| /* libFLAC - Free Lossless Audio Codec library |
| * Copyright (C) 2000,2001,2002,2003,2004,2005 Josh Coalson |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * - Neither the name of the Xiph.org Foundation nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <limits.h> |
| #include <stdio.h> |
| #include <stdlib.h> /* for malloc() */ |
| #include <string.h> /* for memcpy() */ |
| #include "FLAC/assert.h" |
| #include "FLAC/stream_decoder.h" |
| #include "protected/stream_encoder.h" |
| #include "private/bitbuffer.h" |
| #include "private/bitmath.h" |
| #include "private/crc.h" |
| #include "private/cpu.h" |
| #include "private/fixed.h" |
| #include "private/format.h" |
| #include "private/lpc.h" |
| #include "private/md5.h" |
| #include "private/memory.h" |
| #include "private/stream_encoder_framing.h" |
| |
| #ifdef HAVE_CONFIG_H |
| #include <config.h> |
| #endif |
| |
| #ifdef min |
| #undef min |
| #endif |
| #define min(x,y) ((x)<(y)?(x):(y)) |
| |
| #ifdef max |
| #undef max |
| #endif |
| #define max(x,y) ((x)>(y)?(x):(y)) |
| |
| typedef struct { |
| FLAC__int32 *data[FLAC__MAX_CHANNELS]; |
| unsigned size; /* of each data[] in samples */ |
| unsigned tail; |
| } verify_input_fifo; |
| |
| typedef struct { |
| const FLAC__byte *data; |
| unsigned capacity; |
| unsigned bytes; |
| } verify_output; |
| |
| typedef enum { |
| ENCODER_IN_MAGIC = 0, |
| ENCODER_IN_METADATA = 1, |
| ENCODER_IN_AUDIO = 2 |
| } EncoderStateHint; |
| |
| /*********************************************************************** |
| * |
| * Private class method prototypes |
| * |
| ***********************************************************************/ |
| |
| static void set_defaults_(FLAC__StreamEncoder *encoder); |
| static void free_(FLAC__StreamEncoder *encoder); |
| static FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_size); |
| static FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, unsigned samples); |
| static FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame); |
| static FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame); |
| |
| static FLAC__bool process_subframe_( |
| FLAC__StreamEncoder *encoder, |
| unsigned min_partition_order, |
| unsigned max_partition_order, |
| FLAC__bool precompute_partition_sums, |
| const FLAC__FrameHeader *frame_header, |
| unsigned subframe_bps, |
| const FLAC__int32 integer_signal[], |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| const FLAC__real real_signal[], |
| #endif |
| FLAC__Subframe *subframe[2], |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2], |
| FLAC__int32 *residual[2], |
| unsigned *best_subframe, |
| unsigned *best_bits |
| ); |
| |
| static FLAC__bool add_subframe_( |
| FLAC__StreamEncoder *encoder, |
| const FLAC__FrameHeader *frame_header, |
| unsigned subframe_bps, |
| const FLAC__Subframe *subframe, |
| FLAC__BitBuffer *frame |
| ); |
| |
| static unsigned evaluate_constant_subframe_( |
| const FLAC__int32 signal, |
| unsigned subframe_bps, |
| FLAC__Subframe *subframe |
| ); |
| |
| static unsigned evaluate_fixed_subframe_( |
| FLAC__StreamEncoder *encoder, |
| const FLAC__int32 signal[], |
| FLAC__int32 residual[], |
| FLAC__uint32 abs_residual[], |
| FLAC__uint64 abs_residual_partition_sums[], |
| unsigned raw_bits_per_partition[], |
| unsigned blocksize, |
| unsigned subframe_bps, |
| unsigned order, |
| unsigned rice_parameter, |
| unsigned min_partition_order, |
| unsigned max_partition_order, |
| FLAC__bool precompute_partition_sums, |
| FLAC__bool do_escape_coding, |
| unsigned rice_parameter_search_dist, |
| FLAC__Subframe *subframe, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents |
| ); |
| |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| static unsigned evaluate_lpc_subframe_( |
| FLAC__StreamEncoder *encoder, |
| const FLAC__int32 signal[], |
| FLAC__int32 residual[], |
| FLAC__uint32 abs_residual[], |
| FLAC__uint64 abs_residual_partition_sums[], |
| unsigned raw_bits_per_partition[], |
| const FLAC__real lp_coeff[], |
| unsigned blocksize, |
| unsigned subframe_bps, |
| unsigned order, |
| unsigned qlp_coeff_precision, |
| unsigned rice_parameter, |
| unsigned min_partition_order, |
| unsigned max_partition_order, |
| FLAC__bool precompute_partition_sums, |
| FLAC__bool do_escape_coding, |
| unsigned rice_parameter_search_dist, |
| FLAC__Subframe *subframe, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents |
| ); |
| #endif |
| |
| static unsigned evaluate_verbatim_subframe_( |
| const FLAC__int32 signal[], |
| unsigned blocksize, |
| unsigned subframe_bps, |
| FLAC__Subframe *subframe |
| ); |
| |
| static unsigned find_best_partition_order_( |
| struct FLAC__StreamEncoderPrivate *private_, |
| const FLAC__int32 residual[], |
| FLAC__uint32 abs_residual[], |
| FLAC__uint64 abs_residual_partition_sums[], |
| unsigned raw_bits_per_partition[], |
| unsigned residual_samples, |
| unsigned predictor_order, |
| unsigned rice_parameter, |
| unsigned min_partition_order, |
| unsigned max_partition_order, |
| FLAC__bool precompute_partition_sums, |
| FLAC__bool do_escape_coding, |
| unsigned rice_parameter_search_dist, |
| FLAC__EntropyCodingMethod_PartitionedRice *best_partitioned_rice |
| ); |
| |
| static void precompute_partition_info_sums_( |
| const FLAC__uint32 abs_residual[], |
| FLAC__uint64 abs_residual_partition_sums[], |
| unsigned residual_samples, |
| unsigned predictor_order, |
| unsigned min_partition_order, |
| unsigned max_partition_order |
| ); |
| |
| static void precompute_partition_info_escapes_( |
| const FLAC__int32 residual[], |
| unsigned raw_bits_per_partition[], |
| unsigned residual_samples, |
| unsigned predictor_order, |
| unsigned min_partition_order, |
| unsigned max_partition_order |
| ); |
| |
| #ifdef DONT_ESTIMATE_RICE_BITS |
| static FLAC__bool set_partitioned_rice_( |
| const FLAC__uint32 abs_residual[], |
| const FLAC__int32 residual[], |
| const unsigned residual_samples, |
| const unsigned predictor_order, |
| const unsigned suggested_rice_parameter, |
| const unsigned rice_parameter_search_dist, |
| const unsigned partition_order, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, |
| unsigned *bits |
| ); |
| |
| static FLAC__bool set_partitioned_rice_with_precompute_( |
| const FLAC__int32 residual[], |
| const FLAC__uint64 abs_residual_partition_sums[], |
| const unsigned raw_bits_per_partition[], |
| const unsigned residual_samples, |
| const unsigned predictor_order, |
| const unsigned suggested_rice_parameter, |
| const unsigned rice_parameter_search_dist, |
| const unsigned partition_order, |
| const FLAC__bool search_for_escapes, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, |
| unsigned *bits |
| ); |
| #else |
| static FLAC__bool set_partitioned_rice_( |
| const FLAC__uint32 abs_residual[], |
| const unsigned residual_samples, |
| const unsigned predictor_order, |
| const unsigned suggested_rice_parameter, |
| const unsigned rice_parameter_search_dist, |
| const unsigned partition_order, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, |
| unsigned *bits |
| ); |
| |
| static FLAC__bool set_partitioned_rice_with_precompute_( |
| const FLAC__uint32 abs_residual[], |
| const FLAC__uint64 abs_residual_partition_sums[], |
| const unsigned raw_bits_per_partition[], |
| const unsigned residual_samples, |
| const unsigned predictor_order, |
| const unsigned suggested_rice_parameter, |
| const unsigned rice_parameter_search_dist, |
| const unsigned partition_order, |
| const FLAC__bool search_for_escapes, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, |
| unsigned *bits |
| ); |
| #endif |
| |
| static unsigned get_wasted_bits_(FLAC__int32 signal[], unsigned samples); |
| |
| /* verify-related routines: */ |
| static void append_to_verify_fifo_( |
| verify_input_fifo *fifo, |
| const FLAC__int32 * const input[], |
| unsigned input_offset, |
| unsigned channels, |
| unsigned wide_samples |
| ); |
| |
| static void append_to_verify_fifo_interleaved_( |
| verify_input_fifo *fifo, |
| const FLAC__int32 input[], |
| unsigned input_offset, |
| unsigned channels, |
| unsigned wide_samples |
| ); |
| |
| static FLAC__StreamDecoderReadStatus verify_read_callback_( |
| const FLAC__StreamDecoder *decoder, |
| FLAC__byte buffer[], |
| unsigned *bytes, |
| void *client_data |
| ); |
| |
| static FLAC__StreamDecoderWriteStatus verify_write_callback_( |
| const FLAC__StreamDecoder *decoder, |
| const FLAC__Frame *frame, |
| const FLAC__int32 * const buffer[], |
| void *client_data |
| ); |
| |
| static void verify_metadata_callback_( |
| const FLAC__StreamDecoder *decoder, |
| const FLAC__StreamMetadata *metadata, |
| void *client_data |
| ); |
| |
| static void verify_error_callback_( |
| const FLAC__StreamDecoder *decoder, |
| FLAC__StreamDecoderErrorStatus status, |
| void *client_data |
| ); |
| |
| |
| /*********************************************************************** |
| * |
| * Private class data |
| * |
| ***********************************************************************/ |
| |
| typedef struct FLAC__StreamEncoderPrivate { |
| unsigned input_capacity; /* current size (in samples) of the signal and residual buffers */ |
| FLAC__int32 *integer_signal[FLAC__MAX_CHANNELS]; /* the integer version of the input signal */ |
| FLAC__int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */ |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| FLAC__real *real_signal[FLAC__MAX_CHANNELS]; /* the floating-point version of the input signal */ |
| FLAC__real *real_signal_mid_side[2]; /* the floating-point version of the mid-side input signal (stereo only) */ |
| #endif |
| unsigned subframe_bps[FLAC__MAX_CHANNELS]; /* the effective bits per sample of the input signal (stream bps - wasted bits) */ |
| unsigned subframe_bps_mid_side[2]; /* the effective bits per sample of the mid-side input signal (stream bps - wasted bits + 0/1) */ |
| FLAC__int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */ |
| FLAC__int32 *residual_workspace_mid_side[2][2]; |
| FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2]; |
| FLAC__Subframe subframe_workspace_mid_side[2][2]; |
| FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2]; |
| FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2]; |
| FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace[FLAC__MAX_CHANNELS][2]; |
| FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace_mid_side[FLAC__MAX_CHANNELS][2]; |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr[FLAC__MAX_CHANNELS][2]; |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr_mid_side[FLAC__MAX_CHANNELS][2]; |
| unsigned best_subframe[FLAC__MAX_CHANNELS]; /* index into the above workspaces */ |
| unsigned best_subframe_mid_side[2]; |
| unsigned best_subframe_bits[FLAC__MAX_CHANNELS]; /* size in bits of the best subframe for each channel */ |
| unsigned best_subframe_bits_mid_side[2]; |
| FLAC__uint32 *abs_residual; /* workspace where abs(candidate residual) is stored */ |
| FLAC__uint64 *abs_residual_partition_sums; /* workspace where the sum of abs(candidate residual) for each partition is stored */ |
| unsigned *raw_bits_per_partition; /* workspace where the sum of silog2(candidate residual) for each partition is stored */ |
| FLAC__BitBuffer *frame; /* the current frame being worked on */ |
| unsigned loose_mid_side_stereo_frames; /* rounded number of frames the encoder will use before trying both independent and mid/side frames again */ |
| unsigned loose_mid_side_stereo_frame_count; /* number of frames using the current channel assignment */ |
| FLAC__ChannelAssignment last_channel_assignment; |
| FLAC__StreamMetadata metadata; |
| unsigned current_sample_number; |
| unsigned current_frame_number; |
| struct FLAC__MD5Context md5context; |
| FLAC__CPUInfo cpuinfo; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| unsigned (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); |
| #else |
| unsigned (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); |
| #endif |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| void (*local_lpc_compute_autocorrelation)(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); |
| void (*local_lpc_compute_residual_from_qlp_coefficients)(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); |
| void (*local_lpc_compute_residual_from_qlp_coefficients_64bit)(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); |
| void (*local_lpc_compute_residual_from_qlp_coefficients_16bit)(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); |
| #endif |
| FLAC__bool use_wide_by_block; /* use slow 64-bit versions of some functions because of the block size */ |
| FLAC__bool use_wide_by_partition; /* use slow 64-bit versions of some functions because of the min partition order and blocksize */ |
| FLAC__bool use_wide_by_order; /* use slow 64-bit versions of some functions because of the lpc order */ |
| FLAC__bool precompute_partition_sums; /* our initial guess as to whether precomputing the partitions sums will be a speed improvement */ |
| FLAC__bool disable_constant_subframes; |
| FLAC__bool disable_fixed_subframes; |
| FLAC__bool disable_verbatim_subframes; |
| FLAC__StreamEncoderWriteCallback write_callback; |
| FLAC__StreamEncoderMetadataCallback metadata_callback; |
| void *client_data; |
| /* unaligned (original) pointers to allocated data */ |
| FLAC__int32 *integer_signal_unaligned[FLAC__MAX_CHANNELS]; |
| FLAC__int32 *integer_signal_mid_side_unaligned[2]; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| FLAC__real *real_signal_unaligned[FLAC__MAX_CHANNELS]; |
| FLAC__real *real_signal_mid_side_unaligned[2]; |
| #endif |
| FLAC__int32 *residual_workspace_unaligned[FLAC__MAX_CHANNELS][2]; |
| FLAC__int32 *residual_workspace_mid_side_unaligned[2][2]; |
| FLAC__uint32 *abs_residual_unaligned; |
| FLAC__uint64 *abs_residual_partition_sums_unaligned; |
| unsigned *raw_bits_per_partition_unaligned; |
| /* |
| * These fields have been moved here from private function local |
| * declarations merely to save stack space during encoding. |
| */ |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| FLAC__real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER]; /* from process_subframe_() */ |
| #endif |
| FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_extra[2]; /* from find_best_partition_order_() */ |
| /* |
| * The data for the verify section |
| */ |
| struct { |
| FLAC__StreamDecoder *decoder; |
| EncoderStateHint state_hint; |
| FLAC__bool needs_magic_hack; |
| verify_input_fifo input_fifo; |
| verify_output output; |
| struct { |
| FLAC__uint64 absolute_sample; |
| unsigned frame_number; |
| unsigned channel; |
| unsigned sample; |
| FLAC__int32 expected; |
| FLAC__int32 got; |
| } error_stats; |
| } verify; |
| FLAC__bool is_being_deleted; /* if true, call to ..._finish() from ..._delete() will not call the callbacks */ |
| } FLAC__StreamEncoderPrivate; |
| |
| /*********************************************************************** |
| * |
| * Public static class data |
| * |
| ***********************************************************************/ |
| |
| FLAC_API const char * const FLAC__StreamEncoderStateString[] = { |
| "FLAC__STREAM_ENCODER_OK", |
| "FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR", |
| "FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA", |
