blob: 79cd2775809894912848990a26a6af3d02b8a2ca [file] [log] [blame]
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000,2001 Josh Coalson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h> /* for malloc() */
#include <string.h> /* for memset/memcpy() */
#include "FLAC/stream_decoder.h"
#include "private/bitbuffer.h"
#include "private/crc.h"
#include "private/fixed.h"
#include "private/lpc.h"
typedef struct FLAC__StreamDecoderPrivate {
FLAC__StreamDecoderReadStatus (*read_callback)(const FLAC__StreamDecoder *decoder, byte buffer[], unsigned *bytes, void *client_data);
FLAC__StreamDecoderWriteStatus (*write_callback)(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const int32 *buffer[], void *client_data);
void (*metadata_callback)(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetaData *metadata, void *client_data);
void (*error_callback)(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data);
void *client_data;
FLAC__BitBuffer input;
int32 *output[FLAC__MAX_CHANNELS];
int32 *residual[FLAC__MAX_CHANNELS];
unsigned output_capacity, output_channels;
uint32 last_frame_number;
uint64 samples_decoded;
bool has_stream_info, has_seek_table;
FLAC__StreamMetaData stream_info;
FLAC__StreamMetaData seek_table;
FLAC__Frame frame;
byte header_warmup[2]; /* contains the sync code and reserved bits */
byte lookahead; /* temp storage when we need to look ahead one byte in the stream */
bool cached; /* true if there is a byte in lookahead */
} FLAC__StreamDecoderPrivate;
static byte ID3V2_TAG_[3] = { 'I', 'D', '3' };
static bool stream_decoder_allocate_output_(FLAC__StreamDecoder *decoder, unsigned size, unsigned channels);
static bool stream_decoder_find_metadata_(FLAC__StreamDecoder *decoder);
static bool stream_decoder_read_metadata_(FLAC__StreamDecoder *decoder);
static bool stream_decoder_skip_id3v2_tag_(FLAC__StreamDecoder *decoder);
static bool stream_decoder_frame_sync_(FLAC__StreamDecoder *decoder);
static bool stream_decoder_read_frame_(FLAC__StreamDecoder *decoder, bool *got_a_frame);
static bool stream_decoder_read_frame_header_(FLAC__StreamDecoder *decoder);
static bool stream_decoder_read_subframe_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps);
static bool stream_decoder_read_subframe_constant_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps);
static bool stream_decoder_read_subframe_fixed_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order);
static bool stream_decoder_read_subframe_lpc_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order);
static bool stream_decoder_read_subframe_verbatim_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps);
static bool stream_decoder_read_residual_partitioned_rice_(FLAC__StreamDecoder *decoder, unsigned predictor_order, unsigned partition_order, int32 *residual);
static bool stream_decoder_read_zero_padding_(FLAC__StreamDecoder *decoder);
static bool read_callback_(byte buffer[], unsigned *bytes, void *client_data);
const char *FLAC__StreamDecoderStateString[] = {
"FLAC__STREAM_DECODER_SEARCH_FOR_METADATA",
"FLAC__STREAM_DECODER_READ_METADATA",
"FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC",
"FLAC__STREAM_DECODER_READ_FRAME",
"FLAC__STREAM_DECODER_END_OF_STREAM",
"FLAC__STREAM_DECODER_ABORTED",
"FLAC__STREAM_DECODER_UNPARSEABLE_STREAM",
"FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR",
"FLAC__STREAM_DECODER_UNINITIALIZED"
};
const char *FLAC__StreamDecoderReadStatusString[] = {
"FLAC__STREAM_DECODER_READ_CONTINUE",
"FLAC__STREAM_DECODER_READ_END_OF_STREAM",
"FLAC__STREAM_DECODER_READ_ABORT"
};
const char *FLAC__StreamDecoderWriteStatusString[] = {
"FLAC__STREAM_DECODER_WRITE_CONTINUE",
"FLAC__STREAM_DECODER_WRITE_ABORT"
};
const char *FLAC__StreamDecoderErrorStatusString[] = {
"FLAC__STREAM_DECODER_ERROR_LOST_SYNC",
"FLAC__STREAM_DECODER_ERROR_BAD_HEADER",
"FLAC__STREAM_DECODER_ERROR_FRAME_CRC_MISMATCH"
};
FLAC__StreamDecoder *FLAC__stream_decoder_get_new_instance()
{
FLAC__StreamDecoder *decoder = (FLAC__StreamDecoder*)malloc(sizeof(FLAC__StreamDecoder));
if(decoder != 0) {
decoder->state = FLAC__STREAM_DECODER_UNINITIALIZED;
decoder->guts = 0;
}
return decoder;
}
void FLAC__stream_decoder_free_instance(FLAC__StreamDecoder *decoder)
{
free(decoder);
}
FLAC__StreamDecoderState FLAC__stream_decoder_init(
FLAC__StreamDecoder *decoder,
FLAC__StreamDecoderReadStatus (*read_callback)(const FLAC__StreamDecoder *decoder, byte buffer[], unsigned *bytes, void *client_data),
FLAC__StreamDecoderWriteStatus (*write_callback)(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const int32 *buffer[], void *client_data),
void (*metadata_callback)(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetaData *metadata, void *client_data),
void (*error_callback)(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data),
void *client_data
)
{
unsigned i;
assert(sizeof(int) >= 4); /* we want to die right away if this is not true */
