blob: 8ae4ba422a3e82735da918a33aeddeff71fcde3a [file] [log] [blame]
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000,2001,2002,2003,2004,2005 Josh Coalson
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <limits.h>
#include <stdio.h>
#include <stdlib.h> /* for malloc() */
#include <string.h> /* for memcpy() */
#include "FLAC/assert.h"
#include "FLAC/stream_decoder.h"
#include "protected/stream_encoder.h"
#include "private/bitbuffer.h"
#include "private/bitmath.h"
#include "private/crc.h"
#include "private/cpu.h"
#include "private/fixed.h"
#include "private/format.h"
#include "private/lpc.h"
#include "private/md5.h"
#include "private/memory.h"
#include "private/stream_encoder_framing.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef min
#undef min
#endif
#define min(x,y) ((x)<(y)?(x):(y))
#ifdef max
#undef max
#endif
#define max(x,y) ((x)>(y)?(x):(y))
typedef struct {
FLAC__int32 *data[FLAC__MAX_CHANNELS];
unsigned size; /* of each data[] in samples */
unsigned tail;
} verify_input_fifo;
typedef struct {
const FLAC__byte *data;
unsigned capacity;
unsigned bytes;
} verify_output;
typedef enum {
ENCODER_IN_MAGIC = 0,
ENCODER_IN_METADATA = 1,
ENCODER_IN_AUDIO = 2
} EncoderStateHint;
/***********************************************************************
*
* Private class method prototypes
*
***********************************************************************/
static void set_defaults_(FLAC__StreamEncoder *encoder);
static void free_(FLAC__StreamEncoder *encoder);
static FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_size);
static FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, unsigned samples);
static FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame);
static FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame);
static FLAC__bool process_subframe_(
FLAC__StreamEncoder *encoder,
unsigned min_partition_order,
unsigned max_partition_order,
FLAC__bool precompute_partition_sums,
const FLAC__FrameHeader *frame_header,
unsigned subframe_bps,
const FLAC__int32 integer_signal[],
#ifndef FLAC__INTEGER_ONLY_LIBRARY
const FLAC__real real_signal[],
#endif
FLAC__Subframe *subframe[2],
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2],
FLAC__int32 *residual[2],
unsigned *best_subframe,
unsigned *best_bits
);
static FLAC__bool add_subframe_(
FLAC__StreamEncoder *encoder,
const FLAC__FrameHeader *frame_header,
unsigned subframe_bps,
const FLAC__Subframe *subframe,
FLAC__BitBuffer *frame
);
static unsigned evaluate_constant_subframe_(
const FLAC__int32 signal,
unsigned subframe_bps,
FLAC__Subframe *subframe
);
static unsigned evaluate_fixed_subframe_(
FLAC__StreamEncoder *encoder,
const FLAC__int32 signal[],
FLAC__int32 residual[],
FLAC__uint32 abs_residual[],
FLAC__uint64 abs_residual_partition_sums[],
unsigned raw_bits_per_partition[],
unsigned blocksize,
unsigned subframe_bps,
unsigned order,
unsigned rice_parameter,
unsigned min_partition_order,
unsigned max_partition_order,
FLAC__bool precompute_partition_sums,
FLAC__bool do_escape_coding,
unsigned rice_parameter_search_dist,
FLAC__Subframe *subframe,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents
);
#ifndef FLAC__INTEGER_ONLY_LIBRARY
static unsigned evaluate_lpc_subframe_(
FLAC__StreamEncoder *encoder,
const FLAC__int32 signal[],
FLAC__int32 residual[],
FLAC__uint32 abs_residual[],
FLAC__uint64 abs_residual_partition_sums[],
unsigned raw_bits_per_partition[],
const FLAC__real lp_coeff[],
unsigned blocksize,
unsigned subframe_bps,
unsigned order,
unsigned qlp_coeff_precision,
unsigned rice_parameter,
unsigned min_partition_order,
unsigned max_partition_order,
FLAC__bool precompute_partition_sums,
FLAC__bool do_escape_coding,
unsigned rice_parameter_search_dist,
FLAC__Subframe *subframe,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents
);
#endif
static unsigned evaluate_verbatim_subframe_(
const FLAC__int32 signal[],
unsigned blocksize,
unsigned subframe_bps,
FLAC__Subframe *subframe
);
static unsigned find_best_partition_order_(
struct FLAC__StreamEncoderPrivate *private_,
const FLAC__int32 residual[],
FLAC__uint32 abs_residual[],
FLAC__uint64 abs_residual_partition_sums[],
unsigned raw_bits_per_partition[],
unsigned residual_samples,
unsigned predictor_order,
unsigned rice_parameter,
unsigned min_partition_order,
unsigned max_partition_order,
FLAC__bool precompute_partition_sums,
FLAC__bool do_escape_coding,
unsigned rice_parameter_search_dist,
FLAC__EntropyCodingMethod_PartitionedRice *best_partitioned_rice
);
static void precompute_partition_info_sums_(
const FLAC__uint32 abs_residual[],
FLAC__uint64 abs_residual_partition_sums[],
unsigned residual_samples,
unsigned predictor_order,
unsigned min_partition_order,
unsigned max_partition_order
);
static void precompute_partition_info_escapes_(
const FLAC__int32 residual[],
unsigned raw_bits_per_partition[],
unsigned residual_samples,
unsigned predictor_order,
unsigned min_partition_order,
unsigned max_partition_order
);
#ifdef DONT_ESTIMATE_RICE_BITS
static FLAC__bool set_partitioned_rice_(
const FLAC__uint32 abs_residual[],
const FLAC__int32 residual[],
const unsigned residual_samples,
const unsigned predictor_order,
const unsigned suggested_rice_parameter,
const unsigned rice_parameter_search_dist,
const unsigned partition_order,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
unsigned *bits
);
static FLAC__bool set_partitioned_rice_with_precompute_(
const FLAC__int32 residual[],
const FLAC__uint64 abs_residual_partition_sums[],
const unsigned raw_bits_per_partition[],
const unsigned residual_samples,
const unsigned predictor_order,
const unsigned suggested_rice_parameter,
const unsigned rice_parameter_search_dist,
const unsigned partition_order,
const FLAC__bool search_for_escapes,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
unsigned *bits
);
#else
static FLAC__bool set_partitioned_rice_(
const FLAC__uint32 abs_residual[],
const unsigned residual_samples,
const unsigned predictor_order,
const unsigned suggested_rice_parameter,
const unsigned rice_parameter_search_dist,
const unsigned partition_order,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
unsigned *bits
);
static FLAC__bool set_partitioned_rice_with_precompute_(
const FLAC__uint32 abs_residual[],
const FLAC__uint64 abs_residual_partition_sums[],
const unsigned raw_bits_per_partition[],
const unsigned residual_samples,
const unsigned predictor_order,
const unsigned suggested_rice_parameter,
const unsigned rice_parameter_search_dist,
const unsigned partition_order,
const FLAC__bool search_for_escapes,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
unsigned *bits
);
#endif
static unsigned get_wasted_bits_(FLAC__int32 signal[], unsigned samples);
/* verify-related routines: */
static void append_to_verify_fifo_(
verify_input_fifo *fifo,
const FLAC__int32 * const input[],
unsigned input_offset,
unsigned channels,
unsigned wide_samples
);
static void append_to_verify_fifo_interleaved_(
verify_input_fifo *fifo,
const FLAC__int32 input[],
unsigned input_offset,
unsigned channels,
unsigned wide_samples
);
static FLAC__StreamDecoderReadStatus verify_read_callback_(
const FLAC__StreamDecoder *decoder,
FLAC__byte buffer[],
unsigned *bytes,
void *client_data
);
static FLAC__StreamDecoderWriteStatus verify_write_callback_(
const FLAC__StreamDecoder *decoder,
const FLAC__Frame *frame,
const FLAC__int32 * const buffer[],
void *client_data
);
static void verify_metadata_callback_(
const FLAC__StreamDecoder *decoder,
const FLAC__StreamMetadata *metadata,
void *client_data
);
static void verify_error_callback_(
const FLAC__StreamDecoder *decoder,
FLAC__StreamDecoderErrorStatus status,
void *client_data
);
/***********************************************************************
*
* Private class data
*
***********************************************************************/
typedef struct FLAC__StreamEncoderPrivate {
unsigned input_capacity; /* current size (in samples) of the signal and residual buffers */
FLAC__int32 *integer_signal[FLAC__MAX_CHANNELS]; /* the integer version of the input signal */
FLAC__int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */
#ifndef FLAC__INTEGER_ONLY_LIBRARY
FLAC__real *real_signal[FLAC__MAX_CHANNELS]; /* the floating-point version of the input signal */
FLAC__real *real_signal_mid_side[2]; /* the floating-point version of the mid-side input signal (stereo only) */
#endif
unsigned subframe_bps[FLAC__MAX_CHANNELS]; /* the effective bits per sample of the input signal (stream bps - wasted bits) */
unsigned subframe_bps_mid_side[2]; /* the effective bits per sample of the mid-side input signal (stream bps - wasted bits + 0/1) */
FLAC__int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */
FLAC__int32 *residual_workspace_mid_side[2][2];
FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2];
FLAC__Subframe subframe_workspace_mid_side[2][2];
FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2];
FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2];
FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace[FLAC__MAX_CHANNELS][2];
FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace_mid_side[FLAC__MAX_CHANNELS][2];
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr[FLAC__MAX_CHANNELS][2];
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr_mid_side[FLAC__MAX_CHANNELS][2];
unsigned best_subframe[FLAC__MAX_CHANNELS]; /* index into the above workspaces */
unsigned best_subframe_mid_side[2];
unsigned best_subframe_bits[FLAC__MAX_CHANNELS]; /* size in bits of the best subframe for each channel */
unsigned best_subframe_bits_mid_side[2];
FLAC__uint32 *abs_residual; /* workspace where abs(candidate residual) is stored */
FLAC__uint64 *abs_residual_partition_sums; /* workspace where the sum of abs(candidate residual) for each partition is stored */
unsigned *raw_bits_per_partition; /* workspace where the sum of silog2(candidate residual) for each partition is stored */
FLAC__BitBuffer *frame; /* the current frame being worked on */
unsigned loose_mid_side_stereo_frames; /* rounded number of frames the encoder will use before trying both independent and mid/side frames again */
unsigned loose_mid_side_stereo_frame_count; /* number of frames using the current channel assignment */
FLAC__ChannelAssignment last_channel_assignment;
FLAC__StreamMetadata metadata;
unsigned current_sample_number;
unsigned current_frame_number;
struct FLAC__MD5Context md5context;
FLAC__CPUInfo cpuinfo;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
unsigned (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
#else
unsigned (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
#endif
#ifndef FLAC__INTEGER_ONLY_LIBRARY
void (*local_lpc_compute_autocorrelation)(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
void (*local_lpc_compute_residual_from_qlp_coefficients)(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
void (*local_lpc_compute_residual_from_qlp_coefficients_64bit)(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
void (*local_lpc_compute_residual_from_qlp_coefficients_16bit)(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
#endif
FLAC__bool use_wide_by_block; /* use slow 64-bit versions of some functions because of the block size */
FLAC__bool use_wide_by_partition; /* use slow 64-bit versions of some functions because of the min partition order and blocksize */
FLAC__bool use_wide_by_order; /* use slow 64-bit versions of some functions because of the lpc order */
FLAC__bool precompute_partition_sums; /* our initial guess as to whether precomputing the partitions sums will be a speed improvement */
FLAC__bool disable_constant_subframes;
FLAC__bool disable_fixed_subframes;
FLAC__bool disable_verbatim_subframes;
FLAC__StreamEncoderWriteCallback write_callback;
FLAC__StreamEncoderMetadataCallback metadata_callback;
void *client_data;
/* unaligned (original) pointers to allocated data */
FLAC__int32 *integer_signal_unaligned[FLAC__MAX_CHANNELS];
FLAC__int32 *integer_signal_mid_side_unaligned[2];
#ifndef FLAC__INTEGER_ONLY_LIBRARY
FLAC__real *real_signal_unaligned[FLAC__MAX_CHANNELS];
FLAC__real *real_signal_mid_side_unaligned[2];
#endif
FLAC__int32 *residual_workspace_unaligned[FLAC__MAX_CHANNELS][2];
FLAC__int32 *residual_workspace_mid_side_unaligned[2][2];
FLAC__uint32 *abs_residual_unaligned;
FLAC__uint64 *abs_residual_partition_sums_unaligned;
unsigned *raw_bits_per_partition_unaligned;
/*
* These fields have been moved here from private function local
* declarations merely to save stack space during encoding.