| "FLAC__STREAM_ENCODER_INVALID_CALLBACK", |
| "FLAC__STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS", |
| "FLAC__STREAM_ENCODER_INVALID_BITS_PER_SAMPLE", |
| "FLAC__STREAM_ENCODER_INVALID_SAMPLE_RATE", |
| "FLAC__STREAM_ENCODER_INVALID_BLOCK_SIZE", |
| "FLAC__STREAM_ENCODER_INVALID_MAX_LPC_ORDER", |
| "FLAC__STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION", |
| "FLAC__STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH", |
| "FLAC__STREAM_ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH", |
| "FLAC__STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE", |
| "FLAC__STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER", |
| "FLAC__STREAM_ENCODER_NOT_STREAMABLE", |
| "FLAC__STREAM_ENCODER_FRAMING_ERROR", |
| "FLAC__STREAM_ENCODER_INVALID_METADATA", |
| "FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING", |
| "FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING", |
| "FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR", |
| "FLAC__STREAM_ENCODER_ALREADY_INITIALIZED", |
| "FLAC__STREAM_ENCODER_UNINITIALIZED" |
| }; |
| |
| FLAC_API const char * const FLAC__StreamEncoderWriteStatusString[] = { |
| "FLAC__STREAM_ENCODER_WRITE_STATUS_OK", |
| "FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR" |
| }; |
| |
| /*********************************************************************** |
| * |
| * Class constructor/destructor |
| * |
| */ |
| FLAC_API FLAC__StreamEncoder *FLAC__stream_encoder_new() |
| { |
| FLAC__StreamEncoder *encoder; |
| unsigned i; |
| |
| FLAC__ASSERT(sizeof(int) >= 4); /* we want to die right away if this is not true */ |
| |
| encoder = (FLAC__StreamEncoder*)calloc(1, sizeof(FLAC__StreamEncoder)); |
| if(encoder == 0) { |
| return 0; |
| } |
| |
| encoder->protected_ = (FLAC__StreamEncoderProtected*)calloc(1, sizeof(FLAC__StreamEncoderProtected)); |
| if(encoder->protected_ == 0) { |
| free(encoder); |
| return 0; |
| } |
| |
| encoder->private_ = (FLAC__StreamEncoderPrivate*)calloc(1, sizeof(FLAC__StreamEncoderPrivate)); |
| if(encoder->private_ == 0) { |
| free(encoder->protected_); |
| free(encoder); |
| return 0; |
| } |
| |
| encoder->private_->frame = FLAC__bitbuffer_new(); |
| if(encoder->private_->frame == 0) { |
| free(encoder->private_); |
| free(encoder->protected_); |
| free(encoder); |
| return 0; |
| } |
| |
| set_defaults_(encoder); |
| |
| encoder->private_->is_being_deleted = false; |
| |
| for(i = 0; i < FLAC__MAX_CHANNELS; i++) { |
| encoder->private_->subframe_workspace_ptr[i][0] = &encoder->private_->subframe_workspace[i][0]; |
| encoder->private_->subframe_workspace_ptr[i][1] = &encoder->private_->subframe_workspace[i][1]; |
| } |
| for(i = 0; i < 2; i++) { |
| encoder->private_->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->subframe_workspace_mid_side[i][0]; |
| encoder->private_->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->subframe_workspace_mid_side[i][1]; |
| } |
| for(i = 0; i < FLAC__MAX_CHANNELS; i++) { |
| encoder->private_->partitioned_rice_contents_workspace_ptr[i][0] = &encoder->private_->partitioned_rice_contents_workspace[i][0]; |
| encoder->private_->partitioned_rice_contents_workspace_ptr[i][1] = &encoder->private_->partitioned_rice_contents_workspace[i][1]; |
| } |
| for(i = 0; i < 2; i++) { |
| encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][0] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]; |
| encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][1] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]; |
| } |
| |
| for(i = 0; i < FLAC__MAX_CHANNELS; i++) { |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][0]); |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][1]); |
| } |
| for(i = 0; i < 2; i++) { |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]); |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]); |
| } |
| for(i = 0; i < 2; i++) |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_extra[i]); |
| |
| encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; |
| |
| return encoder; |
| } |
| |
| FLAC_API void FLAC__stream_encoder_delete(FLAC__StreamEncoder *encoder) |
| { |
| unsigned i; |
| |
| FLAC__ASSERT(0 != encoder); |
| FLAC__ASSERT(0 != encoder->protected_); |
| FLAC__ASSERT(0 != encoder->private_); |
| FLAC__ASSERT(0 != encoder->private_->frame); |
| |
| encoder->private_->is_being_deleted = true; |
| |
| FLAC__stream_encoder_finish(encoder); |
| |
| if(0 != encoder->private_->verify.decoder) |
| FLAC__stream_decoder_delete(encoder->private_->verify.decoder); |
| |
| for(i = 0; i < FLAC__MAX_CHANNELS; i++) { |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][0]); |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][1]); |
| } |
| for(i = 0; i < 2; i++) { |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]); |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]); |
| } |
| for(i = 0; i < 2; i++) |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_extra[i]); |
| |
| FLAC__bitbuffer_delete(encoder->private_->frame); |
| free(encoder->private_); |
| free(encoder->protected_); |
| free(encoder); |
| } |
| |
| /*********************************************************************** |
| * |
| * Public class methods |
| * |
| ***********************************************************************/ |
| |
| FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_init(FLAC__StreamEncoder *encoder) |
| { |
| unsigned i; |
| FLAC__bool metadata_has_seektable, metadata_has_vorbis_comment; |
| |
| FLAC__ASSERT(0 != encoder); |
| |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_ALREADY_INITIALIZED; |
| |
| encoder->protected_->state = FLAC__STREAM_ENCODER_OK; |
| |
| if(0 == encoder->private_->write_callback || 0 == encoder->private_->metadata_callback) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_CALLBACK; |
| |
| if(encoder->protected_->channels == 0 || encoder->protected_->channels > FLAC__MAX_CHANNELS) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS; |
| |
| if(encoder->protected_->do_mid_side_stereo && encoder->protected_->channels != 2) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH; |
| |
| if(encoder->protected_->loose_mid_side_stereo && !encoder->protected_->do_mid_side_stereo) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE; |
| |
| if(encoder->protected_->bits_per_sample >= 32) |
| encoder->protected_->do_mid_side_stereo = false; /* since we do 32-bit math, the side channel would have 33 bps and overflow */ |
| |
| if(encoder->protected_->bits_per_sample < FLAC__MIN_BITS_PER_SAMPLE || encoder->protected_->bits_per_sample > FLAC__REFERENCE_CODEC_MAX_BITS_PER_SAMPLE) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_BITS_PER_SAMPLE; |
| |
| if(!FLAC__format_sample_rate_is_valid(encoder->protected_->sample_rate)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_SAMPLE_RATE; |
| |
| if(encoder->protected_->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->protected_->blocksize > FLAC__MAX_BLOCK_SIZE) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_BLOCK_SIZE; |
| |
| if(encoder->protected_->max_lpc_order > FLAC__MAX_LPC_ORDER) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_MAX_LPC_ORDER; |
| |
| if(encoder->protected_->blocksize < encoder->protected_->max_lpc_order) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER; |
| |
| if(encoder->protected_->qlp_coeff_precision == 0) { |
| if(encoder->protected_->bits_per_sample < 16) { |
| /* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */ |
| /* @@@ until then we'll make a guess */ |
| encoder->protected_->qlp_coeff_precision = max(FLAC__MIN_QLP_COEFF_PRECISION, 2 + encoder->protected_->bits_per_sample / 2); |
| } |
| else if(encoder->protected_->bits_per_sample == 16) { |
| if(encoder->protected_->blocksize <= 192) |
| encoder->protected_->qlp_coeff_precision = 7; |
| else if(encoder->protected_->blocksize <= 384) |
| encoder->protected_->qlp_coeff_precision = 8; |
| else if(encoder->protected_->blocksize <= 576) |
| encoder->protected_->qlp_coeff_precision = 9; |
| else if(encoder->protected_->blocksize <= 1152) |
| encoder->protected_->qlp_coeff_precision = 10; |
| else if(encoder->protected_->blocksize <= 2304) |
| encoder->protected_->qlp_coeff_precision = 11; |
| else if(encoder->protected_->blocksize <= 4608) |
| encoder->protected_->qlp_coeff_precision = 12; |
| else |
| encoder->protected_->qlp_coeff_precision = 13; |
| } |
| else { |
| if(encoder->protected_->blocksize <= 384) |
| encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-2; |
| else if(encoder->protected_->blocksize <= 1152) |
| encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-1; |
| else |
| encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION; |
| } |
| FLAC__ASSERT(encoder->protected_->qlp_coeff_precision <= FLAC__MAX_QLP_COEFF_PRECISION); |
| } |
| else if(encoder->protected_->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->protected_->qlp_coeff_precision > FLAC__MAX_QLP_COEFF_PRECISION) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION; |
| |
| if(encoder->protected_->streamable_subset) { |
| if( |
| encoder->protected_->blocksize != 192 && |
| encoder->protected_->blocksize != 576 && |
| encoder->protected_->blocksize != 1152 && |
| encoder->protected_->blocksize != 2304 && |
| encoder->protected_->blocksize != 4608 && |
| encoder->protected_->blocksize != 256 && |
| encoder->protected_->blocksize != 512 && |
| encoder->protected_->blocksize != 1024 && |
| encoder->protected_->blocksize != 2048 && |
| encoder->protected_->blocksize != 4096 && |
| encoder->protected_->blocksize != 8192 && |
| encoder->protected_->blocksize != 16384 |
| ) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; |
| if( |
| encoder->protected_->sample_rate != 8000 && |
| encoder->protected_->sample_rate != 16000 && |
| encoder->protected_->sample_rate != 22050 && |
| encoder->protected_->sample_rate != 24000 && |
| encoder->protected_->sample_rate != 32000 && |
| encoder->protected_->sample_rate != 44100 && |
| encoder->protected_->sample_rate != 48000 && |
| encoder->protected_->sample_rate != 96000 |
| ) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; |
| if( |
| encoder->protected_->bits_per_sample != 8 && |
| encoder->protected_->bits_per_sample != 12 && |
| encoder->protected_->bits_per_sample != 16 && |
| encoder->protected_->bits_per_sample != 20 && |
| encoder->protected_->bits_per_sample != 24 |
| ) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; |
| if(encoder->protected_->max_residual_partition_order > FLAC__SUBSET_MAX_RICE_PARTITION_ORDER) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; |
| } |
| |
| if(encoder->protected_->max_residual_partition_order >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN)) |
| encoder->protected_->max_residual_partition_order = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1; |
| if(encoder->protected_->min_residual_partition_order >= encoder->protected_->max_residual_partition_order) |
| encoder->protected_->min_residual_partition_order = encoder->protected_->max_residual_partition_order; |
| |
| /* validate metadata */ |
| if(0 == encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; |
| metadata_has_seektable = false; |
| metadata_has_vorbis_comment = false; |
| for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) { |
| if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_STREAMINFO) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; |
| else if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_SEEKTABLE) { |
| if(metadata_has_seektable) /* only one is allowed */ |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; |
| metadata_has_seektable = true; |
| if(!FLAC__format_seektable_is_legal(&encoder->protected_->metadata[i]->data.seek_table)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; |
| } |
| else if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) { |
| if(metadata_has_vorbis_comment) /* only one is allowed */ |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; |
| metadata_has_vorbis_comment = true; |
| } |
| else if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_CUESHEET) { |
| if(!FLAC__format_cuesheet_is_legal(&encoder->protected_->metadata[i]->data.cue_sheet, encoder->protected_->metadata[i]->data.cue_sheet.is_cd, /*violation=*/0)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA; |
| } |
| } |
| |
| encoder->private_->input_capacity = 0; |
| for(i = 0; i < encoder->protected_->channels; i++) { |
| encoder->private_->integer_signal_unaligned[i] = encoder->private_->integer_signal[i] = 0; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal_unaligned[i] = encoder->private_->real_signal[i] = 0; |
| #endif |
| } |
| for(i = 0; i < 2; i++) { |
| encoder->private_->integer_signal_mid_side_unaligned[i] = encoder->private_->integer_signal_mid_side[i] = 0; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal_mid_side_unaligned[i] = encoder->private_->real_signal_mid_side[i] = 0; |
| #endif |
| } |
| for(i = 0; i < encoder->protected_->channels; i++) { |
| encoder->private_->residual_workspace_unaligned[i][0] = encoder->private_->residual_workspace[i][0] = 0; |
| encoder->private_->residual_workspace_unaligned[i][1] = encoder->private_->residual_workspace[i][1] = 0; |
| encoder->private_->best_subframe[i] = 0; |
| } |
| for(i = 0; i < 2; i++) { |
| encoder->private_->residual_workspace_mid_side_unaligned[i][0] = encoder->private_->residual_workspace_mid_side[i][0] = 0; |
| encoder->private_->residual_workspace_mid_side_unaligned[i][1] = encoder->private_->residual_workspace_mid_side[i][1] = 0; |
| encoder->private_->best_subframe_mid_side[i] = 0; |
| } |
| encoder->private_->abs_residual_unaligned = encoder->private_->abs_residual = 0; |
| encoder->private_->abs_residual_partition_sums_unaligned = encoder->private_->abs_residual_partition_sums = 0; |
| encoder->private_->raw_bits_per_partition_unaligned = encoder->private_->raw_bits_per_partition = 0; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->loose_mid_side_stereo_frames = (unsigned)((FLAC__double)encoder->protected_->sample_rate * 0.4 / (FLAC__double)encoder->protected_->blocksize + 0.5); |
| #else |
| /* 26214 is the approximate fixed-point equivalent to 0.4 (0.4 * 2^16) */ |
| /* sample rate can be up to 655350 Hz, and thus use 20 bits, so we do the multiply÷ by hand */ |
| FLAC__ASSERT(FLAC__MAX_SAMPLE_RATE <= 655350); |
| FLAC__ASSERT(FLAC__MAX_BLOCK_SIZE <= 65535); |
| FLAC__ASSERT(encoder->protected_->sample_rate <= 655350); |
| FLAC__ASSERT(encoder->protected_->blocksize <= 65535); |
| encoder->private_->loose_mid_side_stereo_frames = (unsigned)FLAC__fixedpoint_trunc((((FLAC__uint64)(encoder->protected_->sample_rate) * (FLAC__uint64)(26214)) << 16) / (encoder->protected_->blocksize<<16) + FLAC__FP_ONE_HALF); |
| #endif |
| if(encoder->private_->loose_mid_side_stereo_frames == 0) |
| encoder->private_->loose_mid_side_stereo_frames = 1; |
| encoder->private_->loose_mid_side_stereo_frame_count = 0; |
| encoder->private_->current_sample_number = 0; |
| encoder->private_->current_frame_number = 0; |
| |
| encoder->private_->use_wide_by_block = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(encoder->protected_->blocksize)+1 > 30); |
| encoder->private_->use_wide_by_order = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(max(encoder->protected_->max_lpc_order, FLAC__MAX_FIXED_ORDER))+1 > 30); /*@@@ need to use this? */ |