assert(decoder != 0);
assert(read_callback != 0);
assert(write_callback != 0);
assert(metadata_callback != 0);
assert(error_callback != 0);
assert(decoder->state == FLAC__STREAM_DECODER_UNINITIALIZED);
assert(decoder->guts == 0);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_METADATA;
decoder->guts = (FLAC__StreamDecoderPrivate*)malloc(sizeof(FLAC__StreamDecoderPrivate));
if(decoder->guts == 0)
return decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;
decoder->guts->read_callback = read_callback;
decoder->guts->write_callback = write_callback;
decoder->guts->metadata_callback = metadata_callback;
decoder->guts->error_callback = error_callback;
decoder->guts->client_data = client_data;
FLAC__bitbuffer_init(&decoder->guts->input);
for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
decoder->guts->output[i] = 0;
decoder->guts->residual[i] = 0;
}
decoder->guts->output_capacity = 0;
decoder->guts->output_channels = 0;
decoder->guts->last_frame_number = 0;
decoder->guts->samples_decoded = 0;
decoder->guts->has_stream_info = false;
decoder->guts->has_seek_table = false;
decoder->guts->cached = false;
return decoder->state;
}
void FLAC__stream_decoder_finish(FLAC__StreamDecoder *decoder)
{
unsigned i;
assert(decoder != 0);
if(decoder->state == FLAC__STREAM_DECODER_UNINITIALIZED)
return;
if(decoder->guts != 0) {
if(decoder->guts->has_seek_table) {
free(decoder->guts->seek_table.data.seek_table.points);
decoder->guts->seek_table.data.seek_table.points = 0;
}
FLAC__bitbuffer_free(&decoder->guts->input);
for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
if(decoder->guts->output[i] != 0) {
free(decoder->guts->output[i]);
decoder->guts->output[i] = 0;
}
if(decoder->guts->residual[i] != 0) {
free(decoder->guts->residual[i]);
decoder->guts->residual[i] = 0;
}
}
free(decoder->guts);
decoder->guts = 0;
}
decoder->state = FLAC__STREAM_DECODER_UNINITIALIZED;
}
bool FLAC__stream_decoder_flush(FLAC__StreamDecoder *decoder)
{
assert(decoder != 0);
if(!FLAC__bitbuffer_clear(&decoder->guts->input)) {
decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;
return false;
}
return true;
}
bool FLAC__stream_decoder_reset(FLAC__StreamDecoder *decoder)
{
assert(decoder != 0);
if(!FLAC__stream_decoder_flush(decoder)) {
decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;
return false;
}
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_METADATA;
return true;
}
bool FLAC__stream_decoder_process_whole_stream(FLAC__StreamDecoder *decoder)
{
bool dummy;
assert(decoder != 0);
if(decoder->state == FLAC__STREAM_DECODER_END_OF_STREAM)
return true;
assert(decoder->state == FLAC__STREAM_DECODER_SEARCH_FOR_METADATA);
if(!FLAC__stream_decoder_reset(decoder)) {
decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;
return false;
}
while(1) {
switch(decoder->state) {
case FLAC__STREAM_DECODER_SEARCH_FOR_METADATA:
if(!stream_decoder_find_metadata_(decoder))
return false; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_READ_METADATA:
if(!stream_decoder_read_metadata_(decoder))
return false; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC:
if(!stream_decoder_frame_sync_(decoder))
return true; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_READ_FRAME:
if(!stream_decoder_read_frame_(decoder, &dummy))
return false; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_END_OF_STREAM:
return true;
default:
assert(0);
}
}
}
bool FLAC__stream_decoder_process_metadata(FLAC__StreamDecoder *decoder)
{
assert(decoder != 0);
if(decoder->state == FLAC__STREAM_DECODER_END_OF_STREAM)
return true;
assert(decoder->state == FLAC__STREAM_DECODER_SEARCH_FOR_METADATA);
if(!FLAC__stream_decoder_reset(decoder)) {
decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;
return false;
}
while(1) {
switch(decoder->state) {
case FLAC__STREAM_DECODER_SEARCH_FOR_METADATA:
if(!stream_decoder_find_metadata_(decoder))
return false; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_READ_METADATA:
if(!stream_decoder_read_metadata_(decoder))
return false; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC:
return true;
break;
case FLAC__STREAM_DECODER_END_OF_STREAM:
return true;
default:
assert(0);
}
}
}
bool FLAC__stream_decoder_process_one_frame(FLAC__StreamDecoder *decoder)
{
bool got_a_frame;
assert(decoder != 0);
if(decoder->state == FLAC__STREAM_DECODER_END_OF_STREAM)
return true;
assert(decoder->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC);
while(1) {
switch(decoder->state) {
case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC:
if(!stream_decoder_frame_sync_(decoder))
return true; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_READ_FRAME:
if(!stream_decoder_read_frame_(decoder, &got_a_frame))
return false; /* above function sets the status for us */
if(got_a_frame)
return true; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_END_OF_STREAM:
return true;
default:
assert(0);
}
}
}
bool FLAC__stream_decoder_process_remaining_frames(FLAC__StreamDecoder *decoder)
{
bool dummy;
assert(decoder != 0);
if(decoder->state == FLAC__STREAM_DECODER_END_OF_STREAM)
return true;
assert(decoder->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC);
while(1) {
switch(decoder->state) {
case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC:
if(!stream_decoder_frame_sync_(decoder))
return true; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_READ_FRAME:
if(!stream_decoder_read_frame_(decoder, &dummy))
return false; /* above function sets the status for us */
break;
case FLAC__STREAM_DECODER_END_OF_STREAM:
return true;
default:
assert(0);
}
}
}
unsigned FLAC__stream_decoder_input_bytes_unconsumed(FLAC__StreamDecoder *decoder)
{
assert(decoder != 0);
return decoder->guts->input.bytes - decoder->guts->input.consumed_bytes;
}
bool stream_decoder_allocate_output_(FLAC__StreamDecoder *decoder, unsigned size, unsigned channels)
{
unsigned i;
int32 *tmp;
if(size <= decoder->guts->output_capacity && channels <= decoder->guts->output_channels)
return true;
/* @@@ should change to use realloc() */
for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
if(decoder->guts->output[i] != 0) {
free(decoder->guts->output[i]);
decoder->guts->output[i] = 0;
}
if(decoder->guts->residual[i] != 0) {
free(decoder->guts->residual[i]);
decoder->guts->residual[i] = 0;
}
}
for(i = 0; i < channels; i++) {
tmp = (int32*)malloc(sizeof(int32)*size);
if(tmp == 0) {
decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;
return false;
}
decoder->guts->output[i] = tmp;
tmp = (int32*)malloc(sizeof(int32)*size);
if(tmp == 0) {
decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;
return false;
}
decoder->guts->residual[i] = tmp;
}
decoder->guts->output_capacity = size;
decoder->guts->output_channels = channels;
return true;
}
bool stream_decoder_find_metadata_(FLAC__StreamDecoder *decoder)
{
uint32 x;
unsigned i, id;
bool first = true;
assert(decoder->guts->input.consumed_bits == 0); /* make sure we're byte aligned */
for(i = id = 0; i < 4; ) {
if(decoder->guts->cached) {
x = (uint32)decoder->guts->lookahead;
decoder->guts->cached = false;
}
else {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
}
if(x == FLAC__STREAM_SYNC_STRING[i]) {
first = true;
i++;
id = 0;
continue;
}
if(x == ID3V2_TAG_[id]) {
id++;
i = 0;
if(id == 3) {
if(!stream_decoder_skip_id3v2_tag_(decoder))
return false; /* the read_callback_ sets the state for us */
}
continue;
}
if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */
decoder->guts->header_warmup[0] = (byte)x;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
/* we have to check if we just read two 0xff's in a row; the second may actually be the beginning of the sync code */
/* else we have to check if the second byte is the end of a sync code */
if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */
decoder->guts->lookahead = (byte)x;
decoder->guts->cached = true;
}
else if(x >> 2 == 0x3e) { /* MAGIC NUMBER for the last 6 sync bits */
decoder->guts->header_warmup[1] = (byte)x;
decoder->state = FLAC__STREAM_DECODER_READ_FRAME;
return true;
}
}
i = 0;
if(first) {
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data);
first = false;
}
}
decoder->state = FLAC__STREAM_DECODER_READ_METADATA;
return true;
}
bool stream_decoder_read_metadata_(FLAC__StreamDecoder *decoder)
{
uint32 i, x, last_block, type, length;
uint64 xx;
assert(decoder->guts->input.consumed_bits == 0); /* make sure we're byte aligned */
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &last_block, FLAC__STREAM_METADATA_IS_LAST_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &type, FLAC__STREAM_METADATA_TYPE_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &length, FLAC__STREAM_METADATA_LENGTH_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
if(type == FLAC__METADATA_TYPE_STREAMINFO) {
unsigned used_bits = 0;
decoder->guts->stream_info.type = type;
decoder->guts->stream_info.is_last = last_block;
decoder->guts->stream_info.length = length;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->stream_info.data.stream_info.min_blocksize = x;
used_bits += FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->stream_info.data.stream_info.max_blocksize = x;
used_bits += FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->stream_info.data.stream_info.min_framesize = x;
used_bits += FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->stream_info.data.stream_info.max_framesize = x;
used_bits += FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->stream_info.data.stream_info.sample_rate = x;
used_bits += FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->stream_info.data.stream_info.channels = x+1;
used_bits += FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->stream_info.data.stream_info.bits_per_sample = x+1;