*/
#ifndef FLAC__INTEGER_ONLY_LIBRARY
FLAC__real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER]; /* from process_subframe_() */
#endif
FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_extra[2]; /* from find_best_partition_order_() */
/*
* The data for the verify section
*/
struct {
FLAC__StreamDecoder *decoder;
EncoderStateHint state_hint;
FLAC__bool needs_magic_hack;
verify_input_fifo input_fifo;
verify_output output;
struct {
FLAC__uint64 absolute_sample;
unsigned frame_number;
unsigned channel;
unsigned sample;
FLAC__int32 expected;
FLAC__int32 got;
} error_stats;
} verify;
FLAC__bool is_being_deleted; /* if true, call to ..._finish() from ..._delete() will not call the callbacks */
} FLAC__StreamEncoderPrivate;
/***********************************************************************
*
* Public static class data
*
***********************************************************************/
FLAC_API const char * const FLAC__StreamEncoderStateString[] = {
"FLAC__STREAM_ENCODER_OK",
"FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR",
"FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA",
"FLAC__STREAM_ENCODER_INVALID_CALLBACK",
"FLAC__STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS",
"FLAC__STREAM_ENCODER_INVALID_BITS_PER_SAMPLE",
"FLAC__STREAM_ENCODER_INVALID_SAMPLE_RATE",
"FLAC__STREAM_ENCODER_INVALID_BLOCK_SIZE",
"FLAC__STREAM_ENCODER_INVALID_MAX_LPC_ORDER",
"FLAC__STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION",
"FLAC__STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH",
"FLAC__STREAM_ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH",
"FLAC__STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE",
"FLAC__STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER",
"FLAC__STREAM_ENCODER_NOT_STREAMABLE",
"FLAC__STREAM_ENCODER_FRAMING_ERROR",
"FLAC__STREAM_ENCODER_INVALID_METADATA",
"FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING",
"FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING",
"FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR",
"FLAC__STREAM_ENCODER_ALREADY_INITIALIZED",
"FLAC__STREAM_ENCODER_UNINITIALIZED"
};
FLAC_API const char * const FLAC__StreamEncoderWriteStatusString[] = {
"FLAC__STREAM_ENCODER_WRITE_STATUS_OK",
"FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR"
};
/***********************************************************************
*
* Class constructor/destructor
*
*/
FLAC_API FLAC__StreamEncoder *FLAC__stream_encoder_new()
{
FLAC__StreamEncoder *encoder;
unsigned i;
FLAC__ASSERT(sizeof(int) >= 4); /* we want to die right away if this is not true */
encoder = (FLAC__StreamEncoder*)calloc(1, sizeof(FLAC__StreamEncoder));
if(encoder == 0) {
return 0;
}
encoder->protected_ = (FLAC__StreamEncoderProtected*)calloc(1, sizeof(FLAC__StreamEncoderProtected));
if(encoder->protected_ == 0) {
free(encoder);
return 0;
}
encoder->private_ = (FLAC__StreamEncoderPrivate*)calloc(1, sizeof(FLAC__StreamEncoderPrivate));
if(encoder->private_ == 0) {
free(encoder->protected_);
free(encoder);
return 0;
}
encoder->private_->frame = FLAC__bitbuffer_new();
if(encoder->private_->frame == 0) {
free(encoder->private_);
free(encoder->protected_);
free(encoder);
return 0;
}
set_defaults_(encoder);
encoder->private_->is_being_deleted = false;
for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
encoder->private_->subframe_workspace_ptr[i][0] = &encoder->private_->subframe_workspace[i][0];
encoder->private_->subframe_workspace_ptr[i][1] = &encoder->private_->subframe_workspace[i][1];
}
for(i = 0; i < 2; i++) {
encoder->private_->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->subframe_workspace_mid_side[i][0];
encoder->private_->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->subframe_workspace_mid_side[i][1];
}
for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
encoder->private_->partitioned_rice_contents_workspace_ptr[i][0] = &encoder->private_->partitioned_rice_contents_workspace[i][0];
encoder->private_->partitioned_rice_contents_workspace_ptr[i][1] = &encoder->private_->partitioned_rice_contents_workspace[i][1];
}
for(i = 0; i < 2; i++) {
encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][0] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0];
encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][1] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1];
}
for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][0]);
FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][1]);
}
for(i = 0; i < 2; i++) {
FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]);
FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]);
}
for(i = 0; i < 2; i++)
FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_extra[i]);
encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED;
return encoder;
}
FLAC_API void FLAC__stream_encoder_delete(FLAC__StreamEncoder *encoder)
{
unsigned i;
FLAC__ASSERT(0 != encoder);
FLAC__ASSERT(0 != encoder->protected_);
FLAC__ASSERT(0 != encoder->private_);
FLAC__ASSERT(0 != encoder->private_->frame);
encoder->private_->is_being_deleted = true;
FLAC__stream_encoder_finish(encoder);
if(0 != encoder->private_->verify.decoder)
FLAC__stream_decoder_delete(encoder->private_->verify.decoder);
for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][0]);
FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][1]);
}
for(i = 0; i < 2; i++) {
FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]);
FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]);
}
for(i = 0; i < 2; i++)
FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_extra[i]);
FLAC__bitbuffer_delete(encoder->private_->frame);
free(encoder->private_);
free(encoder->protected_);
free(encoder);
}
/***********************************************************************
*
* Public class methods
*
***********************************************************************/
FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_init(FLAC__StreamEncoder *encoder)
{
unsigned i;
FLAC__bool metadata_has_seektable, metadata_has_vorbis_comment;
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return encoder->protected_->state = FLAC__STREAM_ENCODER_ALREADY_INITIALIZED;
encoder->protected_->state = FLAC__STREAM_ENCODER_OK;
if(0 == encoder->private_->write_callback || 0 == encoder->private_->metadata_callback)
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_CALLBACK;
if(encoder->protected_->channels == 0 || encoder->protected_->channels > FLAC__MAX_CHANNELS)
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS;
if(encoder->protected_->do_mid_side_stereo && encoder->protected_->channels != 2)
return encoder->protected_->state = FLAC__STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH;
if(encoder->protected_->loose_mid_side_stereo && !encoder->protected_->do_mid_side_stereo)
return encoder->protected_->state = FLAC__STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE;
if(encoder->protected_->bits_per_sample >= 32)
encoder->protected_->do_mid_side_stereo = false; /* since we do 32-bit math, the side channel would have 33 bps and overflow */
if(encoder->protected_->bits_per_sample < FLAC__MIN_BITS_PER_SAMPLE || encoder->protected_->bits_per_sample > FLAC__REFERENCE_CODEC_MAX_BITS_PER_SAMPLE)
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_BITS_PER_SAMPLE;
if(!FLAC__format_sample_rate_is_valid(encoder->protected_->sample_rate))
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_SAMPLE_RATE;
if(encoder->protected_->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->protected_->blocksize > FLAC__MAX_BLOCK_SIZE)
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_BLOCK_SIZE;
if(encoder->protected_->max_lpc_order > FLAC__MAX_LPC_ORDER)
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_MAX_LPC_ORDER;
if(encoder->protected_->blocksize < encoder->protected_->max_lpc_order)
return encoder->protected_->state = FLAC__STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER;
if(encoder->protected_->qlp_coeff_precision == 0) {
if(encoder->protected_->bits_per_sample < 16) {
/* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */
/* @@@ until then we'll make a guess */
encoder->protected_->qlp_coeff_precision = max(FLAC__MIN_QLP_COEFF_PRECISION, 2 + encoder->protected_->bits_per_sample / 2);
}
else if(encoder->protected_->bits_per_sample == 16) {
if(encoder->protected_->blocksize <= 192)
encoder->protected_->qlp_coeff_precision = 7;
else if(encoder->protected_->blocksize <= 384)
encoder->protected_->qlp_coeff_precision = 8;
else if(encoder->protected_->blocksize <= 576)
encoder->protected_->qlp_coeff_precision = 9;
else if(encoder->protected_->blocksize <= 1152)
encoder->protected_->qlp_coeff_precision = 10;
else if(encoder->protected_->blocksize <= 2304)
encoder->protected_->qlp_coeff_precision = 11;
else if(encoder->protected_->blocksize <= 4608)
encoder->protected_->qlp_coeff_precision = 12;
else
encoder->protected_->qlp_coeff_precision = 13;
}
else {
if(encoder->protected_->blocksize <= 384)
encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-2;
else if(encoder->protected_->blocksize <= 1152)
encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-1;
else
encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION;
}
FLAC__ASSERT(encoder->protected_->qlp_coeff_precision <= FLAC__MAX_QLP_COEFF_PRECISION);
}
else if(encoder->protected_->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->protected_->qlp_coeff_precision > FLAC__MAX_QLP_COEFF_PRECISION)
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION;
if(encoder->protected_->streamable_subset) {
if(
encoder->protected_->blocksize != 192 &&
encoder->protected_->blocksize != 576 &&
encoder->protected_->blocksize != 1152 &&
encoder->protected_->blocksize != 2304 &&
encoder->protected_->blocksize != 4608 &&
encoder->protected_->blocksize != 256 &&
encoder->protected_->blocksize != 512 &&
encoder->protected_->blocksize != 1024 &&
encoder->protected_->blocksize != 2048 &&
encoder->protected_->blocksize != 4096 &&
encoder->protected_->blocksize != 8192 &&
encoder->protected_->blocksize != 16384
)
return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE;
if(
encoder->protected_->sample_rate != 8000 &&
encoder->protected_->sample_rate != 16000 &&
encoder->protected_->sample_rate != 22050 &&
encoder->protected_->sample_rate != 24000 &&
encoder->protected_->sample_rate != 32000 &&
encoder->protected_->sample_rate != 44100 &&
encoder->protected_->sample_rate != 48000 &&
encoder->protected_->sample_rate != 96000
)
return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE;
if(
encoder->protected_->bits_per_sample != 8 &&
encoder->protected_->bits_per_sample != 12 &&
encoder->protected_->bits_per_sample != 16 &&
encoder->protected_->bits_per_sample != 20 &&
encoder->protected_->bits_per_sample != 24
)
return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE;
if(encoder->protected_->max_residual_partition_order > FLAC__SUBSET_MAX_RICE_PARTITION_ORDER)
return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE;
}
if(encoder->protected_->max_residual_partition_order >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
encoder->protected_->max_residual_partition_order = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1;
if(encoder->protected_->min_residual_partition_order >= encoder->protected_->max_residual_partition_order)
encoder->protected_->min_residual_partition_order = encoder->protected_->max_residual_partition_order;
/* validate metadata */
if(0 == encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0)
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA;
metadata_has_seektable = false;
metadata_has_vorbis_comment = false;
for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) {
if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_STREAMINFO)
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA;
else if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_SEEKTABLE) {
if(metadata_has_seektable) /* only one is allowed */
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA;
metadata_has_seektable = true;
if(!FLAC__format_seektable_is_legal(&encoder->protected_->metadata[i]->data.seek_table))
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA;
}
else if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) {
if(metadata_has_vorbis_comment) /* only one is allowed */
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA;
metadata_has_vorbis_comment = true;
}
else if(encoder->protected_->metadata[i]->type == FLAC__METADATA_TYPE_CUESHEET) {
if(!FLAC__format_cuesheet_is_legal(&encoder->protected_->metadata[i]->data.cue_sheet, encoder->protected_->metadata[i]->data.cue_sheet.is_cd, /*violation=*/0))
return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_METADATA;
}
}
encoder->private_->input_capacity = 0;
for(i = 0; i < encoder->protected_->channels; i++) {
encoder->private_->integer_signal_unaligned[i] = encoder->private_->integer_signal[i] = 0;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal_unaligned[i] = encoder->private_->real_signal[i] = 0;
#endif
}
for(i = 0; i < 2; i++) {
encoder->private_->integer_signal_mid_side_unaligned[i] = encoder->private_->integer_signal_mid_side[i] = 0;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal_mid_side_unaligned[i] = encoder->private_->real_signal_mid_side[i] = 0;
#endif
}
for(i = 0; i < encoder->protected_->channels; i++) {
encoder->private_->residual_workspace_unaligned[i][0] = encoder->private_->residual_workspace[i][0] = 0;
encoder->private_->residual_workspace_unaligned[i][1] = encoder->private_->residual_workspace[i][1] = 0;
encoder->private_->best_subframe[i] = 0;
}
for(i = 0; i < 2; i++) {
encoder->private_->residual_workspace_mid_side_unaligned[i][0] = encoder->private_->residual_workspace_mid_side[i][0] = 0;
encoder->private_->residual_workspace_mid_side_unaligned[i][1] = encoder->private_->residual_workspace_mid_side[i][1] = 0;
encoder->private_->best_subframe_mid_side[i] = 0;
}
encoder->private_->abs_residual_unaligned = encoder->private_->abs_residual = 0;
encoder->private_->abs_residual_partition_sums_unaligned = encoder->private_->abs_residual_partition_sums = 0;
encoder->private_->raw_bits_per_partition_unaligned = encoder->private_->raw_bits_per_partition = 0;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->loose_mid_side_stereo_frames = (unsigned)((FLAC__double)encoder->protected_->sample_rate * 0.4 / (FLAC__double)encoder->protected_->blocksize + 0.5);
#else
/* 26214 is the approximate fixed-point equivalent to 0.4 (0.4 * 2^16) */
/* sample rate can be up to 655350 Hz, and thus use 20 bits, so we do the multiply&divide by hand */
FLAC__ASSERT(FLAC__MAX_SAMPLE_RATE <= 655350);
FLAC__ASSERT(FLAC__MAX_BLOCK_SIZE <= 65535);
FLAC__ASSERT(encoder->protected_->sample_rate <= 655350);
FLAC__ASSERT(encoder->protected_->blocksize <= 65535);