| encoder->private_->use_wide_by_partition = (false); /*@@@ need to set this */ |
| |
| /* |
| * get the CPU info and set the function pointers |
| */ |
| FLAC__cpu_info(&encoder->private_->cpuinfo); |
| /* first default to the non-asm routines */ |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation; |
| #endif |
| encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients; |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide; |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients; |
| #endif |
| /* now override with asm where appropriate */ |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| # ifndef FLAC__NO_ASM |
| if(encoder->private_->cpuinfo.use_asm) { |
| # ifdef FLAC__CPU_IA32 |
| FLAC__ASSERT(encoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_IA32); |
| # ifdef FLAC__HAS_NASM |
| # ifdef FLAC__SSE_OS |
| if(encoder->private_->cpuinfo.data.ia32.sse) { |
| if(encoder->protected_->max_lpc_order < 4) |
| encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_4; |
| else if(encoder->protected_->max_lpc_order < 8) |
| encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_8; |
| else if(encoder->protected_->max_lpc_order < 12) |
| encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_12; |
| else |
| encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32; |
| } |
| else |
| # endif /* FLAC__SSE_OS */ |
| if(encoder->private_->cpuinfo.data.ia32._3dnow) |
| encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_3dnow; |
| else |
| encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32; |
| if(encoder->private_->cpuinfo.data.ia32.mmx) { |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx; |
| } |
| else { |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; |
| } |
| if(encoder->private_->cpuinfo.data.ia32.mmx && encoder->private_->cpuinfo.data.ia32.cmov) |
| encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov; |
| # endif /* FLAC__HAS_NASM */ |
| # endif /* FLAC__CPU_IA32 */ |
| } |
| # endif /* !FLAC__NO_ASM */ |
| #endif /* !FLAC__INTEGER_ONLY_LIBRARY */ |
| /* finally override based on wide-ness if necessary */ |
| if(encoder->private_->use_wide_by_block) { |
| encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_wide; |
| } |
| |
| /* we require precompute_partition_sums if do_escape_coding because of their intertwined nature */ |
| encoder->private_->precompute_partition_sums = (encoder->protected_->max_residual_partition_order > encoder->protected_->min_residual_partition_order) || encoder->protected_->do_escape_coding; |
| |
| if(!resize_buffers_(encoder, encoder->protected_->blocksize)) { |
| /* the above function sets the state for us in case of an error */ |
| return encoder->protected_->state; |
| } |
| |
| if(!FLAC__bitbuffer_init(encoder->private_->frame)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; |
| |
| /* |
| * Set up the verify stuff if necessary |
| */ |
| if(encoder->protected_->verify) { |
| /* |
| * First, set up the fifo which will hold the |
| * original signal to compare against |
| */ |
| encoder->private_->verify.input_fifo.size = encoder->protected_->blocksize; |
| for(i = 0; i < encoder->protected_->channels; i++) { |
| if(0 == (encoder->private_->verify.input_fifo.data[i] = (FLAC__int32*)malloc(sizeof(FLAC__int32) * encoder->private_->verify.input_fifo.size))) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; |
| } |
| encoder->private_->verify.input_fifo.tail = 0; |
| |
| /* |
| * Now set up a stream decoder for verification |
| */ |
| encoder->private_->verify.decoder = FLAC__stream_decoder_new(); |
| if(0 == encoder->private_->verify.decoder) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; |
| |
| FLAC__stream_decoder_set_read_callback(encoder->private_->verify.decoder, verify_read_callback_); |
| FLAC__stream_decoder_set_write_callback(encoder->private_->verify.decoder, verify_write_callback_); |
| FLAC__stream_decoder_set_metadata_callback(encoder->private_->verify.decoder, verify_metadata_callback_); |
| FLAC__stream_decoder_set_error_callback(encoder->private_->verify.decoder, verify_error_callback_); |
| FLAC__stream_decoder_set_client_data(encoder->private_->verify.decoder, encoder); |
| if(FLAC__stream_decoder_init(encoder->private_->verify.decoder) != FLAC__STREAM_DECODER_SEARCH_FOR_METADATA) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; |
| } |
| encoder->private_->verify.error_stats.absolute_sample = 0; |
| encoder->private_->verify.error_stats.frame_number = 0; |
| encoder->private_->verify.error_stats.channel = 0; |
| encoder->private_->verify.error_stats.sample = 0; |
| encoder->private_->verify.error_stats.expected = 0; |
| encoder->private_->verify.error_stats.got = 0; |
| |
| /* |
| * write the stream header |
| */ |
| if(encoder->protected_->verify) |
| encoder->private_->verify.state_hint = ENCODER_IN_MAGIC; |
| if(!FLAC__bitbuffer_write_raw_uint32(encoder->private_->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; |
| if(!write_bitbuffer_(encoder, 0)) { |
| /* the above function sets the state for us in case of an error */ |
| return encoder->protected_->state; |
| } |
| |
| /* |
| * write the STREAMINFO metadata block |
| */ |
| if(encoder->protected_->verify) |
| encoder->private_->verify.state_hint = ENCODER_IN_METADATA; |
| encoder->private_->metadata.type = FLAC__METADATA_TYPE_STREAMINFO; |
| encoder->private_->metadata.is_last = false; /* we will have at a minimum a VORBIS_COMMENT afterwards */ |
| encoder->private_->metadata.length = FLAC__STREAM_METADATA_STREAMINFO_LENGTH; |
| encoder->private_->metadata.data.stream_info.min_blocksize = encoder->protected_->blocksize; /* this encoder uses the same blocksize for the whole stream */ |
| encoder->private_->metadata.data.stream_info.max_blocksize = encoder->protected_->blocksize; |
| encoder->private_->metadata.data.stream_info.min_framesize = 0; /* we don't know this yet; have to fill it in later */ |
| encoder->private_->metadata.data.stream_info.max_framesize = 0; /* we don't know this yet; have to fill it in later */ |
| encoder->private_->metadata.data.stream_info.sample_rate = encoder->protected_->sample_rate; |
| encoder->private_->metadata.data.stream_info.channels = encoder->protected_->channels; |
| encoder->private_->metadata.data.stream_info.bits_per_sample = encoder->protected_->bits_per_sample; |
| encoder->private_->metadata.data.stream_info.total_samples = encoder->protected_->total_samples_estimate; /* we will replace this later with the real total */ |
| memset(encoder->private_->metadata.data.stream_info.md5sum, 0, 16); /* we don't know this yet; have to fill it in later */ |
| FLAC__MD5Init(&encoder->private_->md5context); |
| if(!FLAC__bitbuffer_clear(encoder->private_->frame)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; |
| if(!FLAC__add_metadata_block(&encoder->private_->metadata, encoder->private_->frame)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; |
| if(!write_bitbuffer_(encoder, 0)) { |
| /* the above function sets the state for us in case of an error */ |
| return encoder->protected_->state; |
| } |
| |
| /* |
| * Now that the STREAMINFO block is written, we can init this to an |
| * absurdly-high value... |
| */ |
| encoder->private_->metadata.data.stream_info.min_framesize = (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1; |
| /* ... and clear this to 0 */ |
| encoder->private_->metadata.data.stream_info.total_samples = 0; |
| |
| /* |
| * Check to see if the supplied metadata contains a VORBIS_COMMENT; |
| * if not, we will write an empty one (FLAC__add_metadata_block() |
| * automatically supplies the vendor string). |
| * |
| * WATCHOUT: libOggFLAC depends on us to write this block after the |
| * STREAMINFO since that's what the mapping requires. (In the case |
| * that metadata_has_vorbis_comment is true it will have already |
| * insured that the metadata list is properly ordered.) |
| */ |
| if(!metadata_has_vorbis_comment) { |
| FLAC__StreamMetadata vorbis_comment; |
| vorbis_comment.type = FLAC__METADATA_TYPE_VORBIS_COMMENT; |
| vorbis_comment.is_last = (encoder->protected_->num_metadata_blocks == 0); |
| vorbis_comment.length = 4 + 4; /* MAGIC NUMBER */ |
| vorbis_comment.data.vorbis_comment.vendor_string.length = 0; |
| vorbis_comment.data.vorbis_comment.vendor_string.entry = 0; |
| vorbis_comment.data.vorbis_comment.num_comments = 0; |
| vorbis_comment.data.vorbis_comment.comments = 0; |
| if(!FLAC__bitbuffer_clear(encoder->private_->frame)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; |
| if(!FLAC__add_metadata_block(&vorbis_comment, encoder->private_->frame)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; |
| if(!write_bitbuffer_(encoder, 0)) { |
| /* the above function sets the state for us in case of an error */ |
| return encoder->protected_->state; |
| } |
| } |
| |
| /* |
| * write the user's metadata blocks |
| */ |
| for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) { |
| encoder->protected_->metadata[i]->is_last = (i == encoder->protected_->num_metadata_blocks - 1); |
| if(!FLAC__bitbuffer_clear(encoder->private_->frame)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; |
| if(!FLAC__add_metadata_block(encoder->protected_->metadata[i], encoder->private_->frame)) |
| return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; |
| if(!write_bitbuffer_(encoder, 0)) { |
| /* the above function sets the state for us in case of an error */ |
| return encoder->protected_->state; |
| } |
| } |
| |
| if(encoder->protected_->verify) |
| encoder->private_->verify.state_hint = ENCODER_IN_AUDIO; |
| |
| return encoder->protected_->state; |
| } |
| |
| FLAC_API void FLAC__stream_encoder_finish(FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| |
| if(encoder->protected_->state == FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return; |
| |
| if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) { |
| if(encoder->private_->current_sample_number != 0) { |
| encoder->protected_->blocksize = encoder->private_->current_sample_number; |
| process_frame_(encoder, true); /* true => is last frame */ |
| } |
| } |
| |
| FLAC__MD5Final(encoder->private_->metadata.data.stream_info.md5sum, &encoder->private_->md5context); |
| |
| if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) { |
| encoder->private_->metadata_callback(encoder, &encoder->private_->metadata, encoder->private_->client_data); |
| } |
| |
| if(encoder->protected_->verify && 0 != encoder->private_->verify.decoder) |
| FLAC__stream_decoder_finish(encoder->private_->verify.decoder); |
| |
| free_(encoder); |
| set_defaults_(encoder); |
| |
| encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_verify(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| #ifndef FLAC__MANDATORY_VERIFY_WHILE_ENCODING |
| encoder->protected_->verify = value; |
| #endif |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_streamable_subset(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->streamable_subset = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_do_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->do_mid_side_stereo = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_loose_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->loose_mid_side_stereo = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_channels(FLAC__StreamEncoder *encoder, unsigned value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->channels = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_bits_per_sample(FLAC__StreamEncoder *encoder, unsigned value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->bits_per_sample = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_sample_rate(FLAC__StreamEncoder *encoder, unsigned value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->sample_rate = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_blocksize(FLAC__StreamEncoder *encoder, unsigned value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->blocksize = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_max_lpc_order(FLAC__StreamEncoder *encoder, unsigned value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->max_lpc_order = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_qlp_coeff_precision(FLAC__StreamEncoder *encoder, unsigned value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->qlp_coeff_precision = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_do_qlp_coeff_prec_search(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->do_qlp_coeff_prec_search = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_do_escape_coding(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| #if 0 |
| /*@@@ deprecated: */ |
| encoder->protected_->do_escape_coding = value; |
| #else |
| (void)value; |
| #endif |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_do_exhaustive_model_search(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->do_exhaustive_model_search = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_min_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->min_residual_partition_order = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_max_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->max_residual_partition_order = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_rice_parameter_search_dist(FLAC__StreamEncoder *encoder, unsigned value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| #if 0 |
| /*@@@ deprecated: */ |
| encoder->protected_->rice_parameter_search_dist = value; |
| #else |
| (void)value; |
| #endif |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_total_samples_estimate(FLAC__StreamEncoder *encoder, FLAC__uint64 value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->total_samples_estimate = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata(FLAC__StreamEncoder *encoder, FLAC__StreamMetadata **metadata, unsigned num_blocks) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->protected_->metadata = metadata; |
| encoder->protected_->num_metadata_blocks = num_blocks; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_write_callback(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderWriteCallback value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| FLAC__ASSERT(0 != value); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->private_->write_callback = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata_callback(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderMetadataCallback value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| FLAC__ASSERT(0 != value); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->private_->metadata_callback = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_set_client_data(FLAC__StreamEncoder *encoder, void *value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->private_->client_data = value; |
| return true; |
| } |
| |
| /* |
| * These three functions are not static, but not publically exposed in |
| * include/FLAC/ either. They are used by the test suite. |
| */ |
| FLAC_API FLAC__bool FLAC__stream_encoder_disable_constant_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->private_->disable_constant_subframes = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_disable_fixed_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->private_->disable_fixed_subframes = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_disable_verbatim_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) |