used_bits += FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN;
if(!FLAC__bitbuffer_read_raw_uint64(&decoder->guts->input, &decoder->guts->stream_info.data.stream_info.total_samples, FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
used_bits += FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN;
for(i = 0; i < 16; i++) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->stream_info.data.stream_info.md5sum[i] = (byte)x;
}
used_bits += i*8;
/* skip the rest of the block */
assert(used_bits % 8 == 0);
length -= (used_bits / 8);
for(i = 0; i < length; i++) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
}
decoder->guts->has_stream_info = true;
decoder->guts->metadata_callback(decoder, &decoder->guts->stream_info, decoder->guts->client_data);
}
else if(type == FLAC__METADATA_TYPE_SEEKTABLE) {
decoder->guts->seek_table.type = type;
decoder->guts->seek_table.is_last = last_block;
decoder->guts->seek_table.length = length;
decoder->guts->seek_table.data.seek_table.num_points = length / FLAC__STREAM_METADATA_SEEKPOINT_LEN;
if(0 == (decoder->guts->seek_table.data.seek_table.points = (FLAC__StreamMetaData_SeekPoint*)malloc(decoder->guts->seek_table.data.seek_table.num_points * sizeof(FLAC__StreamMetaData_SeekPoint)))) {
decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;
return false;
}
for(i = 0; i < decoder->guts->seek_table.data.seek_table.num_points; i++) {
if(!FLAC__bitbuffer_read_raw_uint64(&decoder->guts->input, &xx, FLAC__STREAM_METADATA_SEEKPOINT_SAMPLE_NUMBER_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->seek_table.data.seek_table.points[i].sample_number = xx;
if(!FLAC__bitbuffer_read_raw_uint64(&decoder->guts->input, &xx, FLAC__STREAM_METADATA_SEEKPOINT_STREAM_OFFSET_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->seek_table.data.seek_table.points[i].stream_offset = xx;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_SEEKPOINT_BLOCK_OFFSET_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->seek_table.data.seek_table.points[i].block_offset = x;
}
decoder->guts->has_seek_table = true;
decoder->guts->metadata_callback(decoder, &decoder->guts->seek_table, decoder->guts->client_data);
}
else {
/* skip other metadata blocks */
for(i = 0; i < length; i++) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
}
}
if(last_block)
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
bool stream_decoder_skip_id3v2_tag_(FLAC__StreamDecoder *decoder)
{
uint32 x;
unsigned i, skip;
/* skip the version and flags bytes */
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 24, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
/* get the size (in bytes) to skip */
skip = 0;
for(i = 0; i < 4; i++) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
skip <<= 7;
skip |= (x & 0x7f);
}
/* skip the rest of the tag */
for(i = 0; i < skip; i++) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
}
return true;
}
bool stream_decoder_frame_sync_(FLAC__StreamDecoder *decoder)
{
uint32 x;
bool first = true;
/* If we know the total number of samples in the stream, stop if we've read that many. */
/* This will stop us, for example, from wasting time trying to sync on an ID3V1 tag. */
if(decoder->guts->has_stream_info && decoder->guts->stream_info.data.stream_info.total_samples) {
if(decoder->guts->samples_decoded >= decoder->guts->stream_info.data.stream_info.total_samples) {
decoder->state = FLAC__STREAM_DECODER_END_OF_STREAM;
return true;
}
}
/* make sure we're byte aligned */
if(decoder->guts->input.consumed_bits != 0) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8-decoder->guts->input.consumed_bits, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
}
while(1) {
if(decoder->guts->cached) {
x = (uint32)decoder->guts->lookahead;
decoder->guts->cached = false;
}
else {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
}
if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */
decoder->guts->header_warmup[0] = (byte)x;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
/* we have to check if we just read two 0xff's in a row; the second may actually be the beginning of the sync code */
/* else we have to check if the second byte is the end of a sync code */
if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */
decoder->guts->lookahead = (byte)x;
decoder->guts->cached = true;
}
else if(x >> 2 == 0x3e) { /* MAGIC NUMBER for the last 6 sync bits */
decoder->guts->header_warmup[1] = (byte)x;
decoder->state = FLAC__STREAM_DECODER_READ_FRAME;
return true;
}
}
if(first) {
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data);
first = 0;
}
}
return true;
}
bool stream_decoder_read_frame_(FLAC__StreamDecoder *decoder, bool *got_a_frame)
{
unsigned channel;
unsigned i;
int32 mid, side, left, right;
uint16 frame_crc; /* the one we calculate from the input stream */
uint32 x;
*got_a_frame = false;
/* init the CRC */
frame_crc = 0;
FLAC__CRC16_UPDATE(decoder->guts->header_warmup[0], frame_crc);