encoder->private_->loose_mid_side_stereo_frames = (unsigned)FLAC__fixedpoint_trunc((((FLAC__uint64)(encoder->protected_->sample_rate) * (FLAC__uint64)(26214)) << 16) / (encoder->protected_->blocksize<<16) + FLAC__FP_ONE_HALF);
#endif
if(encoder->private_->loose_mid_side_stereo_frames == 0)
encoder->private_->loose_mid_side_stereo_frames = 1;
encoder->private_->loose_mid_side_stereo_frame_count = 0;
encoder->private_->current_sample_number = 0;
encoder->private_->current_frame_number = 0;
encoder->private_->use_wide_by_block = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(encoder->protected_->blocksize)+1 > 30);
encoder->private_->use_wide_by_order = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(max(encoder->protected_->max_lpc_order, FLAC__MAX_FIXED_ORDER))+1 > 30); /*@@@ need to use this? */
encoder->private_->use_wide_by_partition = (false); /*@@@ need to set this */
/*
* get the CPU info and set the function pointers
*/
FLAC__cpu_info(&encoder->private_->cpuinfo);
/* first default to the non-asm routines */
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation;
#endif
encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients;
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide;
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients;
#endif
/* now override with asm where appropriate */
#ifndef FLAC__INTEGER_ONLY_LIBRARY
# ifndef FLAC__NO_ASM
if(encoder->private_->cpuinfo.use_asm) {
# ifdef FLAC__CPU_IA32
FLAC__ASSERT(encoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_IA32);
# ifdef FLAC__HAS_NASM
# ifdef FLAC__SSE_OS
if(encoder->private_->cpuinfo.data.ia32.sse) {
if(encoder->protected_->max_lpc_order < 4)
encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_4;
else if(encoder->protected_->max_lpc_order < 8)
encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_8;
else if(encoder->protected_->max_lpc_order < 12)
encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_12;
else
encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32;
}
else
# endif /* FLAC__SSE_OS */
if(encoder->private_->cpuinfo.data.ia32._3dnow)
encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_3dnow;
else
encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32;
if(encoder->private_->cpuinfo.data.ia32.mmx) {
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32;
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx;
}
else {
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32;
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32;
}
if(encoder->private_->cpuinfo.data.ia32.mmx && encoder->private_->cpuinfo.data.ia32.cmov)
encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov;
# endif /* FLAC__HAS_NASM */
# endif /* FLAC__CPU_IA32 */
}
# endif /* !FLAC__NO_ASM */
#endif /* !FLAC__INTEGER_ONLY_LIBRARY */
/* finally override based on wide-ness if necessary */
if(encoder->private_->use_wide_by_block) {
encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_wide;
}
/* we require precompute_partition_sums if do_escape_coding because of their intertwined nature */
encoder->private_->precompute_partition_sums = (encoder->protected_->max_residual_partition_order > encoder->protected_->min_residual_partition_order) || encoder->protected_->do_escape_coding;
if(!resize_buffers_(encoder, encoder->protected_->blocksize)) {
/* the above function sets the state for us in case of an error */
return encoder->protected_->state;
}
if(!FLAC__bitbuffer_init(encoder->private_->frame))
return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
/*
* Set up the verify stuff if necessary
*/
if(encoder->protected_->verify) {
/*
* First, set up the fifo which will hold the
* original signal to compare against
*/
encoder->private_->verify.input_fifo.size = encoder->protected_->blocksize;
for(i = 0; i < encoder->protected_->channels; i++) {
if(0 == (encoder->private_->verify.input_fifo.data[i] = (FLAC__int32*)malloc(sizeof(FLAC__int32) * encoder->private_->verify.input_fifo.size)))
return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
}
encoder->private_->verify.input_fifo.tail = 0;
/*
* Now set up a stream decoder for verification
*/
encoder->private_->verify.decoder = FLAC__stream_decoder_new();
if(0 == encoder->private_->verify.decoder)
return encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR;
FLAC__stream_decoder_set_read_callback(encoder->private_->verify.decoder, verify_read_callback_);
FLAC__stream_decoder_set_write_callback(encoder->private_->verify.decoder, verify_write_callback_);
FLAC__stream_decoder_set_metadata_callback(encoder->private_->verify.decoder, verify_metadata_callback_);
FLAC__stream_decoder_set_error_callback(encoder->private_->verify.decoder, verify_error_callback_);
FLAC__stream_decoder_set_client_data(encoder->private_->verify.decoder, encoder);
if(FLAC__stream_decoder_init(encoder->private_->verify.decoder) != FLAC__STREAM_DECODER_SEARCH_FOR_METADATA)
return encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR;
}
encoder->private_->verify.error_stats.absolute_sample = 0;
encoder->private_->verify.error_stats.frame_number = 0;
encoder->private_->verify.error_stats.channel = 0;
encoder->private_->verify.error_stats.sample = 0;
encoder->private_->verify.error_stats.expected = 0;
encoder->private_->verify.error_stats.got = 0;
/*
* write the stream header
*/
if(encoder->protected_->verify)
encoder->private_->verify.state_hint = ENCODER_IN_MAGIC;
if(!FLAC__bitbuffer_write_raw_uint32(encoder->private_->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN))
return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
if(!write_bitbuffer_(encoder, 0)) {
/* the above function sets the state for us in case of an error */
return encoder->protected_->state;
}
/*
* write the STREAMINFO metadata block
*/
if(encoder->protected_->verify)
encoder->private_->verify.state_hint = ENCODER_IN_METADATA;
encoder->private_->metadata.type = FLAC__METADATA_TYPE_STREAMINFO;
encoder->private_->metadata.is_last = false; /* we will have at a minimum a VORBIS_COMMENT afterwards */
encoder->private_->metadata.length = FLAC__STREAM_METADATA_STREAMINFO_LENGTH;
encoder->private_->metadata.data.stream_info.min_blocksize = encoder->protected_->blocksize; /* this encoder uses the same blocksize for the whole stream */
encoder->private_->metadata.data.stream_info.max_blocksize = encoder->protected_->blocksize;
encoder->private_->metadata.data.stream_info.min_framesize = 0; /* we don't know this yet; have to fill it in later */
encoder->private_->metadata.data.stream_info.max_framesize = 0; /* we don't know this yet; have to fill it in later */
encoder->private_->metadata.data.stream_info.sample_rate = encoder->protected_->sample_rate;
encoder->private_->metadata.data.stream_info.channels = encoder->protected_->channels;
encoder->private_->metadata.data.stream_info.bits_per_sample = encoder->protected_->bits_per_sample;
encoder->private_->metadata.data.stream_info.total_samples = encoder->protected_->total_samples_estimate; /* we will replace this later with the real total */
memset(encoder->private_->metadata.data.stream_info.md5sum, 0, 16); /* we don't know this yet; have to fill it in later */
FLAC__MD5Init(&encoder->private_->md5context);
if(!FLAC__bitbuffer_clear(encoder->private_->frame))
return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
if(!FLAC__add_metadata_block(&encoder->private_->metadata, encoder->private_->frame))
return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
if(!write_bitbuffer_(encoder, 0)) {
/* the above function sets the state for us in case of an error */
return encoder->protected_->state;
}
/*
* Now that the STREAMINFO block is written, we can init this to an
* absurdly-high value...
*/
encoder->private_->metadata.data.stream_info.min_framesize = (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1;
/* ... and clear this to 0 */
encoder->private_->metadata.data.stream_info.total_samples = 0;
/*
* Check to see if the supplied metadata contains a VORBIS_COMMENT;
* if not, we will write an empty one (FLAC__add_metadata_block()
* automatically supplies the vendor string).
*
* WATCHOUT: libOggFLAC depends on us to write this block after the
* STREAMINFO since that's what the mapping requires. (In the case
* that metadata_has_vorbis_comment is true it will have already
* insured that the metadata list is properly ordered.)
*/
if(!metadata_has_vorbis_comment) {
FLAC__StreamMetadata vorbis_comment;
vorbis_comment.type = FLAC__METADATA_TYPE_VORBIS_COMMENT;
vorbis_comment.is_last = (encoder->protected_->num_metadata_blocks == 0);
vorbis_comment.length = 4 + 4; /* MAGIC NUMBER */
vorbis_comment.data.vorbis_comment.vendor_string.length = 0;
vorbis_comment.data.vorbis_comment.vendor_string.entry = 0;
vorbis_comment.data.vorbis_comment.num_comments = 0;
vorbis_comment.data.vorbis_comment.comments = 0;
if(!FLAC__bitbuffer_clear(encoder->private_->frame))
return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
if(!FLAC__add_metadata_block(&vorbis_comment, encoder->private_->frame))
return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
if(!write_bitbuffer_(encoder, 0)) {
/* the above function sets the state for us in case of an error */
return encoder->protected_->state;
}
}
/*
* write the user's metadata blocks
*/
for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) {
encoder->protected_->metadata[i]->is_last = (i == encoder->protected_->num_metadata_blocks - 1);
if(!FLAC__bitbuffer_clear(encoder->private_->frame))
return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
if(!FLAC__add_metadata_block(encoder->protected_->metadata[i], encoder->private_->frame))
return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
if(!write_bitbuffer_(encoder, 0)) {
/* the above function sets the state for us in case of an error */
return encoder->protected_->state;
}
}
if(encoder->protected_->verify)
encoder->private_->verify.state_hint = ENCODER_IN_AUDIO;
return encoder->protected_->state;
}
FLAC_API void FLAC__stream_encoder_finish(FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state == FLAC__STREAM_ENCODER_UNINITIALIZED)
return;
if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) {
if(encoder->private_->current_sample_number != 0) {
encoder->protected_->blocksize = encoder->private_->current_sample_number;
process_frame_(encoder, true); /* true => is last frame */
}
}
FLAC__MD5Final(encoder->private_->metadata.data.stream_info.md5sum, &encoder->private_->md5context);
if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) {
encoder->private_->metadata_callback(encoder, &encoder->private_->metadata, encoder->private_->client_data);
}
if(encoder->protected_->verify && 0 != encoder->private_->verify.decoder)
FLAC__stream_decoder_finish(encoder->private_->verify.decoder);
free_(encoder);
set_defaults_(encoder);
encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_verify(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
#ifndef FLAC__MANDATORY_VERIFY_WHILE_ENCODING
encoder->protected_->verify = value;
#endif
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_streamable_subset(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->streamable_subset = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_do_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->do_mid_side_stereo = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_loose_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->loose_mid_side_stereo = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_channels(FLAC__StreamEncoder *encoder, unsigned value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->channels = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_bits_per_sample(FLAC__StreamEncoder *encoder, unsigned value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->bits_per_sample = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_sample_rate(FLAC__StreamEncoder *encoder, unsigned value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->sample_rate = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_blocksize(FLAC__StreamEncoder *encoder, unsigned value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->blocksize = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_max_lpc_order(FLAC__StreamEncoder *encoder, unsigned value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->max_lpc_order = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_qlp_coeff_precision(FLAC__StreamEncoder *encoder, unsigned value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->qlp_coeff_precision = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_do_qlp_coeff_prec_search(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->do_qlp_coeff_prec_search = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_do_escape_coding(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
#if 0
/*@@@ deprecated: */
encoder->protected_->do_escape_coding = value;
#else
(void)value;
#endif
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_do_exhaustive_model_search(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->do_exhaustive_model_search = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_min_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->min_residual_partition_order = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_max_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->max_residual_partition_order = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_rice_parameter_search_dist(FLAC__StreamEncoder *encoder, unsigned value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
#if 0
/*@@@ deprecated: */
encoder->protected_->rice_parameter_search_dist = value;
#else
(void)value;
#endif
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_total_samples_estimate(FLAC__StreamEncoder *encoder, FLAC__uint64 value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->total_samples_estimate = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata(FLAC__StreamEncoder *encoder, FLAC__StreamMetadata **metadata, unsigned num_blocks)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->protected_->metadata = metadata;
encoder->protected_->num_metadata_blocks = num_blocks;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_write_callback(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderWriteCallback value)
{
FLAC__ASSERT(0 != encoder);
FLAC__ASSERT(0 != value);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->private_->write_callback = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata_callback(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderMetadataCallback value)
{
FLAC__ASSERT(0 != encoder);
FLAC__ASSERT(0 != value);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->private_->metadata_callback = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_set_client_data(FLAC__StreamEncoder *encoder, void *value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->private_->client_data = value;
return true;
}
/*
* These three functions are not static, but not publically exposed in
* include/FLAC/ either. They are used by the test suite.