| return false; |
| encoder->private_->disable_verbatim_subframes = value; |
| return true; |
| } |
| |
| FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_get_state(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->state; |
| } |
| |
| FLAC_API FLAC__StreamDecoderState FLAC__stream_encoder_get_verify_decoder_state(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(encoder->protected_->verify) |
| return FLAC__stream_decoder_get_state(encoder->private_->verify.decoder); |
| else |
| return FLAC__STREAM_DECODER_UNINITIALIZED; |
| } |
| |
| FLAC_API const char *FLAC__stream_encoder_get_resolved_state_string(const FLAC__StreamEncoder *encoder) |
| { |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR) |
| return FLAC__StreamEncoderStateString[encoder->protected_->state]; |
| else |
| return FLAC__stream_decoder_get_resolved_state_string(encoder->private_->verify.decoder); |
| } |
| |
| FLAC_API void FLAC__stream_encoder_get_verify_decoder_error_stats(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_sample, unsigned *frame_number, unsigned *channel, unsigned *sample, FLAC__int32 *expected, FLAC__int32 *got) |
| { |
| FLAC__ASSERT(0 != encoder); |
| if(0 != absolute_sample) |
| *absolute_sample = encoder->private_->verify.error_stats.absolute_sample; |
| if(0 != frame_number) |
| *frame_number = encoder->private_->verify.error_stats.frame_number; |
| if(0 != channel) |
| *channel = encoder->private_->verify.error_stats.channel; |
| if(0 != sample) |
| *sample = encoder->private_->verify.error_stats.sample; |
| if(0 != expected) |
| *expected = encoder->private_->verify.error_stats.expected; |
| if(0 != got) |
| *got = encoder->private_->verify.error_stats.got; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_get_verify(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->verify; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_get_streamable_subset(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->streamable_subset; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_get_do_mid_side_stereo(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->do_mid_side_stereo; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_get_loose_mid_side_stereo(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->loose_mid_side_stereo; |
| } |
| |
| FLAC_API unsigned FLAC__stream_encoder_get_channels(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->channels; |
| } |
| |
| FLAC_API unsigned FLAC__stream_encoder_get_bits_per_sample(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->bits_per_sample; |
| } |
| |
| FLAC_API unsigned FLAC__stream_encoder_get_sample_rate(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->sample_rate; |
| } |
| |
| FLAC_API unsigned FLAC__stream_encoder_get_blocksize(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->blocksize; |
| } |
| |
| FLAC_API unsigned FLAC__stream_encoder_get_max_lpc_order(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->max_lpc_order; |
| } |
| |
| FLAC_API unsigned FLAC__stream_encoder_get_qlp_coeff_precision(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->qlp_coeff_precision; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_get_do_qlp_coeff_prec_search(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->do_qlp_coeff_prec_search; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_get_do_escape_coding(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->do_escape_coding; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_get_do_exhaustive_model_search(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->do_exhaustive_model_search; |
| } |
| |
| FLAC_API unsigned FLAC__stream_encoder_get_min_residual_partition_order(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->min_residual_partition_order; |
| } |
| |
| FLAC_API unsigned FLAC__stream_encoder_get_max_residual_partition_order(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->max_residual_partition_order; |
| } |
| |
| FLAC_API unsigned FLAC__stream_encoder_get_rice_parameter_search_dist(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->rice_parameter_search_dist; |
| } |
| |
| FLAC_API FLAC__uint64 FLAC__stream_encoder_get_total_samples_estimate(const FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| return encoder->protected_->total_samples_estimate; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_process(FLAC__StreamEncoder *encoder, const FLAC__int32 * const buffer[], unsigned samples) |
| { |
| unsigned i, j, channel; |
| FLAC__int32 x, mid, side; |
| const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize; |
| |
| FLAC__ASSERT(0 != encoder); |
| FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); |
| |
| j = 0; |
| /* |
| * we have several flavors of the same basic loop, optimized for |
| * different conditions: |
| */ |
| if(encoder->protected_->max_lpc_order > 0) { |
| if(encoder->protected_->do_mid_side_stereo && channels == 2) { |
| /* |
| * stereo coding: unroll channel loop |
| * with LPC: calculate floating point version of signal |
| */ |
| do { |
| if(encoder->protected_->verify) |
| append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); |
| |
| for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { |
| x = mid = side = buffer[0][j]; |
| encoder->private_->integer_signal[0][i] = x; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal[0][i] = (FLAC__real)x; |
| #endif |
| x = buffer[1][j]; |
| encoder->private_->integer_signal[1][i] = x; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal[1][i] = (FLAC__real)x; |
| #endif |
| mid += x; |
| side -= x; |
| mid >>= 1; /* NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' ! */ |
| encoder->private_->integer_signal_mid_side[1][i] = side; |
| encoder->private_->integer_signal_mid_side[0][i] = mid; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal_mid_side[1][i] = (FLAC__real)side; |
| encoder->private_->real_signal_mid_side[0][i] = (FLAC__real)mid; |
| #endif |
| encoder->private_->current_sample_number++; |
| } |
| if(i == blocksize) { |
| if(!process_frame_(encoder, false)) /* false => not last frame */ |
| return false; |
| } |
| } while(j < samples); |
| } |
| else { |
| /* |
| * independent channel coding: buffer each channel in inner loop |
| * with LPC: calculate floating point version of signal |
| */ |
| do { |
| if(encoder->protected_->verify) |
| append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); |
| |
| for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { |
| for(channel = 0; channel < channels; channel++) { |
| x = buffer[channel][j]; |
| encoder->private_->integer_signal[channel][i] = x; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal[channel][i] = (FLAC__real)x; |
| #endif |
| } |
| encoder->private_->current_sample_number++; |
| } |
| if(i == blocksize) { |
| if(!process_frame_(encoder, false)) /* false => not last frame */ |
| return false; |
| } |
| } while(j < samples); |
| } |
| } |
| else { |
| if(encoder->protected_->do_mid_side_stereo && channels == 2) { |
| /* |
| * stereo coding: unroll channel loop |
| * without LPC: no need to calculate floating point version of signal |
| */ |
| do { |
| if(encoder->protected_->verify) |
| append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); |
| |
| for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { |
| encoder->private_->integer_signal[0][i] = mid = side = buffer[0][j]; |
| x = buffer[1][j]; |
| encoder->private_->integer_signal[1][i] = x; |
| mid += x; |
| side -= x; |
| mid >>= 1; /* NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' ! */ |
| encoder->private_->integer_signal_mid_side[1][i] = side; |
| encoder->private_->integer_signal_mid_side[0][i] = mid; |
| encoder->private_->current_sample_number++; |
| } |
| if(i == blocksize) { |
| if(!process_frame_(encoder, false)) /* false => not last frame */ |
| return false; |
| } |
| } while(j < samples); |
| } |
| else { |
| /* |
| * independent channel coding: buffer each channel in inner loop |
| * without LPC: no need to calculate floating point version of signal |
| */ |
| do { |
| if(encoder->protected_->verify) |
| append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); |
| |
| for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { |
| for(channel = 0; channel < channels; channel++) |
| encoder->private_->integer_signal[channel][i] = buffer[channel][j]; |
| encoder->private_->current_sample_number++; |
| } |
| if(i == blocksize) { |
| if(!process_frame_(encoder, false)) /* false => not last frame */ |
| return false; |
| } |
| } while(j < samples); |
| } |
| } |
| |
| return true; |
| } |
| |
| FLAC_API FLAC__bool FLAC__stream_encoder_process_interleaved(FLAC__StreamEncoder *encoder, const FLAC__int32 buffer[], unsigned samples) |
| { |
| unsigned i, j, k, channel; |
| FLAC__int32 x, mid, side; |
| const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize; |
| |
| FLAC__ASSERT(0 != encoder); |
| FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); |
| |
| j = k = 0; |
| /* |
| * we have several flavors of the same basic loop, optimized for |
| * different conditions: |
| */ |
| if(encoder->protected_->max_lpc_order > 0) { |
| if(encoder->protected_->do_mid_side_stereo && channels == 2) { |
| /* |
| * stereo coding: unroll channel loop |
| * with LPC: calculate floating point version of signal |
| */ |
| do { |
| if(encoder->protected_->verify) |
| append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); |
| |
| for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { |
| x = mid = side = buffer[k++]; |
| encoder->private_->integer_signal[0][i] = x; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal[0][i] = (FLAC__real)x; |
| #endif |
| x = buffer[k++]; |
| encoder->private_->integer_signal[1][i] = x; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal[1][i] = (FLAC__real)x; |
| #endif |
| mid += x; |
| side -= x; |
| mid >>= 1; /* NOTE: not the same as 'mid = (left + right) / 2' ! */ |
| encoder->private_->integer_signal_mid_side[1][i] = side; |
| encoder->private_->integer_signal_mid_side[0][i] = mid; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal_mid_side[1][i] = (FLAC__real)side; |
| encoder->private_->real_signal_mid_side[0][i] = (FLAC__real)mid; |
| #endif |
| encoder->private_->current_sample_number++; |
| } |
| if(i == blocksize) { |
| if(!process_frame_(encoder, false)) /* false => not last frame */ |
| return false; |
| } |
| } while(j < samples); |
| } |
| else { |
| /* |
| * independent channel coding: buffer each channel in inner loop |
| * with LPC: calculate floating point version of signal |
| */ |
| do { |
| if(encoder->protected_->verify) |
| append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); |
| |
| for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { |
| for(channel = 0; channel < channels; channel++) { |
| x = buffer[k++]; |
| encoder->private_->integer_signal[channel][i] = x; |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal[channel][i] = (FLAC__real)x; |
| #endif |
| } |
| encoder->private_->current_sample_number++; |
| } |
| if(i == blocksize) { |
| if(!process_frame_(encoder, false)) /* false => not last frame */ |
| return false; |
| } |
| } while(j < samples); |
| } |
| } |
| else { |
| if(encoder->protected_->do_mid_side_stereo && channels == 2) { |
| /* |
| * stereo coding: unroll channel loop |
| * without LPC: no need to calculate floating point version of signal |
| */ |
| do { |
| if(encoder->protected_->verify) |
| append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); |
| |
| for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { |
| encoder->private_->integer_signal[0][i] = mid = side = buffer[k++]; |
| x = buffer[k++]; |
| encoder->private_->integer_signal[1][i] = x; |
| mid += x; |
| side -= x; |
| mid >>= 1; /* NOTE: not the same as 'mid = (left + right) / 2' ! */ |
| encoder->private_->integer_signal_mid_side[1][i] = side; |
| encoder->private_->integer_signal_mid_side[0][i] = mid; |
| encoder->private_->current_sample_number++; |
| } |
| if(i == blocksize) { |
| if(!process_frame_(encoder, false)) /* false => not last frame */ |
| return false; |
| } |
| } while(j < samples); |
| } |
| else { |
| /* |
| * independent channel coding: buffer each channel in inner loop |
| * without LPC: no need to calculate floating point version of signal |
| */ |
| do { |
| if(encoder->protected_->verify) |
| append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j)); |
| |
| for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { |
| for(channel = 0; channel < channels; channel++) |
| encoder->private_->integer_signal[channel][i] = buffer[k++]; |
| encoder->private_->current_sample_number++; |
| } |
| if(i == blocksize) { |
| if(!process_frame_(encoder, false)) /* false => not last frame */ |
| return false; |
| } |
| } while(j < samples); |
| } |
| } |
| |
| return true; |
| } |
| |
| /*********************************************************************** |
| * |
| * Private class methods |
| * |
| ***********************************************************************/ |
| |
| void set_defaults_(FLAC__StreamEncoder *encoder) |
| { |
| FLAC__ASSERT(0 != encoder); |
| |
| #ifdef FLAC__MANDATORY_VERIFY_WHILE_ENCODING |
| encoder->protected_->verify = true; |
| #else |
| encoder->protected_->verify = false; |
| #endif |
| encoder->protected_->streamable_subset = true; |
| encoder->protected_->do_mid_side_stereo = false; |
| encoder->protected_->loose_mid_side_stereo = false; |
| encoder->protected_->channels = 2; |
| encoder->protected_->bits_per_sample = 16; |
| encoder->protected_->sample_rate = 44100; |
| encoder->protected_->blocksize = 1152; |
| encoder->protected_->max_lpc_order = 0; |
| encoder->protected_->qlp_coeff_precision = 0; |
| encoder->protected_->do_qlp_coeff_prec_search = false; |
| encoder->protected_->do_exhaustive_model_search = false; |
| encoder->protected_->do_escape_coding = false; |
| encoder->protected_->min_residual_partition_order = 0; |
| encoder->protected_->max_residual_partition_order = 0; |
| encoder->protected_->rice_parameter_search_dist = 0; |
| encoder->protected_->total_samples_estimate = 0; |
| encoder->protected_->metadata = 0; |
| encoder->protected_->num_metadata_blocks = 0; |
| |
| encoder->private_->disable_constant_subframes = false; |
| encoder->private_->disable_fixed_subframes = false; |
| encoder->private_->disable_verbatim_subframes = false; |
| encoder->private_->write_callback = 0; |
| encoder->private_->metadata_callback = 0; |
| encoder->private_->client_data = 0; |
| } |
| |
| void free_(FLAC__StreamEncoder *encoder) |
| { |
| unsigned i, channel; |
| |
| FLAC__ASSERT(0 != encoder); |
| for(i = 0; i < encoder->protected_->channels; i++) { |
| if(0 != encoder->private_->integer_signal_unaligned[i]) { |
| free(encoder->private_->integer_signal_unaligned[i]); |
| encoder->private_->integer_signal_unaligned[i] = 0; |
| } |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| if(0 != encoder->private_->real_signal_unaligned[i]) { |
| free(encoder->private_->real_signal_unaligned[i]); |
| encoder->private_->real_signal_unaligned[i] = 0; |
| } |
| #endif |
| } |
| for(i = 0; i < 2; i++) { |
| if(0 != encoder->private_->integer_signal_mid_side_unaligned[i]) { |