FLAC__CRC16_UPDATE(decoder->guts->header_warmup[1], frame_crc);
FLAC__bitbuffer_init_read_crc16(&decoder->guts->input, frame_crc);
if(!stream_decoder_read_frame_header_(decoder))
return false;
if(decoder->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC)
return true;
if(!stream_decoder_allocate_output_(decoder, decoder->guts->frame.header.blocksize, decoder->guts->frame.header.channels))
return false;
for(channel = 0; channel < decoder->guts->frame.header.channels; channel++) {
/*
* first figure the correct bits-per-sample of the subframe
*/
unsigned bps = decoder->guts->frame.header.bits_per_sample;
switch(decoder->guts->frame.header.channel_assignment) {
case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
/* no adjustment needed */
break;
case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
assert(decoder->guts->frame.header.channels == 2);
if(channel == 1)
bps++;
break;
case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
assert(decoder->guts->frame.header.channels == 2);
if(channel == 0)
bps++;
break;
case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
assert(decoder->guts->frame.header.channels == 2);
if(channel == 1)
bps++;
break;
default:
assert(0);
}
/*
* now read it
*/
if(!stream_decoder_read_subframe_(decoder, channel, bps))
return false;
if(decoder->state != FLAC__STREAM_DECODER_READ_FRAME) {
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
}
if(!stream_decoder_read_zero_padding_(decoder))
return false;
/*
* Read the frame CRC-16 from the footer and check
*/
frame_crc = decoder->guts->input.read_crc16;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__FRAME_FOOTER_CRC_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
if(frame_crc == (uint16)x) {
/* Undo any special channel coding */
switch(decoder->guts->frame.header.channel_assignment) {
case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
/* do nothing */
break;
case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
assert(decoder->guts->frame.header.channels == 2);
for(i = 0; i < decoder->guts->frame.header.blocksize; i++)
decoder->guts->output[1][i] = decoder->guts->output[0][i] - decoder->guts->output[1][i];
break;
case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
assert(decoder->guts->frame.header.channels == 2);
for(i = 0; i < decoder->guts->frame.header.blocksize; i++)
decoder->guts->output[0][i] += decoder->guts->output[1][i];
break;
case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
assert(decoder->guts->frame.header.channels == 2);
for(i = 0; i < decoder->guts->frame.header.blocksize; i++) {
mid = decoder->guts->output[0][i];
side = decoder->guts->output[1][i];
mid <<= 1;
if(side & 1) /* i.e. if 'side' is odd... */
mid++;
left = mid + side;
right = mid - side;
decoder->guts->output[0][i] = left >> 1;
decoder->guts->output[1][i] = right >> 1;
}
break;
default:
assert(0);
break;
}
}
else {
/* Bad frame, emit error and zero the output signal */
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_FRAME_CRC_MISMATCH, decoder->guts->client_data);
for(channel = 0; channel < decoder->guts->frame.header.channels; channel++) {
memset(decoder->guts->output[channel], 0, sizeof(int32) * decoder->guts->frame.header.blocksize);
}
}
*got_a_frame = true;
/* put the latest values into the public section of the decoder instance */
decoder->channels = decoder->guts->frame.header.channels;
decoder->channel_assignment = decoder->guts->frame.header.channel_assignment;
decoder->bits_per_sample = decoder->guts->frame.header.bits_per_sample;
decoder->sample_rate = decoder->guts->frame.header.sample_rate;
decoder->blocksize = decoder->guts->frame.header.blocksize;
decoder->guts->samples_decoded += decoder->guts->frame.header.blocksize;
/* write it */
if(decoder->guts->write_callback(decoder, &decoder->guts->frame, decoder->guts->output, decoder->guts->client_data) != FLAC__STREAM_DECODER_WRITE_CONTINUE)
return false;
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
bool stream_decoder_read_frame_header_(FLAC__StreamDecoder *decoder)
{
uint32 x;
uint64 xx;
unsigned i, blocksize_hint = 0, sample_rate_hint = 0;
byte crc8, raw_header[16]; /* MAGIC NUMBER based on the maximum frame header size, including CRC */
unsigned raw_header_len;
bool is_unparseable = false;
assert(decoder->guts->input.consumed_bits == 0); /* make sure we're byte aligned */
/* init the raw header with the saved bits from synchronization */
raw_header[0] = decoder->guts->header_warmup[0];
raw_header[1] = decoder->guts->header_warmup[1];
raw_header_len = 2;
/*
* check to make sure that the reserved bits are 0
*/
if(raw_header[1] & 0x03) { /* MAGIC NUMBER */
is_unparseable = true;
}
/*
* Note that along the way as we read the header, we look for a sync
* code inside. If we find one it would indicate that our original
* sync was bad since there cannot be a sync code in a valid header.