*/
FLAC_API FLAC__bool FLAC__stream_encoder_disable_constant_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->private_->disable_constant_subframes = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_disable_fixed_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->private_->disable_fixed_subframes = value;
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_disable_verbatim_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
return false;
encoder->private_->disable_verbatim_subframes = value;
return true;
}
FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_get_state(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->state;
}
FLAC_API FLAC__StreamDecoderState FLAC__stream_encoder_get_verify_decoder_state(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
if(encoder->protected_->verify)
return FLAC__stream_decoder_get_state(encoder->private_->verify.decoder);
else
return FLAC__STREAM_DECODER_UNINITIALIZED;
}
FLAC_API const char *FLAC__stream_encoder_get_resolved_state_string(const FLAC__StreamEncoder *encoder)
{
if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR)
return FLAC__StreamEncoderStateString[encoder->protected_->state];
else
return FLAC__stream_decoder_get_resolved_state_string(encoder->private_->verify.decoder);
}
FLAC_API void FLAC__stream_encoder_get_verify_decoder_error_stats(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_sample, unsigned *frame_number, unsigned *channel, unsigned *sample, FLAC__int32 *expected, FLAC__int32 *got)
{
FLAC__ASSERT(0 != encoder);
if(0 != absolute_sample)
*absolute_sample = encoder->private_->verify.error_stats.absolute_sample;
if(0 != frame_number)
*frame_number = encoder->private_->verify.error_stats.frame_number;
if(0 != channel)
*channel = encoder->private_->verify.error_stats.channel;
if(0 != sample)
*sample = encoder->private_->verify.error_stats.sample;
if(0 != expected)
*expected = encoder->private_->verify.error_stats.expected;
if(0 != got)
*got = encoder->private_->verify.error_stats.got;
}
FLAC_API FLAC__bool FLAC__stream_encoder_get_verify(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->verify;
}
FLAC_API FLAC__bool FLAC__stream_encoder_get_streamable_subset(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->streamable_subset;
}
FLAC_API FLAC__bool FLAC__stream_encoder_get_do_mid_side_stereo(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->do_mid_side_stereo;
}
FLAC_API FLAC__bool FLAC__stream_encoder_get_loose_mid_side_stereo(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->loose_mid_side_stereo;
}
FLAC_API unsigned FLAC__stream_encoder_get_channels(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->channels;
}
FLAC_API unsigned FLAC__stream_encoder_get_bits_per_sample(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->bits_per_sample;
}
FLAC_API unsigned FLAC__stream_encoder_get_sample_rate(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->sample_rate;
}
FLAC_API unsigned FLAC__stream_encoder_get_blocksize(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->blocksize;
}
FLAC_API unsigned FLAC__stream_encoder_get_max_lpc_order(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->max_lpc_order;
}
FLAC_API unsigned FLAC__stream_encoder_get_qlp_coeff_precision(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->qlp_coeff_precision;
}
FLAC_API FLAC__bool FLAC__stream_encoder_get_do_qlp_coeff_prec_search(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->do_qlp_coeff_prec_search;
}
FLAC_API FLAC__bool FLAC__stream_encoder_get_do_escape_coding(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->do_escape_coding;
}
FLAC_API FLAC__bool FLAC__stream_encoder_get_do_exhaustive_model_search(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->do_exhaustive_model_search;
}
FLAC_API unsigned FLAC__stream_encoder_get_min_residual_partition_order(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->min_residual_partition_order;
}
FLAC_API unsigned FLAC__stream_encoder_get_max_residual_partition_order(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->max_residual_partition_order;
}
FLAC_API unsigned FLAC__stream_encoder_get_rice_parameter_search_dist(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->rice_parameter_search_dist;
}
FLAC_API FLAC__uint64 FLAC__stream_encoder_get_total_samples_estimate(const FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
return encoder->protected_->total_samples_estimate;
}
FLAC_API FLAC__bool FLAC__stream_encoder_process(FLAC__StreamEncoder *encoder, const FLAC__int32 * const buffer[], unsigned samples)
{
unsigned i, j, channel;
FLAC__int32 x, mid, side;
const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize;
FLAC__ASSERT(0 != encoder);
FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK);
j = 0;
/*
* we have several flavors of the same basic loop, optimized for
* different conditions:
*/
if(encoder->protected_->max_lpc_order > 0) {
if(encoder->protected_->do_mid_side_stereo && channels == 2) {
/*
* stereo coding: unroll channel loop
* with LPC: calculate floating point version of signal
*/
do {
if(encoder->protected_->verify)
append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j));
for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) {
x = mid = side = buffer[0][j];
encoder->private_->integer_signal[0][i] = x;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal[0][i] = (FLAC__real)x;
#endif
x = buffer[1][j];
encoder->private_->integer_signal[1][i] = x;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal[1][i] = (FLAC__real)x;
#endif
mid += x;
side -= x;
mid >>= 1; /* NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' ! */
encoder->private_->integer_signal_mid_side[1][i] = side;
encoder->private_->integer_signal_mid_side[0][i] = mid;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal_mid_side[1][i] = (FLAC__real)side;
encoder->private_->real_signal_mid_side[0][i] = (FLAC__real)mid;
#endif
encoder->private_->current_sample_number++;
}
if(i == blocksize) {
if(!process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
}
else {
/*
* independent channel coding: buffer each channel in inner loop
* with LPC: calculate floating point version of signal
*/
do {
if(encoder->protected_->verify)
append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j));
for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) {
for(channel = 0; channel < channels; channel++) {
x = buffer[channel][j];
encoder->private_->integer_signal[channel][i] = x;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal[channel][i] = (FLAC__real)x;
#endif
}
encoder->private_->current_sample_number++;
}
if(i == blocksize) {
if(!process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
}
}
else {
if(encoder->protected_->do_mid_side_stereo && channels == 2) {
/*
* stereo coding: unroll channel loop
* without LPC: no need to calculate floating point version of signal
*/
do {
if(encoder->protected_->verify)
append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j));
for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) {
encoder->private_->integer_signal[0][i] = mid = side = buffer[0][j];
x = buffer[1][j];
encoder->private_->integer_signal[1][i] = x;
mid += x;
side -= x;
mid >>= 1; /* NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' ! */
encoder->private_->integer_signal_mid_side[1][i] = side;
encoder->private_->integer_signal_mid_side[0][i] = mid;
encoder->private_->current_sample_number++;
}
if(i == blocksize) {
if(!process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
}
else {
/*
* independent channel coding: buffer each channel in inner loop
* without LPC: no need to calculate floating point version of signal
*/
do {
if(encoder->protected_->verify)
append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j));
for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) {
for(channel = 0; channel < channels; channel++)
encoder->private_->integer_signal[channel][i] = buffer[channel][j];
encoder->private_->current_sample_number++;
}
if(i == blocksize) {
if(!process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
}
}
return true;
}
FLAC_API FLAC__bool FLAC__stream_encoder_process_interleaved(FLAC__StreamEncoder *encoder, const FLAC__int32 buffer[], unsigned samples)
{
unsigned i, j, k, channel;
FLAC__int32 x, mid, side;
const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize;
FLAC__ASSERT(0 != encoder);
FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK);
j = k = 0;
/*
* we have several flavors of the same basic loop, optimized for
* different conditions:
*/
if(encoder->protected_->max_lpc_order > 0) {
if(encoder->protected_->do_mid_side_stereo && channels == 2) {
/*
* stereo coding: unroll channel loop
* with LPC: calculate floating point version of signal
*/
do {
if(encoder->protected_->verify)
append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j));
for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) {
x = mid = side = buffer[k++];
encoder->private_->integer_signal[0][i] = x;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal[0][i] = (FLAC__real)x;
#endif
x = buffer[k++];
encoder->private_->integer_signal[1][i] = x;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal[1][i] = (FLAC__real)x;
#endif
mid += x;
side -= x;
mid >>= 1; /* NOTE: not the same as 'mid = (left + right) / 2' ! */
encoder->private_->integer_signal_mid_side[1][i] = side;
encoder->private_->integer_signal_mid_side[0][i] = mid;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal_mid_side[1][i] = (FLAC__real)side;
encoder->private_->real_signal_mid_side[0][i] = (FLAC__real)mid;
#endif
encoder->private_->current_sample_number++;
}
if(i == blocksize) {
if(!process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
}
else {
/*
* independent channel coding: buffer each channel in inner loop
* with LPC: calculate floating point version of signal
*/
do {
if(encoder->protected_->verify)
append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j));
for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) {
for(channel = 0; channel < channels; channel++) {
x = buffer[k++];
encoder->private_->integer_signal[channel][i] = x;
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal[channel][i] = (FLAC__real)x;
#endif
}
encoder->private_->current_sample_number++;
}
if(i == blocksize) {
if(!process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
}
}
else {
if(encoder->protected_->do_mid_side_stereo && channels == 2) {
/*
* stereo coding: unroll channel loop
* without LPC: no need to calculate floating point version of signal
*/
do {
if(encoder->protected_->verify)
append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j));
for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) {
encoder->private_->integer_signal[0][i] = mid = side = buffer[k++];
x = buffer[k++];
encoder->private_->integer_signal[1][i] = x;
mid += x;
side -= x;
mid >>= 1; /* NOTE: not the same as 'mid = (left + right) / 2' ! */
encoder->private_->integer_signal_mid_side[1][i] = side;
encoder->private_->integer_signal_mid_side[0][i] = mid;
encoder->private_->current_sample_number++;
}
if(i == blocksize) {
if(!process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
}
else {
/*
* independent channel coding: buffer each channel in inner loop
* without LPC: no need to calculate floating point version of signal
*/
do {
if(encoder->protected_->verify)
append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, min(blocksize-encoder->private_->current_sample_number, samples-j));
for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) {
for(channel = 0; channel < channels; channel++)
encoder->private_->integer_signal[channel][i] = buffer[k++];
encoder->private_->current_sample_number++;
}
if(i == blocksize) {
if(!process_frame_(encoder, false)) /* false => not last frame */
return false;
}
} while(j < samples);
}
}
return true;
}
/***********************************************************************
*
* Private class methods
*
***********************************************************************/
void set_defaults_(FLAC__StreamEncoder *encoder)
{
FLAC__ASSERT(0 != encoder);
#ifdef FLAC__MANDATORY_VERIFY_WHILE_ENCODING
encoder->protected_->verify = true;
#else
encoder->protected_->verify = false;
#endif
encoder->protected_->streamable_subset = true;
encoder->protected_->do_mid_side_stereo = false;
encoder->protected_->loose_mid_side_stereo = false;
encoder->protected_->channels = 2;
encoder->protected_->bits_per_sample = 16;
encoder->protected_->sample_rate = 44100;
encoder->protected_->blocksize = 1152;
encoder->protected_->max_lpc_order = 0;
encoder->protected_->qlp_coeff_precision = 0;
encoder->protected_->do_qlp_coeff_prec_search = false;
encoder->protected_->do_exhaustive_model_search = false;
encoder->protected_->do_escape_coding = false;
encoder->protected_->min_residual_partition_order = 0;
encoder->protected_->max_residual_partition_order = 0;
encoder->protected_->rice_parameter_search_dist = 0;
encoder->protected_->total_samples_estimate = 0;
encoder->protected_->metadata = 0;
encoder->protected_->num_metadata_blocks = 0;
encoder->private_->disable_constant_subframes = false;
encoder->private_->disable_fixed_subframes = false;
encoder->private_->disable_verbatim_subframes = false;
encoder->private_->write_callback = 0;
encoder->private_->metadata_callback = 0;
encoder->private_->client_data = 0;
}
void free_(FLAC__StreamEncoder *encoder)
{
unsigned i, channel;
FLAC__ASSERT(0 != encoder);
for(i = 0; i < encoder->protected_->channels; i++) {
if(0 != encoder->private_->integer_signal_unaligned[i]) {
free(encoder->private_->integer_signal_unaligned[i]);
encoder->private_->integer_signal_unaligned[i] = 0;
}
#ifndef FLAC__INTEGER_ONLY_LIBRARY
if(0 != encoder->private_->real_signal_unaligned[i]) {
free(encoder->private_->real_signal_unaligned[i]);
encoder->private_->real_signal_unaligned[i] = 0;
}
#endif
}
for(i = 0; i < 2; i++) {
if(0 != encoder->private_->integer_signal_mid_side_unaligned[i]) {
free(encoder->private_->integer_signal_mid_side_unaligned[i]);
encoder->private_->integer_signal_mid_side_unaligned[i] = 0;
}
#ifndef FLAC__INTEGER_ONLY_LIBRARY
if(0 != encoder->private_->real_signal_mid_side_unaligned[i]) {
free(encoder->private_->real_signal_mid_side_unaligned[i]);
encoder->private_->real_signal_mid_side_unaligned[i] = 0;
}
#endif
}
for(channel = 0; channel < encoder->protected_->channels; channel++) {
for(i = 0; i < 2; i++) {
if(0 != encoder->private_->residual_workspace_unaligned[channel][i]) {
free(encoder->private_->residual_workspace_unaligned[channel][i]);
encoder->private_->residual_workspace_unaligned[channel][i] = 0;
}
}
}
for(channel = 0; channel < 2; channel++) {
for(i = 0; i < 2; i++) {
if(0 != encoder->private_->residual_workspace_mid_side_unaligned[channel][i]) {
free(encoder->private_->residual_workspace_mid_side_unaligned[channel][i]);
encoder->private_->residual_workspace_mid_side_unaligned[channel][i] = 0;
}
}
}
if(0 != encoder->private_->abs_residual_unaligned) {
free(encoder->private_->abs_residual_unaligned);
encoder->private_->abs_residual_unaligned = 0;
}
if(0 != encoder->private_->abs_residual_partition_sums_unaligned) {
free(encoder->private_->abs_residual_partition_sums_unaligned);
encoder->private_->abs_residual_partition_sums_unaligned = 0;
}
if(0 != encoder->private_->raw_bits_per_partition_unaligned) {
free(encoder->private_->raw_bits_per_partition_unaligned);
encoder->private_->raw_bits_per_partition_unaligned = 0;
}
if(encoder->protected_->verify) {
for(i = 0; i < encoder->protected_->channels; i++) {
if(0 != encoder->private_->verify.input_fifo.data[i]) {
free(encoder->private_->verify.input_fifo.data[i]);
encoder->private_->verify.input_fifo.data[i] = 0;
}
}
}
FLAC__bitbuffer_free(encoder->private_->frame);
}
FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_size)
{
FLAC__bool ok;
unsigned i, channel;
FLAC__ASSERT(new_size > 0);
FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK);
FLAC__ASSERT(encoder->private_->current_sample_number == 0);
/* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */
if(new_size <= encoder->private_->input_capacity)
return true;
ok = true;
/* WATCHOUT: FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx()
* requires that the input arrays (in our case the integer signals)
* have a buffer of up to 3 zeroes in front (at negative indices) for
* alignment purposes; we use 4 to keep the data well-aligned.