| free(encoder->private_->integer_signal_mid_side_unaligned[i]); |
| encoder->private_->integer_signal_mid_side_unaligned[i] = 0; |
| } |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| if(0 != encoder->private_->real_signal_mid_side_unaligned[i]) { |
| free(encoder->private_->real_signal_mid_side_unaligned[i]); |
| encoder->private_->real_signal_mid_side_unaligned[i] = 0; |
| } |
| #endif |
| } |
| for(channel = 0; channel < encoder->protected_->channels; channel++) { |
| for(i = 0; i < 2; i++) { |
| if(0 != encoder->private_->residual_workspace_unaligned[channel][i]) { |
| free(encoder->private_->residual_workspace_unaligned[channel][i]); |
| encoder->private_->residual_workspace_unaligned[channel][i] = 0; |
| } |
| } |
| } |
| for(channel = 0; channel < 2; channel++) { |
| for(i = 0; i < 2; i++) { |
| if(0 != encoder->private_->residual_workspace_mid_side_unaligned[channel][i]) { |
| free(encoder->private_->residual_workspace_mid_side_unaligned[channel][i]); |
| encoder->private_->residual_workspace_mid_side_unaligned[channel][i] = 0; |
| } |
| } |
| } |
| if(0 != encoder->private_->abs_residual_unaligned) { |
| free(encoder->private_->abs_residual_unaligned); |
| encoder->private_->abs_residual_unaligned = 0; |
| } |
| if(0 != encoder->private_->abs_residual_partition_sums_unaligned) { |
| free(encoder->private_->abs_residual_partition_sums_unaligned); |
| encoder->private_->abs_residual_partition_sums_unaligned = 0; |
| } |
| if(0 != encoder->private_->raw_bits_per_partition_unaligned) { |
| free(encoder->private_->raw_bits_per_partition_unaligned); |
| encoder->private_->raw_bits_per_partition_unaligned = 0; |
| } |
| if(encoder->protected_->verify) { |
| for(i = 0; i < encoder->protected_->channels; i++) { |
| if(0 != encoder->private_->verify.input_fifo.data[i]) { |
| free(encoder->private_->verify.input_fifo.data[i]); |
| encoder->private_->verify.input_fifo.data[i] = 0; |
| } |
| } |
| } |
| FLAC__bitbuffer_free(encoder->private_->frame); |
| } |
| |
| FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_size) |
| { |
| FLAC__bool ok; |
| unsigned i, channel; |
| |
| FLAC__ASSERT(new_size > 0); |
| FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); |
| FLAC__ASSERT(encoder->private_->current_sample_number == 0); |
| |
| /* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */ |
| if(new_size <= encoder->private_->input_capacity) |
| return true; |
| |
| ok = true; |
| |
| /* WATCHOUT: FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx() |
| * requires that the input arrays (in our case the integer signals) |
| * have a buffer of up to 3 zeroes in front (at negative indices) for |
| * alignment purposes; we use 4 to keep the data well-aligned. |
| */ |
| |
| for(i = 0; ok && i < encoder->protected_->channels; i++) { |
| ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size+4, &encoder->private_->integer_signal_unaligned[i], &encoder->private_->integer_signal[i]); |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| if(encoder->protected_->max_lpc_order > 0) |
| ok = ok && FLAC__memory_alloc_aligned_real_array(new_size, &encoder->private_->real_signal_unaligned[i], &encoder->private_->real_signal[i]); |
| #endif |
| memset(encoder->private_->integer_signal[i], 0, sizeof(FLAC__int32)*4); |
| encoder->private_->integer_signal[i] += 4; |
| } |
| for(i = 0; ok && i < 2; i++) { |
| ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size+4, &encoder->private_->integer_signal_mid_side_unaligned[i], &encoder->private_->integer_signal_mid_side[i]); |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| if(encoder->protected_->max_lpc_order > 0) |
| ok = ok && FLAC__memory_alloc_aligned_real_array(new_size, &encoder->private_->real_signal_mid_side_unaligned[i], &encoder->private_->real_signal_mid_side[i]); |
| #endif |
| memset(encoder->private_->integer_signal_mid_side[i], 0, sizeof(FLAC__int32)*4); |
| encoder->private_->integer_signal_mid_side[i] += 4; |
| } |
| for(channel = 0; ok && channel < encoder->protected_->channels; channel++) { |
| for(i = 0; ok && i < 2; i++) { |
| ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size, &encoder->private_->residual_workspace_unaligned[channel][i], &encoder->private_->residual_workspace[channel][i]); |
| } |
| } |
| for(channel = 0; ok && channel < 2; channel++) { |
| for(i = 0; ok && i < 2; i++) { |
| ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size, &encoder->private_->residual_workspace_mid_side_unaligned[channel][i], &encoder->private_->residual_workspace_mid_side[channel][i]); |
| } |
| } |
| ok = ok && FLAC__memory_alloc_aligned_uint32_array(new_size, &encoder->private_->abs_residual_unaligned, &encoder->private_->abs_residual); |
| if(encoder->private_->precompute_partition_sums || encoder->protected_->do_escape_coding) /* we require precompute_partition_sums if do_escape_coding because of their intertwined nature */ |
| ok = ok && FLAC__memory_alloc_aligned_uint64_array(new_size * 2, &encoder->private_->abs_residual_partition_sums_unaligned, &encoder->private_->abs_residual_partition_sums); |
| if(encoder->protected_->do_escape_coding) |
| ok = ok && FLAC__memory_alloc_aligned_unsigned_array(new_size * 2, &encoder->private_->raw_bits_per_partition_unaligned, &encoder->private_->raw_bits_per_partition); |
| |
| if(ok) |
| encoder->private_->input_capacity = new_size; |
| else |
| encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; |
| |
| return ok; |
| } |
| |
| FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, unsigned samples) |
| { |
| const FLAC__byte *buffer; |
| unsigned bytes; |
| |
| FLAC__ASSERT(FLAC__bitbuffer_is_byte_aligned(encoder->private_->frame)); |
| |
| FLAC__bitbuffer_get_buffer(encoder->private_->frame, &buffer, &bytes); |
| |
| if(encoder->protected_->verify) { |
| encoder->private_->verify.output.data = buffer; |
| encoder->private_->verify.output.bytes = bytes; |
| if(encoder->private_->verify.state_hint == ENCODER_IN_MAGIC) { |
| encoder->private_->verify.needs_magic_hack = true; |
| } |
| else { |
| if(!FLAC__stream_decoder_process_single(encoder->private_->verify.decoder)) { |
| FLAC__bitbuffer_release_buffer(encoder->private_->frame); |
| if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA) |
| encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; |
| return false; |
| } |
| } |
| } |
| |
| if(encoder->private_->write_callback(encoder, buffer, bytes, samples, encoder->private_->current_frame_number, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { |
| FLAC__bitbuffer_release_buffer(encoder->private_->frame); |
| encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING; |
| return false; |
| } |
| |
| FLAC__bitbuffer_release_buffer(encoder->private_->frame); |
| |
| if(samples > 0) { |
| encoder->private_->metadata.data.stream_info.min_framesize = min(bytes, encoder->private_->metadata.data.stream_info.min_framesize); |
| encoder->private_->metadata.data.stream_info.max_framesize = max(bytes, encoder->private_->metadata.data.stream_info.max_framesize); |
| } |
| |
| return true; |
| } |
| |
| FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame) |
| { |
| FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); |
| |
| /* |
| * Accumulate raw signal to the MD5 signature |
| */ |
| if(!FLAC__MD5Accumulate(&encoder->private_->md5context, (const FLAC__int32 * const *)encoder->private_->integer_signal, encoder->protected_->channels, encoder->protected_->blocksize, (encoder->protected_->bits_per_sample+7) / 8)) { |
| encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; |
| return false; |
| } |
| |
| /* |
| * Process the frame header and subframes into the frame bitbuffer |
| */ |
| if(!process_subframes_(encoder, is_last_frame)) { |
| /* the above function sets the state for us in case of an error */ |
| return false; |
| } |
| |
| /* |
| * Zero-pad the frame to a byte_boundary |
| */ |
| if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(encoder->private_->frame)) { |
| encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; |
| return false; |
| } |
| |
| /* |
| * CRC-16 the whole thing |
| */ |
| FLAC__ASSERT(FLAC__bitbuffer_is_byte_aligned(encoder->private_->frame)); |
| FLAC__bitbuffer_write_raw_uint32(encoder->private_->frame, FLAC__bitbuffer_get_write_crc16(encoder->private_->frame), FLAC__FRAME_FOOTER_CRC_LEN); |
| |
| /* |
| * Write it |
| */ |
| if(!write_bitbuffer_(encoder, encoder->protected_->blocksize)) { |
| /* the above function sets the state for us in case of an error */ |
| return false; |
| } |
| |
| /* |
| * Get ready for the next frame |
| */ |
| encoder->private_->current_sample_number = 0; |
| encoder->private_->current_frame_number++; |
| encoder->private_->metadata.data.stream_info.total_samples += (FLAC__uint64)encoder->protected_->blocksize; |
| |
| return true; |
| } |
| |
| FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame) |
| { |
| FLAC__FrameHeader frame_header; |
| unsigned channel, min_partition_order = encoder->protected_->min_residual_partition_order, max_partition_order; |
| FLAC__bool do_independent, do_mid_side, precompute_partition_sums; |
| |
| /* |
| * Calculate the min,max Rice partition orders |
| */ |
| if(is_last_frame) { |
| max_partition_order = 0; |
| } |
| else { |
| max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize(encoder->protected_->blocksize); |
| max_partition_order = min(max_partition_order, encoder->protected_->max_residual_partition_order); |
| } |
| min_partition_order = min(min_partition_order, max_partition_order); |
| |
| precompute_partition_sums = encoder->private_->precompute_partition_sums && ((max_partition_order > min_partition_order) || encoder->protected_->do_escape_coding); |
| |
| /* |
| * Setup the frame |
| */ |
| if(!FLAC__bitbuffer_clear(encoder->private_->frame)) { |
| encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; |
| return false; |
| } |
| frame_header.blocksize = encoder->protected_->blocksize; |
| frame_header.sample_rate = encoder->protected_->sample_rate; |
| frame_header.channels = encoder->protected_->channels; |
| frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */ |
| frame_header.bits_per_sample = encoder->protected_->bits_per_sample; |
| frame_header.number_type = FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER; |
| frame_header.number.frame_number = encoder->private_->current_frame_number; |
| |
| /* |
| * Figure out what channel assignments to try |
| */ |
| if(encoder->protected_->do_mid_side_stereo) { |
| if(encoder->protected_->loose_mid_side_stereo) { |
| if(encoder->private_->loose_mid_side_stereo_frame_count == 0) { |
| do_independent = true; |
| do_mid_side = true; |
| } |
| else { |
| do_independent = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT); |
| do_mid_side = !do_independent; |
| } |
| } |
| else { |
| do_independent = true; |
| do_mid_side = true; |
| } |
| } |
| else { |
| do_independent = true; |
| do_mid_side = false; |
| } |
| |
| FLAC__ASSERT(do_independent || do_mid_side); |
| |
| /* |
| * Check for wasted bits; set effective bps for each subframe |
| */ |
| if(do_independent) { |
| for(channel = 0; channel < encoder->protected_->channels; channel++) { |
| const unsigned w = get_wasted_bits_(encoder->private_->integer_signal[channel], encoder->protected_->blocksize); |
| encoder->private_->subframe_workspace[channel][0].wasted_bits = encoder->private_->subframe_workspace[channel][1].wasted_bits = w; |
| encoder->private_->subframe_bps[channel] = encoder->protected_->bits_per_sample - w; |
| } |
| } |
| if(do_mid_side) { |
| FLAC__ASSERT(encoder->protected_->channels == 2); |
| for(channel = 0; channel < 2; channel++) { |
| const unsigned w = get_wasted_bits_(encoder->private_->integer_signal_mid_side[channel], encoder->protected_->blocksize); |
| encoder->private_->subframe_workspace_mid_side[channel][0].wasted_bits = encoder->private_->subframe_workspace_mid_side[channel][1].wasted_bits = w; |
| encoder->private_->subframe_bps_mid_side[channel] = encoder->protected_->bits_per_sample - w + (channel==0? 0:1); |
| } |
| } |
| |
| /* |
| * First do a normal encoding pass of each independent channel |
| */ |
| if(do_independent) { |
| for(channel = 0; channel < encoder->protected_->channels; channel++) { |
| if(! |
| process_subframe_( |
| encoder, |
| min_partition_order, |
| max_partition_order, |
| precompute_partition_sums, |
| &frame_header, |
| encoder->private_->subframe_bps[channel], |
| encoder->private_->integer_signal[channel], |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal[channel], |
| #endif |
| encoder->private_->subframe_workspace_ptr[channel], |
| encoder->private_->partitioned_rice_contents_workspace_ptr[channel], |
| encoder->private_->residual_workspace[channel], |
| encoder->private_->best_subframe+channel, |
| encoder->private_->best_subframe_bits+channel |
| ) |
| ) |
| return false; |
| } |
| } |
| |
| /* |
| * Now do mid and side channels if requested |
| */ |
| if(do_mid_side) { |
| FLAC__ASSERT(encoder->protected_->channels == 2); |
| |
| for(channel = 0; channel < 2; channel++) { |
| if(! |
| process_subframe_( |
| encoder, |
| min_partition_order, |
| max_partition_order, |
| precompute_partition_sums, |
| &frame_header, |
| encoder->private_->subframe_bps_mid_side[channel], |
| encoder->private_->integer_signal_mid_side[channel], |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| encoder->private_->real_signal_mid_side[channel], |
| #endif |
| encoder->private_->subframe_workspace_ptr_mid_side[channel], |
| encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[channel], |
| encoder->private_->residual_workspace_mid_side[channel], |
| encoder->private_->best_subframe_mid_side+channel, |
| encoder->private_->best_subframe_bits_mid_side+channel |
| ) |
| ) |
| return false; |
| } |
| } |
| |
| /* |
| * Compose the frame bitbuffer |
| */ |
| if(do_mid_side) { |
| unsigned left_bps = 0, right_bps = 0; /* initialized only to prevent superfluous compiler warning */ |
| FLAC__Subframe *left_subframe = 0, *right_subframe = 0; /* initialized only to prevent superfluous compiler warning */ |
| FLAC__ChannelAssignment channel_assignment; |
| |
| FLAC__ASSERT(encoder->protected_->channels == 2); |
| |
| if(encoder->protected_->loose_mid_side_stereo && encoder->private_->loose_mid_side_stereo_frame_count > 0) { |
| channel_assignment = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT? FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT : FLAC__CHANNEL_ASSIGNMENT_MID_SIDE); |
| } |
| else { |
| unsigned bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */ |
| unsigned min_bits; |
| FLAC__ChannelAssignment ca; |
| |
| FLAC__ASSERT(do_independent && do_mid_side); |
| |
| /* We have to figure out which channel assignent results in the smallest frame */ |
| bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits [1]; |
| bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE ] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits_mid_side[1]; |
| bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = encoder->private_->best_subframe_bits [1] + encoder->private_->best_subframe_bits_mid_side[1]; |
| bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE ] = encoder->private_->best_subframe_bits_mid_side[0] + encoder->private_->best_subframe_bits_mid_side[1]; |
