoder->guts->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT);
do_mid_side = !do_independent;
}
}
else {
do_independent = true;
do_mid_side = true;
}
}
else {
do_independent = true;
do_mid_side = false;
}
if(do_mid_side && !encoder->guts->current_frame_can_do_mid_side) {
do_independent = true;
do_mid_side = false;
}
assert(do_independent || do_mid_side);
/*
* Check for wasted bits; set effective bps for each subframe
*/
if(do_independent) {
unsigned w;
for(channel = 0; channel < encoder->channels; channel++) {
w = encoder_get_wasted_bits_(encoder->guts->integer_signal[channel], encoder->blocksize);
encoder->guts->subframe_workspace[channel][0].wasted_bits = encoder->guts->subframe_workspace[channel][1].wasted_bits = w;
encoder->guts->subframe_bps[channel] = encoder->bits_per_sample - w;
}
}
if(do_mid_side) {
unsigned w;
assert(encoder->channels == 2);
for(channel = 0; channel < 2; channel++) {
w = encoder_get_wasted_bits_(encoder->guts->integer_signal_mid_side[channel], encoder->blocksize);
encoder->guts->subframe_workspace_mid_side[channel][0].wasted_bits = encoder->guts->subframe_workspace_mid_side[channel][1].wasted_bits = w;
encoder->guts->subframe_bps_mid_side[channel] = encoder->bits_per_sample - w + (channel==0? 0:1);
}
}
/*
* First do a normal encoding pass of each independent channel
*/
if(do_independent) {
for(channel = 0; channel < encoder->channels; channel++) {
if(!encoder_process_subframe_(encoder, max_partition_order, false, &frame_header, encoder->guts->subframe_bps[channel], encoder->guts->integer_signal[channel], encoder->guts->real_signal[channel], encoder->guts->subframe_workspace_ptr[channel], encoder->guts->residual_workspace[channel], encoder->guts->best_subframe+channel, encoder->guts->best_subframe_bits+channel))
return false;
}
}
/*
* Now do mid and side channels if requested
*/
if(do_mid_side) {
assert(encoder->channels == 2);
for(channel = 0; channel < 2; channel++) {
if(!encoder_process_subframe_(encoder, max_partition_order, false, &frame_header, encoder->guts->subframe_bps_mid_side[channel], encoder->guts->integer_signal_mid_side[channel], encoder->guts->real_signal_mid_side[channel], encoder->guts->subframe_workspace_ptr_mid_side[channel], encoder->guts->residual_workspace_mid_side[channel], encoder->guts->best_subframe_mid_side+channel, encoder->guts->best_subframe_bits_mid_side+channel))
return false;
}
}
/*
* Compose the frame bitbuffer
*/
if(do_mid_side) {
unsigned left_bps = 0, right_bps = 0; /* initialized only to prevent superfluous compiler warning */
FLAC__Subframe *left_subframe = 0, *right_subframe = 0; /* initialized only to prevent superfluous compiler warning */
FLAC__ChannelAssignment channel_assignment;
assert(encoder->channels == 2);
if(encoder->loose_mid_side_stereo && encoder->guts->loose_mid_side_stereo_frame_count > 0) {
channel_assignment = (encoder->guts->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT? FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT : FLAC__CHANNEL_ASSIGNMENT_MID_SIDE);
}
else {
unsigned bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */
unsigned min_bits;
FLAC__ChannelAssignment ca;
assert(do_independent && do_mid_side);
/* We have to figure out which channel assignent results in the smallest frame */
bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = encoder->guts->best_subframe_bits [0] + encoder->guts->best_subframe_bits [1];
bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE ] = encoder->guts->best_subframe_bits [0] + encoder->guts->best_subframe_bits_mid_side[1];
bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = encoder->guts->best_subframe_bits [1] + encoder->guts->best_subframe_bits_mid_side[1];
bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE ] = encoder->guts->best_subframe_bits_mid_side[0] + encoder->guts->best_subframe_bits_mid_side[1];
for(channel_assignment = 0, min_bits = bits[0], ca = 1; ca <= 3; ca++) {
if(bits[ca] < min_bits) {
min_bits = bits[ca];
channel_assignment = ca;
}
}
}
frame_header.channel_assignment = channel_assignment;
if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_FRAMING_ERROR;
return false;
}
switch(channel_assignment) {
case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