*/
for(i = 0; ok && i < encoder->protected_->channels; i++) {
ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size+4, &encoder->private_->integer_signal_unaligned[i], &encoder->private_->integer_signal[i]);
#ifndef FLAC__INTEGER_ONLY_LIBRARY
if(encoder->protected_->max_lpc_order > 0)
ok = ok && FLAC__memory_alloc_aligned_real_array(new_size, &encoder->private_->real_signal_unaligned[i], &encoder->private_->real_signal[i]);
#endif
memset(encoder->private_->integer_signal[i], 0, sizeof(FLAC__int32)*4);
encoder->private_->integer_signal[i] += 4;
}
for(i = 0; ok && i < 2; i++) {
ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size+4, &encoder->private_->integer_signal_mid_side_unaligned[i], &encoder->private_->integer_signal_mid_side[i]);
#ifndef FLAC__INTEGER_ONLY_LIBRARY
if(encoder->protected_->max_lpc_order > 0)
ok = ok && FLAC__memory_alloc_aligned_real_array(new_size, &encoder->private_->real_signal_mid_side_unaligned[i], &encoder->private_->real_signal_mid_side[i]);
#endif
memset(encoder->private_->integer_signal_mid_side[i], 0, sizeof(FLAC__int32)*4);
encoder->private_->integer_signal_mid_side[i] += 4;
}
for(channel = 0; ok && channel < encoder->protected_->channels; channel++) {
for(i = 0; ok && i < 2; i++) {
ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size, &encoder->private_->residual_workspace_unaligned[channel][i], &encoder->private_->residual_workspace[channel][i]);
}
}
for(channel = 0; ok && channel < 2; channel++) {
for(i = 0; ok && i < 2; i++) {
ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size, &encoder->private_->residual_workspace_mid_side_unaligned[channel][i], &encoder->private_->residual_workspace_mid_side[channel][i]);
}
}
ok = ok && FLAC__memory_alloc_aligned_uint32_array(new_size, &encoder->private_->abs_residual_unaligned, &encoder->private_->abs_residual);
if(encoder->private_->precompute_partition_sums || encoder->protected_->do_escape_coding) /* we require precompute_partition_sums if do_escape_coding because of their intertwined nature */
ok = ok && FLAC__memory_alloc_aligned_uint64_array(new_size * 2, &encoder->private_->abs_residual_partition_sums_unaligned, &encoder->private_->abs_residual_partition_sums);
if(encoder->protected_->do_escape_coding)
ok = ok && FLAC__memory_alloc_aligned_unsigned_array(new_size * 2, &encoder->private_->raw_bits_per_partition_unaligned, &encoder->private_->raw_bits_per_partition);
if(ok)
encoder->private_->input_capacity = new_size;
else
encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
return ok;
}
FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, unsigned samples)
{
const FLAC__byte *buffer;
unsigned bytes;
FLAC__ASSERT(FLAC__bitbuffer_is_byte_aligned(encoder->private_->frame));
FLAC__bitbuffer_get_buffer(encoder->private_->frame, &buffer, &bytes);
if(encoder->protected_->verify) {
encoder->private_->verify.output.data = buffer;
encoder->private_->verify.output.bytes = bytes;
if(encoder->private_->verify.state_hint == ENCODER_IN_MAGIC) {
encoder->private_->verify.needs_magic_hack = true;
}
else {
if(!FLAC__stream_decoder_process_single(encoder->private_->verify.decoder)) {
FLAC__bitbuffer_release_buffer(encoder->private_->frame);
if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA)
encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR;
return false;
}
}
}
if(encoder->private_->write_callback(encoder, buffer, bytes, samples, encoder->private_->current_frame_number, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) {
FLAC__bitbuffer_release_buffer(encoder->private_->frame);
encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING;
return false;
}
FLAC__bitbuffer_release_buffer(encoder->private_->frame);
if(samples > 0) {
encoder->private_->metadata.data.stream_info.min_framesize = min(bytes, encoder->private_->metadata.data.stream_info.min_framesize);
encoder->private_->metadata.data.stream_info.max_framesize = max(bytes, encoder->private_->metadata.data.stream_info.max_framesize);
}
return true;
}
FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame)
{
FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK);
/*
* Accumulate raw signal to the MD5 signature
*/
if(!FLAC__MD5Accumulate(&encoder->private_->md5context, (const FLAC__int32 * const *)encoder->private_->integer_signal, encoder->protected_->channels, encoder->protected_->blocksize, (encoder->protected_->bits_per_sample+7) / 8)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
/*
* Process the frame header and subframes into the frame bitbuffer
*/
if(!process_subframes_(encoder, is_last_frame)) {
/* the above function sets the state for us in case of an error */
return false;
}
/*
* Zero-pad the frame to a byte_boundary
*/
if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(encoder->private_->frame)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
/*
* CRC-16 the whole thing
*/
FLAC__ASSERT(FLAC__bitbuffer_is_byte_aligned(encoder->private_->frame));
FLAC__bitbuffer_write_raw_uint32(encoder->private_->frame, FLAC__bitbuffer_get_write_crc16(encoder->private_->frame), FLAC__FRAME_FOOTER_CRC_LEN);
/*
* Write it
*/
if(!write_bitbuffer_(encoder, encoder->protected_->blocksize)) {
/* the above function sets the state for us in case of an error */
return false;
}
/*
* Get ready for the next frame
*/
encoder->private_->current_sample_number = 0;
encoder->private_->current_frame_number++;
encoder->private_->metadata.data.stream_info.total_samples += (FLAC__uint64)encoder->protected_->blocksize;
return true;
}
FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame)
{
FLAC__FrameHeader frame_header;
unsigned channel, min_partition_order = encoder->protected_->min_residual_partition_order, max_partition_order;
FLAC__bool do_independent, do_mid_side, precompute_partition_sums;
/*
* Calculate the min,max Rice partition orders
*/
if(is_last_frame) {
max_partition_order = 0;
}
else {
max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize(encoder->protected_->blocksize);
max_partition_order = min(max_partition_order, encoder->protected_->max_residual_partition_order);
}
min_partition_order = min(min_partition_order, max_partition_order);
precompute_partition_sums = encoder->private_->precompute_partition_sums && ((max_partition_order > min_partition_order) || encoder->protected_->do_escape_coding);
/*
* Setup the frame
*/
if(!FLAC__bitbuffer_clear(encoder->private_->frame)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
frame_header.blocksize = encoder->protected_->blocksize;
frame_header.sample_rate = encoder->protected_->sample_rate;
frame_header.channels = encoder->protected_->channels;
frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */
frame_header.bits_per_sample = encoder->protected_->bits_per_sample;
frame_header.number_type = FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER;
frame_header.number.frame_number = encoder->private_->current_frame_number;
/*
* Figure out what channel assignments to try
*/
if(encoder->protected_->do_mid_side_stereo) {
if(encoder->protected_->loose_mid_side_stereo) {
if(encoder->private_->loose_mid_side_stereo_frame_count == 0) {
do_independent = true;
do_mid_side = true;
}
else {
do_independent = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT);
do_mid_side = !do_independent;
}
}
else {
do_independent = true;
do_mid_side = true;
}
}
else {
do_independent = true;
do_mid_side = false;
}
FLAC__ASSERT(do_independent || do_mid_side);
/*
* Check for wasted bits; set effective bps for each subframe
*/
if(do_independent) {
for(channel = 0; channel < encoder->protected_->channels; channel++) {
const unsigned w = get_wasted_bits_(encoder->private_->integer_signal[channel], encoder->protected_->blocksize);
encoder->private_->subframe_workspace[channel][0].wasted_bits = encoder->private_->subframe_workspace[channel][1].wasted_bits = w;
encoder->private_->subframe_bps[channel] = encoder->protected_->bits_per_sample - w;
}
}
if(do_mid_side) {
FLAC__ASSERT(encoder->protected_->channels == 2);
for(channel = 0; channel < 2; channel++) {
const unsigned w = get_wasted_bits_(encoder->private_->integer_signal_mid_side[channel], encoder->protected_->blocksize);
encoder->private_->subframe_workspace_mid_side[channel][0].wasted_bits = encoder->private_->subframe_workspace_mid_side[channel][1].wasted_bits = w;
encoder->private_->subframe_bps_mid_side[channel] = encoder->protected_->bits_per_sample - w + (channel==0? 0:1);
}
}
/*
* First do a normal encoding pass of each independent channel
*/
if(do_independent) {
for(channel = 0; channel < encoder->protected_->channels; channel++) {
if(!
process_subframe_(
encoder,
min_partition_order,
max_partition_order,
precompute_partition_sums,
&frame_header,
encoder->private_->subframe_bps[channel],
encoder->private_->integer_signal[channel],
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal[channel],
#endif
encoder->private_->subframe_workspace_ptr[channel],
encoder->private_->partitioned_rice_contents_workspace_ptr[channel],
encoder->private_->residual_workspace[channel],
encoder->private_->best_subframe+channel,
encoder->private_->best_subframe_bits+channel
)
)
return false;
}
}
/*
* Now do mid and side channels if requested
*/
if(do_mid_side) {
FLAC__ASSERT(encoder->protected_->channels == 2);
for(channel = 0; channel < 2; channel++) {
if(!