| |
| for(channel_assignment = (FLAC__ChannelAssignment)0, min_bits = bits[0], ca = (FLAC__ChannelAssignment)1; (int)ca <= 3; ca = (FLAC__ChannelAssignment)((int)ca + 1)) { |
| if(bits[ca] < min_bits) { |
| min_bits = bits[ca]; |
| channel_assignment = ca; |
| } |
| } |
| } |
| |
| frame_header.channel_assignment = channel_assignment; |
| |
| if(!FLAC__frame_add_header(&frame_header, encoder->protected_->streamable_subset, encoder->private_->frame)) { |
| encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; |
| return false; |
| } |
| |
| switch(channel_assignment) { |
| case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: |
| left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; |
| right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; |
| break; |
| case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: |
| left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; |
| right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; |
| break; |
| case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: |
| left_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; |
| right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; |
| break; |
| case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: |
| left_subframe = &encoder->private_->subframe_workspace_mid_side[0][encoder->private_->best_subframe_mid_side[0]]; |
| right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; |
| break; |
| default: |
| FLAC__ASSERT(0); |
| } |
| |
| switch(channel_assignment) { |
| case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: |
| left_bps = encoder->private_->subframe_bps [0]; |
| right_bps = encoder->private_->subframe_bps [1]; |
| break; |
| case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: |
| left_bps = encoder->private_->subframe_bps [0]; |
| right_bps = encoder->private_->subframe_bps_mid_side[1]; |
| break; |
| case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: |
| left_bps = encoder->private_->subframe_bps_mid_side[1]; |
| right_bps = encoder->private_->subframe_bps [1]; |
| break; |
| case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: |
| left_bps = encoder->private_->subframe_bps_mid_side[0]; |
| right_bps = encoder->private_->subframe_bps_mid_side[1]; |
| break; |
| default: |
| FLAC__ASSERT(0); |
| } |
| |
| /* note that encoder_add_subframe_ sets the state for us in case of an error */ |
| if(!add_subframe_(encoder, &frame_header, left_bps , left_subframe , encoder->private_->frame)) |
| return false; |
| if(!add_subframe_(encoder, &frame_header, right_bps, right_subframe, encoder->private_->frame)) |
| return false; |
| } |
| else { |
| if(!FLAC__frame_add_header(&frame_header, encoder->protected_->streamable_subset, encoder->private_->frame)) { |
| encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; |
| return false; |
| } |
| |
| for(channel = 0; channel < encoder->protected_->channels; channel++) { |
| if(!add_subframe_(encoder, &frame_header, encoder->private_->subframe_bps[channel], &encoder->private_->subframe_workspace[channel][encoder->private_->best_subframe[channel]], encoder->private_->frame)) { |
| /* the above function sets the state for us in case of an error */ |
| return false; |
| } |
| } |
| } |
| |
| if(encoder->protected_->loose_mid_side_stereo) { |
| encoder->private_->loose_mid_side_stereo_frame_count++; |
| if(encoder->private_->loose_mid_side_stereo_frame_count >= encoder->private_->loose_mid_side_stereo_frames) |
| encoder->private_->loose_mid_side_stereo_frame_count = 0; |
| } |
| |
| encoder->private_->last_channel_assignment = frame_header.channel_assignment; |
| |
| return true; |
| } |
| |
| FLAC__bool process_subframe_( |
| FLAC__StreamEncoder *encoder, |
| unsigned min_partition_order, |
| unsigned max_partition_order, |
| FLAC__bool precompute_partition_sums, |
| const FLAC__FrameHeader *frame_header, |
| unsigned subframe_bps, |
| const FLAC__int32 integer_signal[], |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| const FLAC__real real_signal[], |
| #endif |
| FLAC__Subframe *subframe[2], |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2], |
| FLAC__int32 *residual[2], |
| unsigned *best_subframe, |
| unsigned *best_bits |
| ) |
| { |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| FLAC__float fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; |
| #else |
| FLAC__fixedpoint fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; |
| #endif |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| FLAC__double lpc_residual_bits_per_sample; |
| FLAC__real autoc[FLAC__MAX_LPC_ORDER+1]; /* WATCHOUT: the size is important even though encoder->protected_->max_lpc_order might be less; some asm routines need all the space */ |
| FLAC__double lpc_error[FLAC__MAX_LPC_ORDER]; |
| unsigned min_lpc_order, max_lpc_order, lpc_order; |
| unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision; |
| #endif |
| unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order; |
| unsigned rice_parameter; |
| unsigned _candidate_bits, _best_bits; |
| unsigned _best_subframe; |
| |
| /* verbatim subframe is the baseline against which we measure other compressed subframes */ |
| _best_subframe = 0; |
| if(encoder->private_->disable_verbatim_subframes && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) |
| _best_bits = UINT_MAX; |
| else |
| _best_bits = evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]); |
| |
| if(frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) { |
| unsigned signal_is_constant = false; |
| guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor(integer_signal+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample); |
| /* check for constant subframe */ |
| if( |
| !encoder->private_->disable_constant_subframes && |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| fixed_residual_bits_per_sample[1] == 0.0 |
| #else |
| fixed_residual_bits_per_sample[1] == FLAC__FP_ZERO |
| #endif |
| ) { |
| /* the above means it's possible all samples are the same value; now double-check it: */ |
| unsigned i; |
| signal_is_constant = true; |
| for(i = 1; i < frame_header->blocksize; i++) { |
| if(integer_signal[0] != integer_signal[i]) { |
| signal_is_constant = false; |
| break; |
| } |
| } |
| } |
| if(signal_is_constant) { |
| _candidate_bits = evaluate_constant_subframe_(integer_signal[0], subframe_bps, subframe[!_best_subframe]); |
| if(_candidate_bits < _best_bits) { |
| _best_subframe = !_best_subframe; |
| _best_bits = _candidate_bits; |
| } |
| } |
| else { |
| if(!encoder->private_->disable_fixed_subframes || (encoder->protected_->max_lpc_order == 0 && _best_bits == UINT_MAX)) { |
| /* encode fixed */ |
| if(encoder->protected_->do_exhaustive_model_search) { |
| min_fixed_order = 0; |
| max_fixed_order = FLAC__MAX_FIXED_ORDER; |
| } |
| else { |
| min_fixed_order = max_fixed_order = guess_fixed_order; |
| } |
| for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) { |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| if(fixed_residual_bits_per_sample[fixed_order] >= (FLAC__float)subframe_bps) |
| continue; /* don't even try */ |
| rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0; /* 0.5 is for rounding */ |
| #else |
| if(FLAC__fixedpoint_trunc(fixed_residual_bits_per_sample[fixed_order]) >= (int)subframe_bps) |
| continue; /* don't even try */ |
| rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > FLAC__FP_ZERO)? (unsigned)FLAC__fixedpoint_trunc(fixed_residual_bits_per_sample[fixed_order]+FLAC__FP_ONE_HALF) : 0; /* 0.5 is for rounding */ |
| #endif |
| rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */ |
| if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { |
| #ifdef DEBUG_VERBOSE |
| fprintf(stderr, "clipping rice_parameter (%u -> %u) @0\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); |
| #endif |
| rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; |
| } |
| _candidate_bits = |
| evaluate_fixed_subframe_( |
| encoder, |
| integer_signal, |
| residual[!_best_subframe], |
| encoder->private_->abs_residual, |
| encoder->private_->abs_residual_partition_sums, |
| encoder->private_->raw_bits_per_partition, |
| frame_header->blocksize, |
| subframe_bps, |
| fixed_order, |
| rice_parameter, |
| min_partition_order, |
| max_partition_order, |
| precompute_partition_sums, |
| encoder->protected_->do_escape_coding, |
| encoder->protected_->rice_parameter_search_dist, |
| subframe[!_best_subframe], |
| partitioned_rice_contents[!_best_subframe] |
| ); |
| if(_candidate_bits < _best_bits) { |
| _best_subframe = !_best_subframe; |
| _best_bits = _candidate_bits; |
| } |
| } |
| } |
| |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| /* encode lpc */ |
| if(encoder->protected_->max_lpc_order > 0) { |
| if(encoder->protected_->max_lpc_order >= frame_header->blocksize) |
| max_lpc_order = frame_header->blocksize-1; |
| else |
| max_lpc_order = encoder->protected_->max_lpc_order; |
| if(max_lpc_order > 0) { |
| encoder->private_->local_lpc_compute_autocorrelation(real_signal, frame_header->blocksize, max_lpc_order+1, autoc); |
| /* if autoc[0] == 0.0, the signal is constant and we usually won't get here, but it can happen */ |
| if(autoc[0] != 0.0) { |
| FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, encoder->private_->lp_coeff, lpc_error); |
| if(encoder->protected_->do_exhaustive_model_search) { |
| min_lpc_order = 1; |
| } |
| else { |
| unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, subframe_bps); |
| min_lpc_order = max_lpc_order = guess_lpc_order; |
| } |
| for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) { |
| lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize-lpc_order); |
| if(lpc_residual_bits_per_sample >= (FLAC__double)subframe_bps) |
| continue; /* don't even try */ |
| rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0; /* 0.5 is for rounding */ |
| rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */ |
| if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { |
| #ifdef DEBUG_VERBOSE |
| fprintf(stderr, "clipping rice_parameter (%u -> %u) @1\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); |
| #endif |
| rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; |
| } |
| if(encoder->protected_->do_qlp_coeff_prec_search) { |
| min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION; |
| /* ensure a 32-bit datapath throughout for 16bps or less */ |
| if(subframe_bps <= 16) |
| max_qlp_coeff_precision = min(32 - subframe_bps - lpc_order, FLAC__MAX_QLP_COEFF_PRECISION); |
| else |
| max_qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION; |
| } |
| else { |
| min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->protected_->qlp_coeff_precision; |
| } |
| for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) { |
| _candidate_bits = |
| evaluate_lpc_subframe_( |
| encoder, |
| integer_signal, |
| residual[!_best_subframe], |
| encoder->private_->abs_residual, |
| encoder->private_->abs_residual_partition_sums, |
| encoder->private_->raw_bits_per_partition, |
| encoder->private_->lp_coeff[lpc_order-1], |
| frame_header->blocksize, |
| subframe_bps, |
| lpc_order, |
| qlp_coeff_precision, |
| rice_parameter, |
| min_partition_order, |
| max_partition_order, |
| precompute_partition_sums, |
| encoder->protected_->do_escape_coding, |
| encoder->protected_->rice_parameter_search_dist, |
| subframe[!_best_subframe], |
| partitioned_rice_contents[!_best_subframe] |
| ); |
| if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */ |
| if(_candidate_bits < _best_bits) { |
| _best_subframe = !_best_subframe; |
| _best_bits = _candidate_bits; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ |
| } |
| } |
| |
| /* under rare circumstances this can happen when all but lpc subframe types are disabled: */ |
| if(_best_bits == UINT_MAX) { |
| FLAC__ASSERT(_best_subframe == 0); |
| _best_bits = evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]); |
| } |
| |
| *best_subframe = _best_subframe; |
| *best_bits = _best_bits; |
| |
| return true; |
| } |
| |
| FLAC__bool add_subframe_( |
| FLAC__StreamEncoder *encoder, |
| const FLAC__FrameHeader *frame_header, |
| unsigned subframe_bps, |
| const FLAC__Subframe *subframe, |
| FLAC__BitBuffer *frame |
| ) |
| { |
| switch(subframe->type) { |
| case FLAC__SUBFRAME_TYPE_CONSTANT: |
| if(!FLAC__subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) { |
| encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; |
| return false; |
| } |
| break; |
| case FLAC__SUBFRAME_TYPE_FIXED: |
| if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), frame_header->blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) { |
| encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; |
| return false; |
| } |
| break; |
| case FLAC__SUBFRAME_TYPE_LPC: |
| if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), frame_header->blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) { |
| encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; |
| return false; |
| } |
| break; |
| case FLAC__SUBFRAME_TYPE_VERBATIM: |
| if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), frame_header->blocksize, subframe_bps, subframe->wasted_bits, frame)) { |
| encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; |
| return false; |
| } |
| break; |
| default: |
| FLAC__ASSERT(0); |
| } |
| |
| return true; |
| } |
| |
| unsigned evaluate_constant_subframe_( |
| const FLAC__int32 signal, |
| unsigned subframe_bps, |
| FLAC__Subframe *subframe |
| ) |
| { |
| subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT; |
| subframe->data.constant.value = signal; |
| |
| return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe_bps; |
| } |
| |
| unsigned evaluate_fixed_subframe_( |
| FLAC__StreamEncoder *encoder, |
| const FLAC__int32 signal[], |
| FLAC__int32 residual[], |
| FLAC__uint32 abs_residual[], |
| FLAC__uint64 abs_residual_partition_sums[], |
| unsigned raw_bits_per_partition[], |
| unsigned blocksize, |
| unsigned subframe_bps, |
| unsigned order, |
| unsigned rice_parameter, |
| unsigned min_partition_order, |
| unsigned max_partition_order, |
| FLAC__bool precompute_partition_sums, |
| FLAC__bool do_escape_coding, |
| unsigned rice_parameter_search_dist, |
| FLAC__Subframe *subframe, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents |
| ) |
| { |
| unsigned i, residual_bits; |
| const unsigned residual_samples = blocksize - order; |
| |
| FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual); |
| |
| subframe->type = FLAC__SUBFRAME_TYPE_FIXED; |
| |
| subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; |
| subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents; |
| subframe->data.fixed.residual = residual; |
| |
| residual_bits = |
| find_best_partition_order_( |
| encoder->private_, |
| residual, |
| abs_residual, |
| abs_residual_partition_sums, |
| raw_bits_per_partition, |
| residual_samples, |
| order, |
| rice_parameter, |
| min_partition_order, |
| max_partition_order, |
| precompute_partition_sums, |
| do_escape_coding, |
| rice_parameter_search_dist, |
| &subframe->data.fixed.entropy_coding_method.data.partitioned_rice |
| ); |
| |
| subframe->data.fixed.order = order; |
| for(i = 0; i < order; i++) |
| subframe->data.fixed.warmup[i] = signal[i]; |
| |
| return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (order * subframe_bps) + residual_bits; |