left_subframe = &encoder->guts->subframe_workspace [0][encoder->guts->best_subframe [0]];
right_subframe = &encoder->guts->subframe_workspace [1][encoder->guts->best_subframe [1]];
break;
case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
left_subframe = &encoder->guts->subframe_workspace [0][encoder->guts->best_subframe [0]];
right_subframe = &encoder->guts->subframe_workspace_mid_side[1][encoder->guts->best_subframe_mid_side[1]];
break;
case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
left_subframe = &encoder->guts->subframe_workspace_mid_side[1][encoder->guts->best_subframe_mid_side[1]];
right_subframe = &encoder->guts->subframe_workspace [1][encoder->guts->best_subframe [1]];
break;
case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
left_subframe = &encoder->guts->subframe_workspace_mid_side[0][encoder->guts->best_subframe_mid_side[0]];
right_subframe = &encoder->guts->subframe_workspace_mid_side[1][encoder->guts->best_subframe_mid_side[1]];
break;
default:
assert(0);
}
switch(channel_assignment) {
case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
left_bps = encoder->guts->subframe_bps [0];
right_bps = encoder->guts->subframe_bps [1];
break;
case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
left_bps = encoder->guts->subframe_bps [0];
right_bps = encoder->guts->subframe_bps_mid_side[1];
break;
case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
left_bps = encoder->guts->subframe_bps_mid_side[1];
right_bps = encoder->guts->subframe_bps [1];
break;
case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
left_bps = encoder->guts->subframe_bps_mid_side[0];
right_bps = encoder->guts->subframe_bps_mid_side[1];
break;
default:
assert(0);
}
/* note that encoder_add_subframe_ sets the state for us in case of an error */
if(!encoder_add_subframe_(encoder, &frame_header, left_bps , left_subframe , &encoder->guts->frame))
return false;
if(!encoder_add_subframe_(encoder, &frame_header, right_bps, right_subframe, &encoder->guts->frame))
return false;
}
else {
if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_FRAMING_ERROR;
return false;
}
for(channel = 0; channel < encoder->channels; channel++) {
if(!encoder_add_subframe_(encoder, &frame_header, encoder->guts->subframe_bps[channel], &encoder->guts->subframe_workspace[channel][encoder->guts->best_subframe[channel]], &encoder->guts->frame)) {
/* the above function sets the state for us in case of an error */
return false;
}
}
}
if(encoder->loose_mid_side_stereo) {
encoder->guts->loose_mid_side_stereo_frame_count++;
if(encoder->guts->loose_mid_side_stereo_frame_count >= encoder->guts->loose_mid_side_stereo_frames)
encoder->guts->loose_mid_side_stereo_frame_count = 0;
}
encoder->guts->last_channel_assignment = frame_header.channel_assignment;
return true;
}
bool encoder_process_subframe_(FLAC__Encoder *encoder, unsigned max_partition_order, bool verbatim_only, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const int32 integer_signal[], const real real_signal[], FLAC__Subframe *subframe[2], int32 *residual[2], unsigned *best_subframe, unsigned *best_bits)
{
real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
real lpc_residual_bits_per_sample;
real autoc[FLAC__MAX_LPC_ORDER+1];
real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER];
real lpc_error[FLAC__MAX_LPC_ORDER];
unsigned min_lpc_order, max_lpc_order, lpc_order;
unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
unsigned rice_parameter;
unsigned _candidate_bits, _best_bits;
unsigned _best_subframe;
/* verbatim subframe is the baseline against which we measure other compressed subframes */
_best_subframe = 0;
_best_bits = encoder_evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]);
if(!verbatim_only && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) {
/* check for constant subframe */
if(encoder->guts->use_slow)
guess_fixed_order = FLAC__fixed_compute_best_predictor_slow(integer_signal+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
else
guess_fixed_order = FLAC__fixed_compute_best_predictor(integer_signal+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
if(fixed_residual_bits_per_sample[1] == 0.0) {
/* the above means integer_signal+FLAC__MAX_FIXED_ORDER is constant, now we just have to check the warmup samples */