process_subframe_(
encoder,
min_partition_order,
max_partition_order,
precompute_partition_sums,
&frame_header,
encoder->private_->subframe_bps_mid_side[channel],
encoder->private_->integer_signal_mid_side[channel],
#ifndef FLAC__INTEGER_ONLY_LIBRARY
encoder->private_->real_signal_mid_side[channel],
#endif
encoder->private_->subframe_workspace_ptr_mid_side[channel],
encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[channel],
encoder->private_->residual_workspace_mid_side[channel],
encoder->private_->best_subframe_mid_side+channel,
encoder->private_->best_subframe_bits_mid_side+channel
)
)
return false;
}
}
/*
* Compose the frame bitbuffer
*/
if(do_mid_side) {
unsigned left_bps = 0, right_bps = 0; /* initialized only to prevent superfluous compiler warning */
FLAC__Subframe *left_subframe = 0, *right_subframe = 0; /* initialized only to prevent superfluous compiler warning */
FLAC__ChannelAssignment channel_assignment;
FLAC__ASSERT(encoder->protected_->channels == 2);
if(encoder->protected_->loose_mid_side_stereo && encoder->private_->loose_mid_side_stereo_frame_count > 0) {
channel_assignment = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT? FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT : FLAC__CHANNEL_ASSIGNMENT_MID_SIDE);
}
else {
unsigned bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */
unsigned min_bits;
FLAC__ChannelAssignment ca;
FLAC__ASSERT(do_independent && do_mid_side);
/* We have to figure out which channel assignent results in the smallest frame */
bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits [1];
bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE ] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits_mid_side[1];
bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = encoder->private_->best_subframe_bits [1] + encoder->private_->best_subframe_bits_mid_side[1];
bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE ] = encoder->private_->best_subframe_bits_mid_side[0] + encoder->private_->best_subframe_bits_mid_side[1];
for(channel_assignment = (FLAC__ChannelAssignment)0, min_bits = bits[0], ca = (FLAC__ChannelAssignment)1; (int)ca <= 3; ca = (FLAC__ChannelAssignment)((int)ca + 1)) {
if(bits[ca] < min_bits) {
min_bits = bits[ca];
channel_assignment = ca;
}
}
}
frame_header.channel_assignment = channel_assignment;
if(!FLAC__frame_add_header(&frame_header, encoder->protected_->streamable_subset, encoder->private_->frame)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
return false;
}
switch(channel_assignment) {
case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]];
right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]];
break;
case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]];
right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]];
break;
case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
left_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]];
right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]];
break;
case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
left_subframe = &encoder->private_->subframe_workspace_mid_side[0][encoder->private_->best_subframe_mid_side[0]];
right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]];
break;
default:
FLAC__ASSERT(0);
}
switch(channel_assignment) {
case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
left_bps = encoder->private_->subframe_bps [0];
right_bps = encoder->private_->subframe_bps [1];
break;
case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
left_bps = encoder->private_->subframe_bps [0];
right_bps = encoder->private_->subframe_bps_mid_side[1];
break;
case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
left_bps = encoder->private_->subframe_bps_mid_side[1];
right_bps = encoder->private_->subframe_bps [1];
break;
case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
left_bps = encoder->private_->subframe_bps_mid_side[0];
right_bps = encoder->private_->subframe_bps_mid_side[1];
break;
default:
FLAC__ASSERT(0);
}
/* note that encoder_add_subframe_ sets the state for us in case of an error */
if(!add_subframe_(encoder, &frame_header, left_bps , left_subframe , encoder->private_->frame))
return false;
if(!add_subframe_(encoder, &frame_header, right_bps, right_subframe, encoder->private_->frame))
return false;
}
else {
if(!FLAC__frame_add_header(&frame_header, encoder->protected_->streamable_subset, encoder->private_->frame)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
return false;
}
for(channel = 0; channel < encoder->protected_->channels; channel++) {
if(!add_subframe_(encoder, &frame_header, encoder->private_->subframe_bps[channel], &encoder->private_->subframe_workspace[channel][encoder->private_->best_subframe[channel]], encoder->private_->frame)) {
/* the above function sets the state for us in case of an error */
return false;
}
}
}
if(encoder->protected_->loose_mid_side_stereo) {
encoder->private_->loose_mid_side_stereo_frame_count++;
if(encoder->private_->loose_mid_side_stereo_frame_count >= encoder->private_->loose_mid_side_stereo_frames)
encoder->private_->loose_mid_side_stereo_frame_count = 0;
}
encoder->private_->last_channel_assignment = frame_header.channel_assignment;
return true;
}
FLAC__bool process_subframe_(
FLAC__StreamEncoder *encoder,
unsigned min_partition_order,
unsigned max_partition_order,
FLAC__bool precompute_partition_sums,
const FLAC__FrameHeader *frame_header,
unsigned subframe_bps,
const FLAC__int32 integer_signal[],
#ifndef FLAC__INTEGER_ONLY_LIBRARY
const FLAC__real real_signal[],
#endif
FLAC__Subframe *subframe[2],
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2],
FLAC__int32 *residual[2],
unsigned *best_subframe,
unsigned *best_bits
)
{
#ifndef FLAC__INTEGER_ONLY_LIBRARY
FLAC__float fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
#else
FLAC__fixedpoint fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
#endif
#ifndef FLAC__INTEGER_ONLY_LIBRARY
FLAC__double lpc_residual_bits_per_sample;
FLAC__real autoc[FLAC__MAX_LPC_ORDER+1]; /* WATCHOUT: the size is important even though encoder->protected_->max_lpc_order might be less; some asm routines need all the space */
FLAC__double lpc_error[FLAC__MAX_LPC_ORDER];
unsigned min_lpc_order, max_lpc_order, lpc_order;
unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
#endif
unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
unsigned rice_parameter;
unsigned _candidate_bits, _best_bits;
unsigned _best_subframe;
/* verbatim subframe is the baseline against which we measure other compressed subframes */
_best_subframe = 0;
if(encoder->private_->disable_verbatim_subframes && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER)
_best_bits = UINT_MAX;
else
_best_bits = evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]);
if(frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) {
unsigned signal_is_constant = false;
guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor(integer_signal+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
/* check for constant subframe */
if(
!encoder->private_->disable_constant_subframes &&
#ifndef FLAC__INTEGER_ONLY_LIBRARY
fixed_residual_bits_per_sample[1] == 0.0
#else
fixed_residual_bits_per_sample[1] == FLAC__FP_ZERO
#endif
) {
/* the above means it's possible all samples are the same value; now double-check it: */
unsigned i;
signal_is_constant = true;
for(i = 1; i < frame_header->blocksize; i++) {
if(integer_signal[0] != integer_signal[i]) {
signal_is_constant = false;
break;
}
}
}
if(signal_is_constant) {
_candidate_bits = evaluate_constant_subframe_(integer_signal[0], subframe_bps, subframe[!_best_subframe]);
if(_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
else {
if(!encoder->private_->disable_fixed_subframes || (encoder->protected_->max_lpc_order == 0 && _best_bits == UINT_MAX)) {
/* encode fixed */
if(encoder->protected_->do_exhaustive_model_search) {
min_fixed_order = 0;
max_fixed_order = FLAC__MAX_FIXED_ORDER;
}
else {
min_fixed_order = max_fixed_order = guess_fixed_order;
}
for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
#ifndef FLAC__INTEGER_ONLY_LIBRARY
if(fixed_residual_bits_per_sample[fixed_order] >= (FLAC__float)subframe_bps)
continue; /* don't even try */
rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0; /* 0.5 is for rounding */
#else
if(FLAC__fixedpoint_trunc(fixed_residual_bits_per_sample[fixed_order]) >= (int)subframe_bps)
continue; /* don't even try */
rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > FLAC__FP_ZERO)? (unsigned)FLAC__fixedpoint_trunc(fixed_residual_bits_per_sample[fixed_order]+FLAC__FP_ONE_HALF) : 0; /* 0.5 is for rounding */
#endif
rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */
if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "clipping rice_parameter (%u -> %u) @0\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
#endif
rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
_candidate_bits =
evaluate_fixed_subframe_(
encoder,
integer_signal,
residual[!_best_subframe],
encoder->private_->abs_residual,
encoder->private_->abs_residual_partition_sums,
encoder->private_->raw_bits_per_partition,
frame_header->blocksize,
subframe_bps,
fixed_order,
rice_parameter,
min_partition_order,
max_partition_order,
precompute_partition_sums,
encoder->protected_->do_escape_coding,
encoder->protected_->rice_parameter_search_dist,
subframe[!_best_subframe],
partitioned_rice_contents[!_best_subframe]
);
if(_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
}
#ifndef FLAC__INTEGER_ONLY_LIBRARY
/* encode lpc */
if(encoder->protected_->max_lpc_order > 0) {
if(encoder->protected_->max_lpc_order >= frame_header->blocksize)
max_lpc_order = frame_header->blocksize-1;
else
max_lpc_order = encoder->protected_->max_lpc_order;
if(max_lpc_order > 0) {
encoder->private_->local_lpc_compute_autocorrelation(real_signal, frame_header->blocksize, max_lpc_order+1, autoc);
/* if autoc[0] == 0.0, the signal is constant and we usually won't get here, but it can happen */
if(autoc[0] != 0.0) {
FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, encoder->private_->lp_coeff, lpc_error);
if(encoder->protected_->do_exhaustive_model_search) {
min_lpc_order = 1;
}
else {
unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, subframe_bps);
min_lpc_order = max_lpc_order = guess_lpc_order;
}
for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) {
lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize-lpc_order);
if(lpc_residual_bits_per_sample >= (FLAC__double)subframe_bps)
continue; /* don't even try */
rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0; /* 0.5 is for rounding */
rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */
if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "clipping rice_parameter (%u -> %u) @1\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
#endif
rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
if(encoder->protected_->do_qlp_coeff_prec_search) {
min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION;
/* ensure a 32-bit datapath throughout for 16bps or less */
if(subframe_bps <= 16)
max_qlp_coeff_precision = min(32 - subframe_bps - lpc_order, FLAC__MAX_QLP_COEFF_PRECISION);
else
max_qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION;
}
else {
min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->protected_->qlp_coeff_precision;
}
for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
_candidate_bits =
evaluate_lpc_subframe_(
encoder,
integer_signal,
residual[!_best_subframe],
encoder->private_->abs_residual,
encoder->private_->abs_residual_partition_sums,
encoder->private_->raw_bits_per_partition,
encoder->private_->lp_coeff[lpc_order-1],
frame_header->blocksize,
subframe_bps,
lpc_order,
qlp_coeff_precision,
rice_parameter,
min_partition_order,
max_partition_order,
precompute_partition_sums,
encoder->protected_->do_escape_coding,
encoder->protected_->rice_parameter_search_dist,
subframe[!_best_subframe],
partitioned_rice_contents[!_best_subframe]
);
if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */
if(_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
}
}
}
}
}
#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
}
}
/* under rare circumstances this can happen when all but lpc subframe types are disabled: */
if(_best_bits == UINT_MAX) {
FLAC__ASSERT(_best_subframe == 0);
_best_bits = evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]);
}
*best_subframe = _best_subframe;
*best_bits = _best_bits;
return true;
}
FLAC__bool add_subframe_(
FLAC__StreamEncoder *encoder,
const FLAC__FrameHeader *frame_header,
unsigned subframe_bps,
const FLAC__Subframe *subframe,
FLAC__BitBuffer *frame
)
{
switch(subframe->type) {
case FLAC__SUBFRAME_TYPE_CONSTANT:
if(!FLAC__subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case FLAC__SUBFRAME_TYPE_FIXED:
if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), frame_header->blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case FLAC__SUBFRAME_TYPE_LPC:
if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), frame_header->blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case FLAC__SUBFRAME_TYPE_VERBATIM:
if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), frame_header->blocksize, subframe_bps, subframe->wasted_bits, frame)) {
encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
default:
FLAC__ASSERT(0);
}
return true;
}