| } |
| |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| unsigned evaluate_lpc_subframe_( |
| FLAC__StreamEncoder *encoder, |
| const FLAC__int32 signal[], |
| FLAC__int32 residual[], |
| FLAC__uint32 abs_residual[], |
| FLAC__uint64 abs_residual_partition_sums[], |
| unsigned raw_bits_per_partition[], |
| const FLAC__real lp_coeff[], |
| unsigned blocksize, |
| unsigned subframe_bps, |
| unsigned order, |
| unsigned qlp_coeff_precision, |
| unsigned rice_parameter, |
| unsigned min_partition_order, |
| unsigned max_partition_order, |
| FLAC__bool precompute_partition_sums, |
| FLAC__bool do_escape_coding, |
| unsigned rice_parameter_search_dist, |
| FLAC__Subframe *subframe, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents |
| ) |
| { |
| FLAC__int32 qlp_coeff[FLAC__MAX_LPC_ORDER]; |
| unsigned i, residual_bits; |
| int quantization, ret; |
| const unsigned residual_samples = blocksize - order; |
| |
| /* try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps streams */ |
| if(subframe_bps <= 16) { |
| FLAC__ASSERT(order > 0); |
| FLAC__ASSERT(order <= FLAC__MAX_LPC_ORDER); |
| qlp_coeff_precision = min(qlp_coeff_precision, 32 - subframe_bps - FLAC__bitmath_ilog2(order)); |
| } |
| |
| ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, qlp_coeff, &quantization); |
| if(ret != 0) |
| return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */ |
| |
| if(subframe_bps + qlp_coeff_precision + FLAC__bitmath_ilog2(order) <= 32) |
| if(subframe_bps <= 16 && qlp_coeff_precision <= 16) |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual); |
| else |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual); |
| else |
| encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual); |
| |
| subframe->type = FLAC__SUBFRAME_TYPE_LPC; |
| |
| subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; |
| subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents; |
| subframe->data.lpc.residual = residual; |
| |
| residual_bits = |
| find_best_partition_order_( |
| encoder->private_, |
| residual, |
| abs_residual, |
| abs_residual_partition_sums, |
| raw_bits_per_partition, |
| residual_samples, |
| order, |
| rice_parameter, |
| min_partition_order, |
| max_partition_order, |
| precompute_partition_sums, |
| do_escape_coding, |
| rice_parameter_search_dist, |
| &subframe->data.fixed.entropy_coding_method.data.partitioned_rice |
| ); |
| |
| subframe->data.lpc.order = order; |
| subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision; |
| subframe->data.lpc.quantization_level = quantization; |
| memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(FLAC__int32)*FLAC__MAX_LPC_ORDER); |
| for(i = 0; i < order; i++) |
| subframe->data.lpc.warmup[i] = signal[i]; |
| |
| return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps)) + residual_bits; |
| } |
| #endif |
| |
| unsigned evaluate_verbatim_subframe_( |
| const FLAC__int32 signal[], |
| unsigned blocksize, |
| unsigned subframe_bps, |
| FLAC__Subframe *subframe |
| ) |
| { |
| subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM; |
| |
| subframe->data.verbatim.data = signal; |
| |
| return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (blocksize * subframe_bps); |
| } |
| |
| unsigned find_best_partition_order_( |
| FLAC__StreamEncoderPrivate *private_, |
| const FLAC__int32 residual[], |
| FLAC__uint32 abs_residual[], |
| FLAC__uint64 abs_residual_partition_sums[], |
| unsigned raw_bits_per_partition[], |
| unsigned residual_samples, |
| unsigned predictor_order, |
| unsigned rice_parameter, |
| unsigned min_partition_order, |
| unsigned max_partition_order, |
| FLAC__bool precompute_partition_sums, |
| FLAC__bool do_escape_coding, |
| unsigned rice_parameter_search_dist, |
| FLAC__EntropyCodingMethod_PartitionedRice *best_partitioned_rice |
| ) |
| { |
| FLAC__int32 r; |
| unsigned residual_bits, best_residual_bits = 0; |
| unsigned residual_sample; |
| unsigned best_parameters_index = 0; |
| const unsigned blocksize = residual_samples + predictor_order; |
| |
| /* compute abs(residual) for use later */ |
| for(residual_sample = 0; residual_sample < residual_samples; residual_sample++) { |
| r = residual[residual_sample]; |
| abs_residual[residual_sample] = (FLAC__uint32)(r<0? -r : r); |
| } |
| |
| max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order(max_partition_order, blocksize, predictor_order); |
| min_partition_order = min(min_partition_order, max_partition_order); |
| |
| if(precompute_partition_sums) { |
| int partition_order; |
| unsigned sum; |
| |
| precompute_partition_info_sums_(abs_residual, abs_residual_partition_sums, residual_samples, predictor_order, min_partition_order, max_partition_order); |
| |
| if(do_escape_coding) |
| precompute_partition_info_escapes_(residual, raw_bits_per_partition, residual_samples, predictor_order, min_partition_order, max_partition_order); |
| |
| for(partition_order = (int)max_partition_order, sum = 0; partition_order >= (int)min_partition_order; partition_order--) { |
| #ifdef DONT_ESTIMATE_RICE_BITS |
| if(! |
| set_partitioned_rice_with_precompute_( |
| residual, |
| abs_residual_partition_sums+sum, |
| raw_bits_per_partition+sum, |
| residual_samples, |
| predictor_order, |
| rice_parameter, |
| rice_parameter_search_dist, |
| (unsigned)partition_order, |
| do_escape_coding, |
| &private_->partitioned_rice_contents_extra[!best_parameters_index], |
| &residual_bits |
| ) |
| ) |
| #else |
| if(! |
| set_partitioned_rice_with_precompute_( |
| abs_residual, |
| abs_residual_partition_sums+sum, |
| raw_bits_per_partition+sum, |
| residual_samples, |
| predictor_order, |
| rice_parameter, |
| rice_parameter_search_dist, |
| (unsigned)partition_order, |
| do_escape_coding, |
| &private_->partitioned_rice_contents_extra[!best_parameters_index], |
| &residual_bits |
| ) |
| ) |
| #endif |
| { |
| FLAC__ASSERT(best_residual_bits != 0); |
| break; |
| } |
| sum += 1u << partition_order; |
| if(best_residual_bits == 0 || residual_bits < best_residual_bits) { |
| best_residual_bits = residual_bits; |
| best_parameters_index = !best_parameters_index; |
| best_partitioned_rice->order = partition_order; |
| } |
| } |
| } |
| else { |
| unsigned partition_order; |
| for(partition_order = min_partition_order; partition_order <= max_partition_order; partition_order++) { |
| #ifdef DONT_ESTIMATE_RICE_BITS |
| if(! |
| set_partitioned_rice_( |
| abs_residual, |
| residual, |
| residual_samples, |
| predictor_order, |
| rice_parameter, |
| rice_parameter_search_dist, |
| partition_order, |
| &private_->partitioned_rice_contents_extra[!best_parameters_index], |
| &residual_bits |
| ) |
| ) |
| #else |
| if(! |
| set_partitioned_rice_( |
| abs_residual, |
| residual_samples, |
| predictor_order, |
| rice_parameter, |
| rice_parameter_search_dist, |
| partition_order, |
| &private_->partitioned_rice_contents_extra[!best_parameters_index], |
| &residual_bits |
| ) |
| ) |
| #endif |
| { |
| FLAC__ASSERT(best_residual_bits != 0); |
| break; |
| } |
| if(best_residual_bits == 0 || residual_bits < best_residual_bits) { |
| best_residual_bits = residual_bits; |
| best_parameters_index = !best_parameters_index; |
| best_partitioned_rice->order = partition_order; |
| } |
| } |
| } |
| |
| /* |
| * We are allowed to de-const the pointer based on our special knowledge; |
| * it is const to the outside world. |
| */ |
| { |
| FLAC__EntropyCodingMethod_PartitionedRiceContents* best_partitioned_rice_contents = (FLAC__EntropyCodingMethod_PartitionedRiceContents*)best_partitioned_rice->contents; |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(best_partitioned_rice_contents, max(6, best_partitioned_rice->order)); |
| memcpy(best_partitioned_rice_contents->parameters, private_->partitioned_rice_contents_extra[best_parameters_index].parameters, sizeof(unsigned)*(1<<(best_partitioned_rice->order))); |
| memcpy(best_partitioned_rice_contents->raw_bits, private_->partitioned_rice_contents_extra[best_parameters_index].raw_bits, sizeof(unsigned)*(1<<(best_partitioned_rice->order))); |
| } |
| |
| return best_residual_bits; |
| } |
| |
| void precompute_partition_info_sums_( |
| const FLAC__uint32 abs_residual[], |
| FLAC__uint64 abs_residual_partition_sums[], |
| unsigned residual_samples, |
| unsigned predictor_order, |
| unsigned min_partition_order, |
| unsigned max_partition_order |
| ) |
| { |
| int partition_order; |
| unsigned from_partition, to_partition = 0; |
| const unsigned blocksize = residual_samples + predictor_order; |
| |
| /* first do max_partition_order */ |
| for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) { |
| FLAC__uint64 abs_residual_partition_sum; |
| FLAC__uint32 abs_r; |
| unsigned partition, partition_sample, partition_samples, residual_sample; |
| const unsigned partitions = 1u << partition_order; |
| const unsigned default_partition_samples = blocksize >> partition_order; |
| |
| FLAC__ASSERT(default_partition_samples > predictor_order); |
| |
| for(partition = residual_sample = 0; partition < partitions; partition++) { |
| partition_samples = default_partition_samples; |
| if(partition == 0) |
| partition_samples -= predictor_order; |
| abs_residual_partition_sum = 0; |
| for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) { |
| abs_r = abs_residual[residual_sample]; |
| abs_residual_partition_sum += abs_r; |
| residual_sample++; |
| } |
| abs_residual_partition_sums[partition] = abs_residual_partition_sum; |
| } |
| to_partition = partitions; |
| break; |
| } |
| |
| /* now merge partitions for lower orders */ |
| for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) { |
| FLAC__uint64 s; |
| unsigned i; |
| const unsigned partitions = 1u << partition_order; |
| for(i = 0; i < partitions; i++) { |
| s = abs_residual_partition_sums[from_partition]; |
| from_partition++; |
| abs_residual_partition_sums[to_partition] = s + abs_residual_partition_sums[from_partition]; |
| from_partition++; |
| to_partition++; |
| } |
| } |
| } |
| |
| void precompute_partition_info_escapes_( |
| const FLAC__int32 residual[], |
| unsigned raw_bits_per_partition[], |
| unsigned residual_samples, |
| unsigned predictor_order, |
| unsigned min_partition_order, |
| unsigned max_partition_order |
| ) |
| { |
| int partition_order; |
| unsigned from_partition, to_partition = 0; |
| const unsigned blocksize = residual_samples + predictor_order; |
| |
| /* first do max_partition_order */ |
| for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) { |
| FLAC__int32 r, residual_partition_min, residual_partition_max; |
| unsigned silog2_min, silog2_max; |
| unsigned partition, partition_sample, partition_samples, residual_sample; |
| const unsigned partitions = 1u << partition_order; |
| const unsigned default_partition_samples = blocksize >> partition_order; |
| |
| FLAC__ASSERT(default_partition_samples > predictor_order); |
| |
| for(partition = residual_sample = 0; partition < partitions; partition++) { |
| partition_samples = default_partition_samples; |
| if(partition == 0) |
| partition_samples -= predictor_order; |
| residual_partition_min = residual_partition_max = 0; |
| for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) { |
| r = residual[residual_sample]; |
| if(r < residual_partition_min) |
| residual_partition_min = r; |
| else if(r > residual_partition_max) |
| residual_partition_max = r; |
| residual_sample++; |
| } |
| silog2_min = FLAC__bitmath_silog2(residual_partition_min); |
| silog2_max = FLAC__bitmath_silog2(residual_partition_max); |
| raw_bits_per_partition[partition] = max(silog2_min, silog2_max); |
| } |
| to_partition = partitions; |
| break; |
| } |
| |
| /* now merge partitions for lower orders */ |
| for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) { |
| unsigned m; |
| unsigned i; |
| const unsigned partitions = 1u << partition_order; |
| for(i = 0; i < partitions; i++) { |
| m = raw_bits_per_partition[from_partition]; |
| from_partition++; |
| raw_bits_per_partition[to_partition] = max(m, raw_bits_per_partition[from_partition]); |
| from_partition++; |
| to_partition++; |
| } |
| } |
| } |
| |
| #ifdef VARIABLE_RICE_BITS |
| #undef VARIABLE_RICE_BITS |
| #endif |
| #ifndef DONT_ESTIMATE_RICE_BITS |
| #define VARIABLE_RICE_BITS(value, parameter) ((value) >> (parameter)) |
| #endif |
| |
| #ifdef DONT_ESTIMATE_RICE_BITS |
| FLAC__bool set_partitioned_rice_( |
| const FLAC__uint32 abs_residual[], |
| const FLAC__int32 residual[], |
| const unsigned residual_samples, |
| const unsigned predictor_order, |
| const unsigned suggested_rice_parameter, |
| const unsigned rice_parameter_search_dist, |
| const unsigned partition_order, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, |
| unsigned *bits |
| ) |
| #else |
| FLAC__bool set_partitioned_rice_( |
| const FLAC__uint32 abs_residual[], |
| const unsigned residual_samples, |
| const unsigned predictor_order, |
| const unsigned suggested_rice_parameter, |
| const unsigned rice_parameter_search_dist, |
| const unsigned partition_order, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, |
| unsigned *bits |
| ) |
| #endif |
| { |
| unsigned rice_parameter, partition_bits; |
| #ifndef NO_RICE_SEARCH |
| unsigned best_partition_bits; |
| unsigned min_rice_parameter, max_rice_parameter, best_rice_parameter = 0; |
| #endif |
| unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; |
| unsigned *parameters; |
| |
| FLAC__ASSERT(suggested_rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER); |
| |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order)); |
| parameters = partitioned_rice_contents->parameters; |
| |
| if(partition_order == 0) { |
| unsigned i; |
| |
| #ifndef NO_RICE_SEARCH |
| if(rice_parameter_search_dist) { |
| if(suggested_rice_parameter < rice_parameter_search_dist) |
| min_rice_parameter = 0; |
| else |
| min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist; |
| max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist; |
| if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { |
| #ifdef DEBUG_VERBOSE |
| fprintf(stderr, "clipping rice_parameter (%u -> %u) @2\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); |
| #endif |
| max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; |
| } |
| } |
| else |
| min_rice_parameter = max_rice_parameter = suggested_rice_parameter; |
| |
| best_partition_bits = 0xffffffff; |
| for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { |
| #endif |
| #ifdef VARIABLE_RICE_BITS |
| const unsigned rice_parameter_estimate = rice_parameter-1; |
| partition_bits = (1+rice_parameter) * residual_samples; |
| #else |
| partition_bits = 0; |
| #endif |
| partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; |
| for(i = 0; i < residual_samples; i++) { |
| #ifdef VARIABLE_RICE_BITS |
| partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate); |
| #else |
| partition_bits += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); /* NOTE: we will need to pass in residual[] in addition to abs_residual[] */ |
| #endif |
| } |
| #ifndef NO_RICE_SEARCH |
| if(partition_bits < best_partition_bits) { |
| best_rice_parameter = rice_parameter; |
| best_partition_bits = partition_bits; |
| } |
| } |
| #endif |
| parameters[0] = best_rice_parameter; |
| bits_ += best_partition_bits; |
| } |
| else { |