*/
/*
* read in the raw header as bytes so we can CRC it, and parse it on the way
*/
for(i = 0; i < 2; i++) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */
/* if we get here it means our original sync was erroneous since the sync code cannot appear in the header */
decoder->guts->lookahead = (byte)x;
decoder->guts->cached = true;
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_BAD_HEADER, decoder->guts->client_data);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
raw_header[raw_header_len++] = (byte)x;
}
switch(x = raw_header[2] >> 4) {
case 0:
if(decoder->guts->has_stream_info && decoder->guts->stream_info.data.stream_info.min_blocksize == decoder->guts->stream_info.data.stream_info.max_blocksize) /* i.e. it's a fixed-blocksize stream */
decoder->guts->frame.header.blocksize = decoder->guts->stream_info.data.stream_info.min_blocksize;
else
is_unparseable = true;
break;
case 1:
decoder->guts->frame.header.blocksize = 192;
break;
case 2:
case 3:
case 4:
case 5:
decoder->guts->frame.header.blocksize = 576 << (x-2);
break;
case 6:
case 7:
blocksize_hint = x;
break;
case 8:
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
decoder->guts->frame.header.blocksize = 256 << (x-8);
break;
default:
assert(0);
break;
}
switch(x = raw_header[2] & 0x0f) {
case 0:
if(decoder->guts->has_stream_info)
decoder->guts->frame.header.sample_rate = decoder->guts->stream_info.data.stream_info.sample_rate;
else
is_unparseable = true;
break;
case 1:
case 2:
case 3:
is_unparseable = true;
break;
case 4:
decoder->guts->frame.header.sample_rate = 8000;
break;
case 5:
decoder->guts->frame.header.sample_rate = 16000;
break;
case 6:
decoder->guts->frame.header.sample_rate = 22050;
break;
case 7:
decoder->guts->frame.header.sample_rate = 24000;
break;
case 8:
decoder->guts->frame.header.sample_rate = 32000;
break;
case 9:
decoder->guts->frame.header.sample_rate = 44100;
break;
case 10:
decoder->guts->frame.header.sample_rate = 48000;
break;
case 11:
decoder->guts->frame.header.sample_rate = 96000;
break;
case 12:
case 13:
case 14:
sample_rate_hint = x;
break;
case 15:
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_BAD_HEADER, decoder->guts->client_data);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
default:
assert(0);
}
x = (unsigned)(raw_header[3] >> 4);
if(x & 8) {
decoder->guts->frame.header.channels = 2;
switch(x & 7) {
case 0:
decoder->guts->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE;
break;
case 1:
decoder->guts->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE;
break;
case 2:
decoder->guts->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE;
break;
default:
is_unparseable = true;
break;
}
}
else {
decoder->guts->frame.header.channels = (unsigned)x + 1;
decoder->guts->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT;
}
switch(x = (unsigned)(raw_header[3] & 0x0e) >> 1) {
case 0:
if(decoder->guts->has_stream_info)
decoder->guts->frame.header.bits_per_sample = decoder->guts->stream_info.data.stream_info.bits_per_sample;
else
is_unparseable = true;
break;
case 1:
decoder->guts->frame.header.bits_per_sample = 8;
break;
case 2:
decoder->guts->frame.header.bits_per_sample = 12;
break;
case 4:
decoder->guts->frame.header.bits_per_sample = 16;
break;
case 5:
decoder->guts->frame.header.bits_per_sample = 20;
break;
case 6:
decoder->guts->frame.header.bits_per_sample = 24;
break;
case 3:
case 7:
is_unparseable = true;
break;
default:
assert(0);
break;
}
if(raw_header[3] & 0x01) { /* this should be a zero padding bit */
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_BAD_HEADER, decoder->guts->client_data);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
if(blocksize_hint) {
if(!FLAC__bitbuffer_read_utf8_uint64(&decoder->guts->input, &xx, read_callback_, decoder, raw_header, &raw_header_len))
return false; /* the read_callback_ sets the state for us */
if(xx == 0xffffffffffffffff) { /* i.e. non-UTF8 code... */
decoder->guts->lookahead = raw_header[raw_header_len-1]; /* back up as much as we can */
decoder->guts->cached = true;
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_BAD_HEADER, decoder->guts->client_data);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
if(decoder->guts->has_stream_info && decoder->guts->stream_info.data.stream_info.min_blocksize == decoder->guts->stream_info.data.stream_info.max_blocksize) /* i.e. it's a fixed-blocksize stream */
decoder->guts->frame.header.number.sample_number = (uint64)decoder->guts->last_frame_number * (int64)decoder->guts->stream_info.data.stream_info.min_blocksize + xx;
else
decoder->guts->frame.header.number.sample_number = xx;
}
else {
if(!FLAC__bitbuffer_read_utf8_uint32(&decoder->guts->input, &x, read_callback_, decoder, raw_header, &raw_header_len))
return false; /* the read_callback_ sets the state for us */
if(x == 0xffffffff) { /* i.e. non-UTF8 code... */
decoder->guts->lookahead = raw_header[raw_header_len-1]; /* back up as much as we can */
decoder->guts->cached = true;
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_BAD_HEADER, decoder->guts->client_data);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
decoder->guts->last_frame_number = x;
if(decoder->guts->has_stream_info) {
decoder->guts->frame.header.number.sample_number = (int64)decoder->guts->stream_info.data.stream_info.min_blocksize * (int64)x;
}
else {
is_unparseable = true;
}
}