unsigned evaluate_constant_subframe_(
const FLAC__int32 signal,
unsigned subframe_bps,
FLAC__Subframe *subframe
)
{
subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT;
subframe->data.constant.value = signal;
return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe_bps;
}
unsigned evaluate_fixed_subframe_(
FLAC__StreamEncoder *encoder,
const FLAC__int32 signal[],
FLAC__int32 residual[],
FLAC__uint32 abs_residual[],
FLAC__uint64 abs_residual_partition_sums[],
unsigned raw_bits_per_partition[],
unsigned blocksize,
unsigned subframe_bps,
unsigned order,
unsigned rice_parameter,
unsigned min_partition_order,
unsigned max_partition_order,
FLAC__bool precompute_partition_sums,
FLAC__bool do_escape_coding,
unsigned rice_parameter_search_dist,
FLAC__Subframe *subframe,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents
)
{
unsigned i, residual_bits;
const unsigned residual_samples = blocksize - order;
FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual);
subframe->type = FLAC__SUBFRAME_TYPE_FIXED;
subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents;
subframe->data.fixed.residual = residual;
residual_bits =
find_best_partition_order_(
encoder->private_,
residual,
abs_residual,
abs_residual_partition_sums,
raw_bits_per_partition,
residual_samples,
order,
rice_parameter,
min_partition_order,
max_partition_order,
precompute_partition_sums,
do_escape_coding,
rice_parameter_search_dist,
&subframe->data.fixed.entropy_coding_method.data.partitioned_rice
);
subframe->data.fixed.order = order;
for(i = 0; i < order; i++)
subframe->data.fixed.warmup[i] = signal[i];
return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (order * subframe_bps) + residual_bits;
}
#ifndef FLAC__INTEGER_ONLY_LIBRARY
unsigned evaluate_lpc_subframe_(
FLAC__StreamEncoder *encoder,
const FLAC__int32 signal[],
FLAC__int32 residual[],
FLAC__uint32 abs_residual[],
FLAC__uint64 abs_residual_partition_sums[],
unsigned raw_bits_per_partition[],
const FLAC__real lp_coeff[],
unsigned blocksize,
unsigned subframe_bps,
unsigned order,
unsigned qlp_coeff_precision,
unsigned rice_parameter,
unsigned min_partition_order,
unsigned max_partition_order,
FLAC__bool precompute_partition_sums,
FLAC__bool do_escape_coding,
unsigned rice_parameter_search_dist,
FLAC__Subframe *subframe,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents
)
{
FLAC__int32 qlp_coeff[FLAC__MAX_LPC_ORDER];
unsigned i, residual_bits;
int quantization, ret;
const unsigned residual_samples = blocksize - order;
/* try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps streams */
if(subframe_bps <= 16) {
FLAC__ASSERT(order > 0);
FLAC__ASSERT(order <= FLAC__MAX_LPC_ORDER);
qlp_coeff_precision = min(qlp_coeff_precision, 32 - subframe_bps - FLAC__bitmath_ilog2(order));
}
ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, qlp_coeff, &quantization);
if(ret != 0)
return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */
if(subframe_bps + qlp_coeff_precision + FLAC__bitmath_ilog2(order) <= 32)
if(subframe_bps <= 16 && qlp_coeff_precision <= 16)
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
else
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
else
encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
subframe->type = FLAC__SUBFRAME_TYPE_LPC;
subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents;
subframe->data.lpc.residual = residual;
residual_bits =
find_best_partition_order_(
encoder->private_,
residual,
abs_residual,
abs_residual_partition_sums,
raw_bits_per_partition,
residual_samples,
order,
rice_parameter,
min_partition_order,
max_partition_order,
precompute_partition_sums,
do_escape_coding,
rice_parameter_search_dist,
&subframe->data.fixed.entropy_coding_method.data.partitioned_rice
);
subframe->data.lpc.order = order;
subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
subframe->data.lpc.quantization_level = quantization;
memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(FLAC__int32)*FLAC__MAX_LPC_ORDER);
for(i = 0; i < order; i++)
subframe->data.lpc.warmup[i] = signal[i];
return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps)) + residual_bits;
}
#endif
unsigned evaluate_verbatim_subframe_(
const FLAC__int32 signal[],
unsigned blocksize,
unsigned subframe_bps,
FLAC__Subframe *subframe
)
{
subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM;
subframe->data.verbatim.data = signal;
return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (blocksize * subframe_bps);
}
unsigned find_best_partition_order_(
FLAC__StreamEncoderPrivate *private_,
const FLAC__int32 residual[],
FLAC__uint32 abs_residual[],
FLAC__uint64 abs_residual_partition_sums[],
unsigned raw_bits_per_partition[],
unsigned residual_samples,
unsigned predictor_order,
unsigned rice_parameter,
unsigned min_partition_order,
unsigned max_partition_order,
FLAC__bool precompute_partition_sums,
FLAC__bool do_escape_coding,
unsigned rice_parameter_search_dist,
FLAC__EntropyCodingMethod_PartitionedRice *best_partitioned_rice
)
{
FLAC__int32 r;
unsigned residual_bits, best_residual_bits = 0;
unsigned residual_sample;
unsigned best_parameters_index = 0;
const unsigned blocksize = residual_samples + predictor_order;
/* compute abs(residual) for use later */
for(residual_sample = 0; residual_sample < residual_samples; residual_sample++) {
r = residual[residual_sample];
abs_residual[residual_sample] = (FLAC__uint32)(r<0? -r : r);
}
max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order(max_partition_order, blocksize, predictor_order);
min_partition_order = min(min_partition_order, max_partition_order);
if(precompute_partition_sums) {
int partition_order;
unsigned sum;
precompute_partition_info_sums_(abs_residual, abs_residual_partition_sums, residual_samples, predictor_order, min_partition_order, max_partition_order);
if(do_escape_coding)
precompute_partition_info_escapes_(residual, raw_bits_per_partition, residual_samples, predictor_order, min_partition_order, max_partition_order);
for(partition_order = (int)max_partition_order, sum = 0; partition_order >= (int)min_partition_order; partition_order--) {
#ifdef DONT_ESTIMATE_RICE_BITS
if(!
set_partitioned_rice_with_precompute_(
residual,
abs_residual_partition_sums+sum,
raw_bits_per_partition+sum,
residual_samples,
predictor_order,
rice_parameter,
rice_parameter_search_dist,
(unsigned)partition_order,
do_escape_coding,
&private_->partitioned_rice_contents_extra[!best_parameters_index],
&residual_bits
)
)
#else
if(!
set_partitioned_rice_with_precompute_(
abs_residual,
abs_residual_partition_sums+sum,
raw_bits_per_partition+sum,
residual_samples,
predictor_order,
rice_parameter,
rice_parameter_search_dist,
(unsigned)partition_order,
do_escape_coding,
&private_->partitioned_rice_contents_extra[!best_parameters_index],
&residual_bits
)
)
#endif
{
FLAC__ASSERT(best_residual_bits != 0);
break;
}
sum += 1u << partition_order;
if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
best_residual_bits = residual_bits;
best_parameters_index = !best_parameters_index;
best_partitioned_rice->order = partition_order;
}
}
}
else {
unsigned partition_order;
for(partition_order = min_partition_order; partition_order <= max_partition_order; partition_order++) {
#ifdef DONT_ESTIMATE_RICE_BITS
if(!
set_partitioned_rice_(
abs_residual,
residual,
residual_samples,
predictor_order,
rice_parameter,
rice_parameter_search_dist,
partition_order,
&private_->partitioned_rice_contents_extra[!best_parameters_index],
&residual_bits
)
)
#else
if(!
set_partitioned_rice_(
abs_residual,
residual_samples,
predictor_order,
rice_parameter,
rice_parameter_search_dist,
partition_order,
&private_->partitioned_rice_contents_extra[!best_parameters_index],
&residual_bits
)
)
#endif
{
FLAC__ASSERT(best_residual_bits != 0);
break;
}
if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
best_residual_bits = residual_bits;
best_parameters_index = !best_parameters_index;
best_partitioned_rice->order = partition_order;
}
}
}
/*
* We are allowed to de-const the pointer based on our special knowledge;
* it is const to the outside world.
*/
{
FLAC__EntropyCodingMethod_PartitionedRiceContents* best_partitioned_rice_contents = (FLAC__EntropyCodingMethod_PartitionedRiceContents*)best_partitioned_rice->contents;
FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(best_partitioned_rice_contents, max(6, best_partitioned_rice->order));
memcpy(best_partitioned_rice_contents->parameters, private_->partitioned_rice_contents_extra[best_parameters_index].parameters, sizeof(unsigned)*(1<<(best_partitioned_rice->order)));
memcpy(best_partitioned_rice_contents->raw_bits, private_->partitioned_rice_contents_extra[best_parameters_index].raw_bits, sizeof(unsigned)*(1<<(best_partitioned_rice->order)));
}
return best_residual_bits;
}
void precompute_partition_info_sums_(
const FLAC__uint32 abs_residual[],
FLAC__uint64 abs_residual_partition_sums[],
unsigned residual_samples,
unsigned predictor_order,
unsigned min_partition_order,
unsigned max_partition_order
)
{
int partition_order;
unsigned from_partition, to_partition = 0;
const unsigned blocksize = residual_samples + predictor_order;
/* first do max_partition_order */
for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) {
FLAC__uint64 abs_residual_partition_sum;
FLAC__uint32 abs_r;
unsigned partition, partition_sample, partition_samples, residual_sample;
const unsigned partitions = 1u << partition_order;
const unsigned default_partition_samples = blocksize >> partition_order;
FLAC__ASSERT(default_partition_samples > predictor_order);
for(partition = residual_sample = 0; partition < partitions; partition++) {
partition_samples = default_partition_samples;
if(partition == 0)
partition_samples -= predictor_order;
abs_residual_partition_sum = 0;
for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) {
abs_r = abs_residual[residual_sample];
abs_residual_partition_sum += abs_r;
residual_sample++;
}
abs_residual_partition_sums[partition] = abs_residual_partition_sum;
}
to_partition = partitions;
break;
}
/* now merge partitions for lower orders */
for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) {
FLAC__uint64 s;
unsigned i;
const unsigned partitions = 1u << partition_order;
for(i = 0; i < partitions; i++) {
s = abs_residual_partition_sums[from_partition];
from_partition++;
abs_residual_partition_sums[to_partition] = s + abs_residual_partition_sums[from_partition];
from_partition++;
to_partition++;
}
}
}
void precompute_partition_info_escapes_(
const FLAC__int32 residual[],
unsigned raw_bits_per_partition[],
unsigned residual_samples,
unsigned predictor_order,
unsigned min_partition_order,
unsigned max_partition_order
)
{
int partition_order;
unsigned from_partition, to_partition = 0;
const unsigned blocksize = residual_samples + predictor_order;
/* first do max_partition_order */
for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) {
FLAC__int32 r, residual_partition_min, residual_partition_max;
unsigned silog2_min, silog2_max;
unsigned partition, partition_sample, partition_samples, residual_sample;
const unsigned partitions = 1u << partition_order;
const unsigned default_partition_samples = blocksize >> partition_order;
FLAC__ASSERT(default_partition_samples > predictor_order);
for(partition = residual_sample = 0; partition < partitions; partition++) {
partition_samples = default_partition_samples;
if(partition == 0)
partition_samples -= predictor_order;
residual_partition_min = residual_partition_max = 0;
for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) {
r = residual[residual_sample];
if(r < residual_partition_min)
residual_partition_min = r;
else if(r > residual_partition_max)
residual_partition_max = r;
residual_sample++;
}
silog2_min = FLAC__bitmath_silog2(residual_partition_min);
silog2_max = FLAC__bitmath_silog2(residual_partition_max);
raw_bits_per_partition[partition] = max(silog2_min, silog2_max);
}
to_partition = partitions;
break;
}
/* now merge partitions for lower orders */
for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) {
unsigned m;
unsigned i;
const unsigned partitions = 1u << partition_order;
for(i = 0; i < partitions; i++) {
m = raw_bits_per_partition[from_partition];
from_partition++;
raw_bits_per_partition[to_partition] = max(m, raw_bits_per_partition[from_partition]);
from_partition++;
to_partition++;
}
}
}
#ifdef VARIABLE_RICE_BITS
#undef VARIABLE_RICE_BITS
#endif
#ifndef DONT_ESTIMATE_RICE_BITS
#define VARIABLE_RICE_BITS(value, parameter) ((value) >> (parameter))
#endif
#ifdef DONT_ESTIMATE_RICE_BITS
FLAC__bool set_partitioned_rice_(
const FLAC__uint32 abs_residual[],
const FLAC__int32 residual[],
const unsigned residual_samples,
const unsigned predictor_order,
const unsigned suggested_rice_parameter,
const unsigned rice_parameter_search_dist,
const unsigned partition_order,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
unsigned *bits
)
#else
FLAC__bool set_partitioned_rice_(
const FLAC__uint32 abs_residual[],
const unsigned residual_samples,
const unsigned predictor_order,
const unsigned suggested_rice_parameter,
const unsigned rice_parameter_search_dist,
const unsigned partition_order,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
unsigned *bits
)
#endif
{
unsigned rice_parameter, partition_bits;
#ifndef NO_RICE_SEARCH
unsigned best_partition_bits;
unsigned min_rice_parameter, max_rice_parameter, best_rice_parameter = 0;