unsigned i, signal_is_constant = true;
for(i = 1; i <= FLAC__MAX_FIXED_ORDER; i++) {
if(integer_signal[0] != integer_signal[i]) {
signal_is_constant = false;
break;
}
}
if(signal_is_constant) {
_candidate_bits = encoder_evaluate_constant_subframe_(integer_signal[0], subframe_bps, subframe[!_best_subframe]);
if(_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
}
else {
/* encode fixed */
if(encoder->do_exhaustive_model_search) {
min_fixed_order = 0;
max_fixed_order = FLAC__MAX_FIXED_ORDER;
}
else {
min_fixed_order = max_fixed_order = guess_fixed_order;
}
for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
if(fixed_residual_bits_per_sample[fixed_order] >= (real)subframe_bps)
continue; /* don't even try */
rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0; /* 0.5 is for rounding */
#ifndef SYMMETRIC_RICE
rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */
#endif
if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
_candidate_bits = encoder_evaluate_fixed_subframe_(integer_signal, residual[!_best_subframe], encoder->guts->abs_residual, encoder->guts->bits_per_residual_sample, frame_header->blocksize, subframe_bps, fixed_order, rice_parameter, max_partition_order, subframe[!_best_subframe]);
if(_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
/* encode lpc */
if(encoder->max_lpc_order > 0) {
if(encoder->max_lpc_order >= frame_header->blocksize)
max_lpc_order = frame_header->blocksize-1;
else
max_lpc_order = encoder->max_lpc_order;
if(max_lpc_order > 0) {
FLAC__lpc_compute_autocorrelation(real_signal, frame_header->blocksize, max_lpc_order+1, autoc);
/* if autoc[0] == 0.0, the signal is constant and we usually won't get here, but it can happen */
if(autoc[0] != 0.0) {
FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, lp_coeff, lpc_error);
if(encoder->do_exhaustive_model_search) {
min_lpc_order = 1;
}
else {
unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, subframe_bps);
min_lpc_order = max_lpc_order = guess_lpc_order;
}
if(encoder->do_qlp_coeff_prec_search) {
min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION;
max_qlp_coeff_precision = min(32 - subframe_bps - 1, (1u<<FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN)-1);
}
else {
min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->qlp_coeff_precision;
}
for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) {
lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize-lpc_order);
if(lpc_residual_bits_per_sample >= (real)subframe_bps)
continue; /* don't even try */
rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0; /* 0.5 is for rounding */
#ifndef SYMMETRIC_RICE
rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */
#endif
if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
_candidate_bits = encoder_evaluate_lpc_subframe_(integer_signal, residual[!_best_subframe], encoder->guts->abs_residual, encoder->guts->bits_per_residual_sample, lp_coeff[lpc_order-1], frame_header->blocksize, subframe_bps, lpc_order, qlp_coeff_precision, rice_parameter, max_partition_order, subframe[!_best_subframe]);
if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */
if(_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
}
}
}
}
}
}
}
*best_subframe = _best_subframe;
*best_bits = _best_bits;
return true;
}
bool encoder_add_subframe_(FLAC__Encoder *encoder, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame)
{
switch(subframe->type) {
case FLAC__SUBFRAME_TYPE_CONSTANT:
if(!FLAC__subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case FLAC__SUBFRAME_TYPE_FIXED:
if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), frame_header->blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case FLAC__SUBFRAME_TYPE_LPC:
if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), frame_header->blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case FLAC__SUBFRAME_TYPE_VERBATIM:
if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), frame_header->blocksize, subframe_bps, subframe->wasted_bits, frame)) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
default:
assert(0);
}
return true;
}
unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned subframe_bps, FLAC__Subframe *subframe)
{
subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT;
subframe->data.constant.value = signal;
return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe_bps;
}
unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned bits_per_residual_sample[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe)
{
unsigned i, residual_bits;
const unsigned residual_samples = blocksize - order;
FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual);
subframe->type = FLAC__SUBFRAME_TYPE_FIXED;
subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
subframe->data.fixed.residual = residual;
residual_bits = encoder_find_best_partition_order_(residual, abs_residual, bits_per_residual_sample, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.raw_bits);
subframe->data.fixed.order = order;
for(i = 0; i < order; i++)
subframe->data.fixed.warmup[i] = signal[i];
return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (order * subframe_bps) + residual_bits;
}
unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned bits_per_residual_sample[], const real lp_coeff[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe)
{
int32 qlp_coeff[FLAC__MAX_LPC_ORDER];
unsigned i, residual_bits;
int quantization, ret;
const unsigned residual_samples = blocksize - order;
ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, subframe_bps, qlp_coeff, &quantization);
if(ret != 0)
return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */
FLAC__lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
subframe->type = FLAC__SUBFRAME_TYPE_LPC;
subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
subframe->data.lpc.residual = residual;
residual_bits = encoder_find_best_partition_order_(residual, abs_residual, bits_per_residual_sample, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.raw_bits);
subframe->data.lpc.order = order;
subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
subframe->data.lpc.quantization_level = quantization;
memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int32)*FLAC__MAX_LPC_ORDER);
for(i = 0; i < order; i++)
subframe->data.lpc.warmup[i] = signal[i];
return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps)) + residual_bits;
}
unsigned encoder_evaluate_verbatim_subframe_(const int32 signal[], unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe)
{
subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM;
subframe->data.verbatim.data = signal;
return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (blocksize * subframe_bps);
}
unsigned encoder_find_best_partition_order_(const int32 residual[], uint32 abs_residual[], unsigned bits_per_residual_sample[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[], unsigned best_raw_bits[])
{
unsigned residual_bits, best_residual_bits = 0;
unsigned residual_sample, partition_order;
unsigned best_parameters_index = 0, parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER], raw_bits[2][1 << FLAC__MAX_RICE_PARTITION_ORDER];
int32 r;
/* compute abs(residual) for use later */
for(residual_sample = 0; residual_sample < residual_samples; residual_sample++) {
r = residual[residual_sample];
abs_residual[residual_sample] = (uint32)(r<0? -r : r);
}
/* compute silog2(residual) for use later */
for(residual_sample = 0; residual_sample < residual_samples; residual_sample++) {
bits_per_residual_sample[residual_sample] = FLAC__bitmath_silog2(residual[residual_sample]);
}
for(partition_order = 0; partition_order <= max_partition_order; partition_order++) {
if(!encoder_set_partitioned_rice_(abs_residual, bits_per_residual_sample, residual_samples, predictor_order, rice_parameter, partition_order, parameters[!best_parameters_index], raw_bits[!best_parameters_index], &residual_bits)) {
assert(best_residual_bits != 0);
break;
}
if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
best_residual_bits = residual_bits;
*best_partition_order = partition_order;
best_parameters_index = !best_parameters_index;
}
}
memcpy(best_parameters, parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order)));
memcpy(best_raw_bits, raw_bits[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order)));
return best_residual_bits;
}
#ifdef VARIABLE_RICE_BITS
#undef VARIABLE_RICE_BITS
#endif