if(blocksize_hint) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
raw_header[raw_header_len++] = (byte)x;
if(blocksize_hint == 7) {
uint32 _x;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &_x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
raw_header[raw_header_len++] = (byte)_x;
x = (x << 8) | _x;
}
decoder->guts->frame.header.blocksize = x+1;
}
if(sample_rate_hint) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
raw_header[raw_header_len++] = (byte)x;
if(sample_rate_hint != 12) {
uint32 _x;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &_x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
raw_header[raw_header_len++] = (byte)_x;
x = (x << 8) | _x;
}
if(sample_rate_hint == 12)
decoder->guts->frame.header.sample_rate = x*1000;
else if(sample_rate_hint == 13)
decoder->guts->frame.header.sample_rate = x;
else
decoder->guts->frame.header.sample_rate = x*10;
}
/* read the CRC-8 byte */
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
crc8 = (byte)x;
if(FLAC__crc8(raw_header, raw_header_len) != crc8) {
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_BAD_HEADER, decoder->guts->client_data);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
if(is_unparseable) {
decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM;
return false;
}
return true;
}
bool stream_decoder_read_subframe_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps)
{
uint32 x;
bool wasted_bits;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) /* MAGIC NUMBER */
return false; /* the read_callback_ sets the state for us */
wasted_bits = (x & 1);
x &= 0xfe;
if(wasted_bits) {
unsigned u;
if(!FLAC__bitbuffer_read_unary_unsigned(&decoder->guts->input, &u, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
decoder->guts->frame.subframes[channel].wasted_bits = u+1;
bps -= decoder->guts->frame.subframes[channel].wasted_bits;
}
else
decoder->guts->frame.subframes[channel].wasted_bits = 0;
/*
* Lots of magic numbers here
*/
if(x & 0x80) {
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
else if(x == 0) {
if(!stream_decoder_read_subframe_constant_(decoder, channel, bps))
return false;
}
else if(x == 2) {
if(!stream_decoder_read_subframe_verbatim_(decoder, channel, bps))
return false;
}
else if(x < 16) {
decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM;
return false;
}
else if(x <= 24) {
if(!stream_decoder_read_subframe_fixed_(decoder, channel, bps, (x>>1)&7))
return false;
}
else if(x < 64) {
decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM;
return false;
}
else {
if(!stream_decoder_read_subframe_lpc_(decoder, channel, bps, ((x>>1)&31)+1))
return false;
}
if(wasted_bits) {
unsigned i;
x = decoder->guts->frame.subframes[channel].wasted_bits;
for(i = 0; i < decoder->guts->frame.header.blocksize; i++)
decoder->guts->output[channel][i] <<= x;
}
return true;
}
bool stream_decoder_read_subframe_constant_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps)
{
FLAC__Subframe_Constant *subframe = &decoder->guts->frame.subframes[channel].data.constant;
int32 x;
unsigned i;
int32 *output = decoder->guts->output[channel];
decoder->guts->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_CONSTANT;
if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &x, bps, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
subframe->value = x;
/* decode the subframe */
for(i = 0; i < decoder->guts->frame.header.blocksize; i++)
output[i] = x;
return true;
}
bool stream_decoder_read_subframe_fixed_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order)
{
FLAC__Subframe_Fixed *subframe = &decoder->guts->frame.subframes[channel].data.fixed;
int32 i32;
uint32 u32;
unsigned u;
decoder->guts->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_FIXED;
subframe->residual = decoder->guts->residual[channel];
subframe->order = order;
/* read warm-up samples */
for(u = 0; u < order; u++) {
if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &i32, bps, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
subframe->warmup[u] = i32;
}
/* read entropy coding method info */
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__ENTROPY_CODING_METHOD_TYPE_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
subframe->entropy_coding_method.type = u32;
switch(subframe->entropy_coding_method.type) {
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE:
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
subframe->entropy_coding_method.data.partitioned_rice.order = u32;
break;
default:
decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM;
return false;
}
/* read residual */
switch(subframe->entropy_coding_method.type) {
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE:
if(!stream_decoder_read_residual_partitioned_rice_(decoder, order, subframe->entropy_coding_method.data.partitioned_rice.order, decoder->guts->residual[channel]))
return false;
break;
default:
assert(0);
}
/* decode the subframe */
memcpy(decoder->guts->output[channel], subframe->warmup, sizeof(int32) * order);
FLAC__fixed_restore_signal(decoder->guts->residual[channel], decoder->guts->frame.header.blocksize-order, order, decoder->guts->output[channel]+order);
return true;
}
bool stream_decoder_read_subframe_lpc_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order)
{
FLAC__Subframe_LPC *subframe = &decoder->guts->frame.subframes[channel].data.lpc;
int32 i32;
uint32 u32;
unsigned u;