| unsigned partition, residual_sample, save_residual_sample, partition_sample; |
| unsigned partition_samples; |
| FLAC__uint64 mean, k; |
| const unsigned partitions = 1u << partition_order; |
| for(partition = residual_sample = 0; partition < partitions; partition++) { |
| partition_samples = (residual_samples+predictor_order) >> partition_order; |
| if(partition == 0) { |
| if(partition_samples <= predictor_order) |
| return false; |
| else |
| partition_samples -= predictor_order; |
| } |
| mean = 0; |
| save_residual_sample = residual_sample; |
| for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) |
| mean += abs_residual[residual_sample]; |
| residual_sample = save_residual_sample; |
| /* we are basically calculating the size in bits of the |
| * average residual magnitude in the partition: |
| * rice_parameter = floor(log2(mean/partition_samples)) |
| * 'mean' is not a good name for the variable, it is |
| * actually the sum of magnitudes of all residual values |
| * in the partition, so the actual mean is |
| * mean/partition_samples |
| */ |
| for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1) |
| ; |
| if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { |
| #ifdef DEBUG_VERBOSE |
| fprintf(stderr, "clipping rice_parameter (%u -> %u) @3\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); |
| #endif |
| rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; |
| } |
| |
| #ifndef NO_RICE_SEARCH |
| if(rice_parameter_search_dist) { |
| if(rice_parameter < rice_parameter_search_dist) |
| min_rice_parameter = 0; |
| else |
| min_rice_parameter = rice_parameter - rice_parameter_search_dist; |
| max_rice_parameter = rice_parameter + rice_parameter_search_dist; |
| if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { |
| #ifdef DEBUG_VERBOSE |
| fprintf(stderr, "clipping rice_parameter (%u -> %u) @4\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); |
| #endif |
| max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; |
| } |
| } |
| else |
| min_rice_parameter = max_rice_parameter = rice_parameter; |
| |
| best_partition_bits = 0xffffffff; |
| for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { |
| #endif |
| #ifdef VARIABLE_RICE_BITS |
| const unsigned rice_parameter_estimate = rice_parameter-1; |
| partition_bits = (1+rice_parameter) * partition_samples; |
| #else |
| partition_bits = 0; |
| #endif |
| partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; |
| save_residual_sample = residual_sample; |
| for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) { |
| #ifdef VARIABLE_RICE_BITS |
| partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate); |
| #else |
| partition_bits += FLAC__bitbuffer_rice_bits(residual[residual_sample], rice_parameter); /* NOTE: we will need to pass in residual[] in addition to abs_residual[] */ |
| #endif |
| } |
| #ifndef NO_RICE_SEARCH |
| if(rice_parameter != max_rice_parameter) |
| residual_sample = save_residual_sample; |
| if(partition_bits < best_partition_bits) { |
| best_rice_parameter = rice_parameter; |
| best_partition_bits = partition_bits; |
| } |
| } |
| #endif |
| parameters[partition] = best_rice_parameter; |
| bits_ += best_partition_bits; |
| } |
| } |
| |
| *bits = bits_; |
| return true; |
| } |
| |
| #ifdef DONT_ESTIMATE_RICE_BITS |
| FLAC__bool set_partitioned_rice_with_precompute_( |
| const FLAC__int32 residual[], |
| const FLAC__uint64 abs_residual_partition_sums[], |
| const unsigned raw_bits_per_partition[], |
| const unsigned residual_samples, |
| const unsigned predictor_order, |
| const unsigned suggested_rice_parameter, |
| const unsigned rice_parameter_search_dist, |
| const unsigned partition_order, |
| const FLAC__bool search_for_escapes, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, |
| unsigned *bits |
| ) |
| #else |
| FLAC__bool set_partitioned_rice_with_precompute_( |
| const FLAC__uint32 abs_residual[], |
| const FLAC__uint64 abs_residual_partition_sums[], |
| const unsigned raw_bits_per_partition[], |
| const unsigned residual_samples, |
| const unsigned predictor_order, |
| const unsigned suggested_rice_parameter, |
| const unsigned rice_parameter_search_dist, |
| const unsigned partition_order, |
| const FLAC__bool search_for_escapes, |
| FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, |
| unsigned *bits |
| ) |
| #endif |
| { |
| unsigned rice_parameter, partition_bits; |
| #ifndef NO_RICE_SEARCH |
| unsigned best_partition_bits; |
| unsigned min_rice_parameter, max_rice_parameter, best_rice_parameter = 0; |
| #endif |
| unsigned flat_bits; |
| unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; |
| unsigned *parameters, *raw_bits; |
| |
| FLAC__ASSERT(suggested_rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER); |
| |
| FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order)); |
| parameters = partitioned_rice_contents->parameters; |
| raw_bits = partitioned_rice_contents->raw_bits; |
| |
| if(partition_order == 0) { |
| unsigned i; |
| |
| #ifndef NO_RICE_SEARCH |
| if(rice_parameter_search_dist) { |
| if(suggested_rice_parameter < rice_parameter_search_dist) |
| min_rice_parameter = 0; |
| else |
| min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist; |
| max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist; |
| if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { |
| #ifdef DEBUG_VERBOSE |
| fprintf(stderr, "clipping rice_parameter (%u -> %u) @5\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); |
| #endif |
| max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; |
| } |
| } |
| else |
| min_rice_parameter = max_rice_parameter = suggested_rice_parameter; |
| |
| best_partition_bits = 0xffffffff; |
| for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { |
| #endif |
| #ifdef VARIABLE_RICE_BITS |
| const unsigned rice_parameter_estimate = rice_parameter-1; |
| partition_bits = (1+rice_parameter) * residual_samples; |
| #else |
| partition_bits = 0; |
| #endif |
| partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; |
| for(i = 0; i < residual_samples; i++) { |
| #ifdef VARIABLE_RICE_BITS |
| partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate); |
| #else |
| partition_bits += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */ |
| #endif |
| } |
| #ifndef NO_RICE_SEARCH |
| if(partition_bits < best_partition_bits) { |
| best_rice_parameter = rice_parameter; |
| best_partition_bits = partition_bits; |
| } |
| } |
| #endif |
| if(search_for_escapes) { |
| flat_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[0] * residual_samples; |
| if(flat_bits <= best_partition_bits) { |
| raw_bits[0] = raw_bits_per_partition[0]; |
| best_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; |
| best_partition_bits = flat_bits; |
| } |
| } |
| parameters[0] = best_rice_parameter; |
| bits_ += best_partition_bits; |
| } |
| else { |
| unsigned partition, residual_sample, save_residual_sample, partition_sample; |
| unsigned partition_samples; |
| FLAC__uint64 mean, k; |
| const unsigned partitions = 1u << partition_order; |
| for(partition = residual_sample = 0; partition < partitions; partition++) { |
| partition_samples = (residual_samples+predictor_order) >> partition_order; |
| if(partition == 0) { |
| if(partition_samples <= predictor_order) |
| return false; |
| else |
| partition_samples -= predictor_order; |
| } |
| mean = abs_residual_partition_sums[partition]; |
| /* we are basically calculating the size in bits of the |
| * average residual magnitude in the partition: |
| * rice_parameter = floor(log2(mean/partition_samples)) |
| * 'mean' is not a good name for the variable, it is |
| * actually the sum of magnitudes of all residual values |
| * in the partition, so the actual mean is |
| * mean/partition_samples |
| */ |
| for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1) |
| ; |
| if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { |
| #ifdef DEBUG_VERBOSE |
| fprintf(stderr, "clipping rice_parameter (%u -> %u) @6\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); |
| #endif |
| rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; |
| } |
| |
| #ifndef NO_RICE_SEARCH |
| if(rice_parameter_search_dist) { |
| if(rice_parameter < rice_parameter_search_dist) |
| min_rice_parameter = 0; |
| else |
| min_rice_parameter = rice_parameter - rice_parameter_search_dist; |
| max_rice_parameter = rice_parameter + rice_parameter_search_dist; |
| if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { |
| #ifdef DEBUG_VERBOSE |
| fprintf(stderr, "clipping rice_parameter (%u -> %u) @7\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); |
| #endif |
| max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; |
| } |
| } |
| else |
| min_rice_parameter = max_rice_parameter = rice_parameter; |
| |
| best_partition_bits = 0xffffffff; |
| for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { |
| #endif |
| #ifdef VARIABLE_RICE_BITS |
| const unsigned rice_parameter_estimate = rice_parameter-1; |
| partition_bits = (1+rice_parameter) * partition_samples; |
| #else |
| partition_bits = 0; |
| #endif |
| partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; |
| save_residual_sample = residual_sample; |
| for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) { |
| #ifdef VARIABLE_RICE_BITS |
| partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate); |
| #else |
| partition_bits += FLAC__bitbuffer_rice_bits(residual[residual_sample], rice_parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */ |
| #endif |
| } |
| #ifndef NO_RICE_SEARCH |
| if(rice_parameter != max_rice_parameter) |
| residual_sample = save_residual_sample; |
| if(partition_bits < best_partition_bits) { |
| best_rice_parameter = rice_parameter; |
| best_partition_bits = partition_bits; |
| } |
| } |
| #endif |
| if(search_for_escapes) { |
| flat_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[partition] * partition_samples; |
| if(flat_bits <= best_partition_bits) { |
| raw_bits[partition] = raw_bits_per_partition[partition]; |
| best_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; |
| best_partition_bits = flat_bits; |
| } |
| } |
| parameters[partition] = best_rice_parameter; |
| bits_ += best_partition_bits; |
| } |
| } |
| |
| *bits = bits_; |
| return true; |
| } |
| |
| unsigned get_wasted_bits_(FLAC__int32 signal[], unsigned samples) |
| { |
| unsigned i, shift; |
| FLAC__int32 x = 0; |
| |
| for(i = 0; i < samples && !(x&1); i++) |
| x |= signal[i]; |
| |
| if(x == 0) { |
| shift = 0; |
| } |
| else { |
| for(shift = 0; !(x&1); shift++) |
| x >>= 1; |
| } |
| |
| if(shift > 0) { |
| for(i = 0; i < samples; i++) |
| signal[i] >>= shift; |
| } |
| |
| return shift; |
| } |
| |
| void append_to_verify_fifo_(verify_input_fifo *fifo, const FLAC__int32 * const input[], unsigned input_offset, unsigned channels, unsigned wide_samples) |
| { |
| unsigned channel; |
| |
| for(channel = 0; channel < channels; channel++) |
| memcpy(&fifo->data[channel][fifo->tail], &input[channel][input_offset], sizeof(FLAC__int32) * wide_samples); |
| |
| fifo->tail += wide_samples; |
| |
| FLAC__ASSERT(fifo->tail <= fifo->size); |
| } |
| |
| void append_to_verify_fifo_interleaved_(verify_input_fifo *fifo, const FLAC__int32 input[], unsigned input_offset, unsigned channels, unsigned wide_samples) |
| { |
| unsigned channel; |
| unsigned sample, wide_sample; |
| unsigned tail = fifo->tail; |
| |
| sample = input_offset * channels; |
| for(wide_sample = 0; wide_sample < wide_samples; wide_sample++) { |
| for(channel = 0; channel < channels; channel++) |
| fifo->data[channel][tail] = input[sample++]; |
| tail++; |
| } |
| fifo->tail = tail; |
| |
| FLAC__ASSERT(fifo->tail <= fifo->size); |
| } |
| |
| FLAC__StreamDecoderReadStatus verify_read_callback_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], unsigned *bytes, void *client_data) |
| { |
| FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data; |
| const unsigned encoded_bytes = encoder->private_->verify.output.bytes; |
| (void)decoder; |
| |
| if(encoder->private_->verify.needs_magic_hack) { |
| FLAC__ASSERT(*bytes >= FLAC__STREAM_SYNC_LENGTH); |
| *bytes = FLAC__STREAM_SYNC_LENGTH; |
| memcpy(buffer, FLAC__STREAM_SYNC_STRING, *bytes); |
| encoder->private_->verify.needs_magic_hack = false; |
| } |
| else { |
| if(encoded_bytes == 0) { |
| /* |
| * If we get here, a FIFO underflow has occurred, |
| * which means there is a bug somewhere. |
| */ |
| FLAC__ASSERT(0); |
| return FLAC__STREAM_DECODER_READ_STATUS_ABORT; |
| } |
| else if(encoded_bytes < *bytes) |
| *bytes = encoded_bytes; |
| memcpy(buffer, encoder->private_->verify.output.data, *bytes); |
| encoder->private_->verify.output.data += *bytes; |
| encoder->private_->verify.output.bytes -= *bytes; |
| } |
| |
| return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE; |
| } |
| |
| FLAC__StreamDecoderWriteStatus verify_write_callback_(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data) |
| { |
| FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder *)client_data; |
| unsigned channel; |
| const unsigned channels = FLAC__stream_decoder_get_channels(decoder); |
| const unsigned blocksize = frame->header.blocksize; |
| const unsigned bytes_per_block = sizeof(FLAC__int32) * blocksize; |
| |
| for(channel = 0; channel < channels; channel++) { |
| if(0 != memcmp(buffer[channel], encoder->private_->verify.input_fifo.data[channel], bytes_per_block)) { |
| unsigned i, sample = 0; |
| FLAC__int32 expect = 0, got = 0; |
| |
| for(i = 0; i < blocksize; i++) { |
| if(buffer[channel][i] != encoder->private_->verify.input_fifo.data[channel][i]) { |
| sample = i; |
| expect = (FLAC__int32)encoder->private_->verify.input_fifo.data[channel][i]; |
| got = (FLAC__int32)buffer[channel][i]; |
| break; |
| } |
| } |
| FLAC__ASSERT(i < blocksize); |
| FLAC__ASSERT(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER); |
| encoder->private_->verify.error_stats.absolute_sample = frame->header.number.sample_number + sample; |
| encoder->private_->verify.error_stats.frame_number = (unsigned)(frame->header.number.sample_number / blocksize); |
| encoder->private_->verify.error_stats.channel = channel; |
| encoder->private_->verify.error_stats.sample = sample; |
| encoder->private_->verify.error_stats.expected = expect; |
| encoder->private_->verify.error_stats.got = got; |
| encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA; |
| return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT; |
| } |
| } |
| /* dequeue the frame from the fifo */ |
| for(channel = 0; channel < channels; channel++) { |
| memmove(&encoder->private_->verify.input_fifo.data[channel][0], &encoder->private_->verify.input_fifo.data[channel][blocksize], encoder->private_->verify.input_fifo.tail - blocksize); |
| } |
| encoder->private_->verify.input_fifo.tail -= blocksize; |
| return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE; |
| } |
| |
| void verify_metadata_callback_(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data) |
| { |
| (void)decoder, (void)metadata, (void)client_data; |
| } |
| |
| void verify_error_callback_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data) |
| { |
| FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data; |
| (void)decoder, (void)status; |
| encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; |
| } |