#define VARIABLE_RICE_BITS(value, parameter) ((value) >> (parameter))
bool encoder_set_partitioned_rice_(const uint32 abs_residual[], const unsigned bits_per_residual_sample[], const unsigned residual_samples, const unsigned predictor_order, unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned raw_bits[], unsigned *bits)
{
unsigned partition_bits, flat_bits, partition_max_bits_per_residual_sample;
unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER)
rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
if(partition_order == 0) {
unsigned i;
partition_bits = 0;
{
#ifdef VARIABLE_RICE_BITS
#ifdef SYMMETRIC_RICE
partition_bits += (2+rice_parameter) * residual_samples;
#else
const unsigned rice_parameter_estimate = rice_parameter-1;
partition_bits += (1+rice_parameter) * residual_samples;
#endif
#endif
parameters[0] = rice_parameter;
partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
partition_max_bits_per_residual_sample = 0;
for(i = 0; i < residual_samples; i++) {
#ifdef VARIABLE_RICE_BITS
#ifdef SYMMETRIC_RICE
partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter);
#else
partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate);
#endif
#else
partition_bits += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */
#endif
if(bits_per_residual_sample[i] > partition_max_bits_per_residual_sample)
partition_max_bits_per_residual_sample = bits_per_residual_sample[i];
}
flat_bits = partition_max_bits_per_residual_sample * residual_samples + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN;
if(flat_bits < partition_bits) {
parameters[0] = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
raw_bits[0] = partition_max_bits_per_residual_sample;
partition_bits = flat_bits;
}
}
bits_ += partition_bits;
}
else {
unsigned i, j, k = 0, k_last = 0;
unsigned mean, parameter, partition_samples;
const unsigned max_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
for(i = 0; i < (1u<<partition_order); i++) {
partition_bits = 0;
partition_samples = (residual_samples+predictor_order) >> partition_order;
if(i == 0) {
if(partition_samples <= predictor_order)
return false;
else
partition_samples -= predictor_order;
}
mean = partition_samples >> 1;
for(j = 0; j < partition_samples; j++, k++)
mean += abs_residual[k];
mean /= partition_samples;
#ifdef SYMMETRIC_RICE
/* calc parameter = floor(log2(mean)) */
parameter = 0;
mean>>=1;
while(mean) {
parameter++;
mean >>= 1;
}
#else
/* calc parameter = floor(log2(mean)) + 1 */
parameter = 0;
while(mean) {
parameter++;
mean >>= 1;
}
#endif
if(parameter > max_parameter)
parameter = max_parameter;
if(parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER)
parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
parameters[i] = parameter;
partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
#ifdef VARIABLE_RICE_BITS
#ifdef SYMMETRIC_RICE
partition_bits += (2+parameter) * partition_samples;
#else
partition_bits += (1+parameter) * partition_samples;
--parameter;
#endif
#endif
partition_max_bits_per_residual_sample = 0;
for(j = k_last; j < k; j++) {
#ifdef VARIABLE_RICE_BITS
#ifdef SYMMETRIC_RICE
partition_bits += VARIABLE_RICE_BITS(abs_residual[j], parameter);
#else
partition_bits += VARIABLE_RICE_BITS(abs_residual[j], parameter);
#endif
#else
partition_bits += FLAC__bitbuffer_rice_bits(residual[j], parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */
#endif
if(bits_per_residual_sample[j] > partition_max_bits_per_residual_sample)
partition_max_bits_per_residual_sample = bits_per_residual_sample[j];
}
k_last = k;
flat_bits = partition_max_bits_per_residual_sample * partition_samples + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN;
if(flat_bits < partition_bits) {
parameters[i] = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
raw_bits[i] = partition_max_bits_per_residual_sample;
partition_bits = flat_bits;
}
bits_ += partition_bits;
}
}
*bits = bits_;
return true;
}
static unsigned encoder_get_wasted_bits_(int32 signal[], unsigned samples)
{
unsigned i, shift;
int32 x = 0;
for(i = 0; i < samples && !(x&1); i++)
x |= signal[i];
if(x == 0) {
shift = 0;
}
else {
for(shift = 0; !(x&1); shift++)
x >>= 1;
}
if(shift > 0) {
for(i = 0; i < samples; i++)
signal[i] >>= shift;
}
return shift;
}