decoder->guts->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_LPC;
subframe->residual = decoder->guts->residual[channel];
subframe->order = order;
/* read warm-up samples */
for(u = 0; u < order; u++) {
if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &i32, bps, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
subframe->warmup[u] = i32;
}
/* read qlp coeff precision */
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
if(u32 == (1 << FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN) - 1) {
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
return true;
}
subframe->qlp_coeff_precision = u32+1;
/* read qlp shift */
if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &i32, FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
subframe->quantization_level = i32;
/* read quantized lp coefficiencts */
for(u = 0; u < order; u++) {
if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &i32, subframe->qlp_coeff_precision, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
subframe->qlp_coeff[u] = i32;
}
/* read entropy coding method info */
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__ENTROPY_CODING_METHOD_TYPE_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
subframe->entropy_coding_method.type = u32;
switch(subframe->entropy_coding_method.type) {
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE:
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
subframe->entropy_coding_method.data.partitioned_rice.order = u32;
break;
default:
decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM;
return false;
}
/* read residual */
switch(subframe->entropy_coding_method.type) {
case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE:
if(!stream_decoder_read_residual_partitioned_rice_(decoder, order, subframe->entropy_coding_method.data.partitioned_rice.order, decoder->guts->residual[channel]))
return false;
break;
default:
assert(0);
}
/* decode the subframe */
memcpy(decoder->guts->output[channel], subframe->warmup, sizeof(int32) * order);
FLAC__lpc_restore_signal(decoder->guts->residual[channel], decoder->guts->frame.header.blocksize-order, subframe->qlp_coeff, order, subframe->quantization_level, decoder->guts->output[channel]+order);
return true;
}
bool stream_decoder_read_subframe_verbatim_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps)
{
FLAC__Subframe_Verbatim *subframe = &decoder->guts->frame.subframes[channel].data.verbatim;
int32 x, *residual = decoder->guts->residual[channel];
unsigned i;
decoder->guts->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_VERBATIM;
subframe->data = residual;
for(i = 0; i < decoder->guts->frame.header.blocksize; i++) {
if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &x, bps, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
residual[i] = x;
}
/* decode the subframe */
memcpy(decoder->guts->output[channel], subframe->data, sizeof(int32) * decoder->guts->frame.header.blocksize);
return true;
}
bool stream_decoder_read_residual_partitioned_rice_(FLAC__StreamDecoder *decoder, unsigned predictor_order, unsigned partition_order, int32 *residual)
{
uint32 rice_parameter;
int i;
unsigned partition, sample, u;
const unsigned partitions = 1u << partition_order;
const unsigned partition_samples = partition_order > 0? decoder->guts->frame.header.blocksize >> partition_order : decoder->guts->frame.header.blocksize - predictor_order;
sample = 0;
for(partition = 0; partition < partitions; partition++) {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
if(rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
for(u = (partition_order == 0 || partition > 0)? 0 : predictor_order; u < partition_samples; u++, sample++) {
#ifdef SYMMETRIC_RICE
if(!FLAC__bitbuffer_read_symmetric_rice_signed(&decoder->guts->input, &i, rice_parameter, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
#else
if(!FLAC__bitbuffer_read_rice_signed(&decoder->guts->input, &i, rice_parameter, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
#endif
residual[sample] = i;
}
}
else {
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
for(u = (partition_order == 0 || partition > 0)? 0 : predictor_order; u < partition_samples; u++, sample++) {
if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &i, rice_parameter, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
residual[sample] = i;
}
}
}
return true;
}
bool stream_decoder_read_zero_padding_(FLAC__StreamDecoder *decoder)
{
if(decoder->guts->input.consumed_bits != 0) {
uint32 zero = 0;
if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &zero, 8-decoder->guts->input.consumed_bits, read_callback_, decoder))
return false; /* the read_callback_ sets the state for us */
if(zero != 0) {
decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data);
decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC;
}
}
return true;
}
bool read_callback_(byte buffer[], unsigned *bytes, void *client_data)
{
FLAC__StreamDecoder *decoder = (FLAC__StreamDecoder *)client_data;
FLAC__StreamDecoderReadStatus status;
status = decoder->guts->read_callback(decoder, buffer, bytes, decoder->guts->client_data);
if(status == FLAC__STREAM_DECODER_READ_END_OF_STREAM)
decoder->state = FLAC__STREAM_DECODER_END_OF_STREAM;
else if(status == FLAC__STREAM_DECODER_READ_ABORT)
decoder->state = FLAC__STREAM_DECODER_ABORTED;
return status == FLAC__STREAM_DECODER_READ_CONTINUE;
}