#endif
unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
unsigned *parameters;
FLAC__ASSERT(suggested_rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER);
FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order));
parameters = partitioned_rice_contents->parameters;
if(partition_order == 0) {
unsigned i;
#ifndef NO_RICE_SEARCH
if(rice_parameter_search_dist) {
if(suggested_rice_parameter < rice_parameter_search_dist)
min_rice_parameter = 0;
else
min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist;
max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist;
if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "clipping rice_parameter (%u -> %u) @2\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
#endif
max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
}
else
min_rice_parameter = max_rice_parameter = suggested_rice_parameter;
best_partition_bits = 0xffffffff;
for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
#endif
#ifdef VARIABLE_RICE_BITS
const unsigned rice_parameter_estimate = rice_parameter-1;
partition_bits = (1+rice_parameter) * residual_samples;
#else
partition_bits = 0;
#endif
partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
for(i = 0; i < residual_samples; i++) {
#ifdef VARIABLE_RICE_BITS
partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate);
#else
partition_bits += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); /* NOTE: we will need to pass in residual[] in addition to abs_residual[] */
#endif
}
#ifndef NO_RICE_SEARCH
if(partition_bits < best_partition_bits) {
best_rice_parameter = rice_parameter;
best_partition_bits = partition_bits;
}
}
#endif
parameters[0] = best_rice_parameter;
bits_ += best_partition_bits;
}
else {
unsigned partition, residual_sample, save_residual_sample, partition_sample;
unsigned partition_samples;
FLAC__uint64 mean, k;
const unsigned partitions = 1u << partition_order;
for(partition = residual_sample = 0; partition < partitions; partition++) {
partition_samples = (residual_samples+predictor_order) >> partition_order;
if(partition == 0) {
if(partition_samples <= predictor_order)
return false;
else
partition_samples -= predictor_order;
}
mean = 0;
save_residual_sample = residual_sample;
for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++)
mean += abs_residual[residual_sample];
residual_sample = save_residual_sample;
/* we are basically calculating the size in bits of the
* average residual magnitude in the partition:
* rice_parameter = floor(log2(mean/partition_samples))
* 'mean' is not a good name for the variable, it is
* actually the sum of magnitudes of all residual values
* in the partition, so the actual mean is
* mean/partition_samples
*/
for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1)
;
if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "clipping rice_parameter (%u -> %u) @3\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
#endif
rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
#ifndef NO_RICE_SEARCH
if(rice_parameter_search_dist) {
if(rice_parameter < rice_parameter_search_dist)
min_rice_parameter = 0;
else
min_rice_parameter = rice_parameter - rice_parameter_search_dist;
max_rice_parameter = rice_parameter + rice_parameter_search_dist;
if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "clipping rice_parameter (%u -> %u) @4\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
#endif
max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
}
else
min_rice_parameter = max_rice_parameter = rice_parameter;
best_partition_bits = 0xffffffff;
for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
#endif
#ifdef VARIABLE_RICE_BITS
const unsigned rice_parameter_estimate = rice_parameter-1;
partition_bits = (1+rice_parameter) * partition_samples;
#else
partition_bits = 0;
#endif
partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
save_residual_sample = residual_sample;
for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) {
#ifdef VARIABLE_RICE_BITS
partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate);
#else
partition_bits += FLAC__bitbuffer_rice_bits(residual[residual_sample], rice_parameter); /* NOTE: we will need to pass in residual[] in addition to abs_residual[] */
#endif
}
#ifndef NO_RICE_SEARCH
if(rice_parameter != max_rice_parameter)
residual_sample = save_residual_sample;
if(partition_bits < best_partition_bits) {
best_rice_parameter = rice_parameter;
best_partition_bits = partition_bits;
}
}
#endif
parameters[partition] = best_rice_parameter;
bits_ += best_partition_bits;
}
}
*bits = bits_;
return true;
}
#ifdef DONT_ESTIMATE_RICE_BITS
FLAC__bool set_partitioned_rice_with_precompute_(
const FLAC__int32 residual[],
const FLAC__uint64 abs_residual_partition_sums[],
const unsigned raw_bits_per_partition[],
const unsigned residual_samples,
const unsigned predictor_order,
const unsigned suggested_rice_parameter,
const unsigned rice_parameter_search_dist,
const unsigned partition_order,
const FLAC__bool search_for_escapes,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
unsigned *bits
)
#else
FLAC__bool set_partitioned_rice_with_precompute_(
const FLAC__uint32 abs_residual[],
const FLAC__uint64 abs_residual_partition_sums[],
const unsigned raw_bits_per_partition[],
const unsigned residual_samples,
const unsigned predictor_order,
const unsigned suggested_rice_parameter,
const unsigned rice_parameter_search_dist,
const unsigned partition_order,
const FLAC__bool search_for_escapes,
FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
unsigned *bits
)
#endif
{
unsigned rice_parameter, partition_bits;
#ifndef NO_RICE_SEARCH
unsigned best_partition_bits;
unsigned min_rice_parameter, max_rice_parameter, best_rice_parameter = 0;
#endif
unsigned flat_bits;
unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
unsigned *parameters, *raw_bits;
FLAC__ASSERT(suggested_rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER);
FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(partitioned_rice_contents, max(6, partition_order));
parameters = partitioned_rice_contents->parameters;
raw_bits = partitioned_rice_contents->raw_bits;
if(partition_order == 0) {
unsigned i;
#ifndef NO_RICE_SEARCH
if(rice_parameter_search_dist) {
if(suggested_rice_parameter < rice_parameter_search_dist)
min_rice_parameter = 0;
else
min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist;
max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist;
if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "clipping rice_parameter (%u -> %u) @5\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
#endif
max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
}
else
min_rice_parameter = max_rice_parameter = suggested_rice_parameter;
best_partition_bits = 0xffffffff;
for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
#endif
#ifdef VARIABLE_RICE_BITS
const unsigned rice_parameter_estimate = rice_parameter-1;
partition_bits = (1+rice_parameter) * residual_samples;
#else
partition_bits = 0;
#endif
partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
for(i = 0; i < residual_samples; i++) {
#ifdef VARIABLE_RICE_BITS
partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate);
#else
partition_bits += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */
#endif
}
#ifndef NO_RICE_SEARCH
if(partition_bits < best_partition_bits) {
best_rice_parameter = rice_parameter;
best_partition_bits = partition_bits;
}
}
#endif
if(search_for_escapes) {
flat_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[0] * residual_samples;
if(flat_bits <= best_partition_bits) {
raw_bits[0] = raw_bits_per_partition[0];
best_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
best_partition_bits = flat_bits;
}
}
parameters[0] = best_rice_parameter;
bits_ += best_partition_bits;
}
else {
unsigned partition, residual_sample, save_residual_sample, partition_sample;
unsigned partition_samples;
FLAC__uint64 mean, k;
const unsigned partitions = 1u << partition_order;
for(partition = residual_sample = 0; partition < partitions; partition++) {
partition_samples = (residual_samples+predictor_order) >> partition_order;
if(partition == 0) {
if(partition_samples <= predictor_order)
return false;
else
partition_samples -= predictor_order;
}
mean = abs_residual_partition_sums[partition];
/* we are basically calculating the size in bits of the
* average residual magnitude in the partition:
* rice_parameter = floor(log2(mean/partition_samples))
* 'mean' is not a good name for the variable, it is
* actually the sum of magnitudes of all residual values
* in the partition, so the actual mean is
* mean/partition_samples
*/
for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1)
;
if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "clipping rice_parameter (%u -> %u) @6\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
#endif
rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
#ifndef NO_RICE_SEARCH
if(rice_parameter_search_dist) {
if(rice_parameter < rice_parameter_search_dist)
min_rice_parameter = 0;
else
min_rice_parameter = rice_parameter - rice_parameter_search_dist;
max_rice_parameter = rice_parameter + rice_parameter_search_dist;
if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
#ifdef DEBUG_VERBOSE
fprintf(stderr, "clipping rice_parameter (%u -> %u) @7\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1);
#endif
max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1;
}
}
else
min_rice_parameter = max_rice_parameter = rice_parameter;
best_partition_bits = 0xffffffff;
for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
#endif
#ifdef VARIABLE_RICE_BITS
const unsigned rice_parameter_estimate = rice_parameter-1;
partition_bits = (1+rice_parameter) * partition_samples;
#else
partition_bits = 0;
#endif
partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
save_residual_sample = residual_sample;
for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) {
#ifdef VARIABLE_RICE_BITS
partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate);
#else
partition_bits += FLAC__bitbuffer_rice_bits(residual[residual_sample], rice_parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */
#endif
}
#ifndef NO_RICE_SEARCH
if(rice_parameter != max_rice_parameter)
residual_sample = save_residual_sample;
if(partition_bits < best_partition_bits) {
best_rice_parameter = rice_parameter;
best_partition_bits = partition_bits;
}
}
#endif
if(search_for_escapes) {
flat_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[partition] * partition_samples;
if(flat_bits <= best_partition_bits) {
raw_bits[partition] = raw_bits_per_partition[partition];
best_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
best_partition_bits = flat_bits;
}
}
parameters[partition] = best_rice_parameter;
bits_ += best_partition_bits;
}
}
*bits = bits_;
return true;
}
unsigned get_wasted_bits_(FLAC__int32 signal[], unsigned samples)
{
unsigned i, shift;
FLAC__int32 x = 0;
for(i = 0; i < samples && !(x&1); i++)
x |= signal[i];
if(x == 0) {
shift = 0;
}
else {
for(shift = 0; !(x&1); shift++)
x >>= 1;
}
if(shift > 0) {
for(i = 0; i < samples; i++)
signal[i] >>= shift;
}
return shift;
}
void append_to_verify_fifo_(verify_input_fifo *fifo, const FLAC__int32 * const input[], unsigned input_offset, unsigned channels, unsigned wide_samples)
{
unsigned channel;
for(channel = 0; channel < channels; channel++)
memcpy(&fifo->data[channel][fifo->tail], &input[channel][input_offset], sizeof(FLAC__int32) * wide_samples);
fifo->tail += wide_samples;
FLAC__ASSERT(fifo->tail <= fifo->size);
}
void append_to_verify_fifo_interleaved_(verify_input_fifo *fifo, const FLAC__int32 input[], unsigned input_offset, unsigned channels, unsigned wide_samples)
{
unsigned channel;
unsigned sample, wide_sample;
unsigned tail = fifo->tail;
sample = input_offset * channels;
for(wide_sample = 0; wide_sample < wide_samples; wide_sample++) {
for(channel = 0; channel < channels; channel++)
fifo->data[channel][tail] = input[sample++];
tail++;
}
fifo->tail = tail;
FLAC__ASSERT(fifo->tail <= fifo->size);
}
FLAC__StreamDecoderReadStatus verify_read_callback_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], unsigned *bytes, void *client_data)
{
FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data;
const unsigned encoded_bytes = encoder->private_->verify.output.bytes;
(void)decoder;
if(encoder->private_->verify.needs_magic_hack) {
FLAC__ASSERT(*bytes >= FLAC__STREAM_SYNC_LENGTH);
*bytes = FLAC__STREAM_SYNC_LENGTH;
memcpy(buffer, FLAC__STREAM_SYNC_STRING, *bytes);
encoder->private_->verify.needs_magic_hack = false;
}
else {
if(encoded_bytes == 0) {
/*
* If we get here, a FIFO underflow has occurred,
* which means there is a bug somewhere.
*/
FLAC__ASSERT(0);
return FLAC__STREAM_DECODER_READ_STATUS_ABORT;
}
else if(encoded_bytes < *bytes)
*bytes = encoded_bytes;
memcpy(buffer, encoder->private_->verify.output.data, *bytes);
encoder->private_->verify.output.data += *bytes;
encoder->private_->verify.output.bytes -= *bytes;
}
return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE;
}
FLAC__StreamDecoderWriteStatus verify_write_callback_(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data)
{
FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder *)client_data;
unsigned channel;
const unsigned channels = FLAC__stream_decoder_get_channels(decoder);
const unsigned blocksize = frame->header.blocksize;
const unsigned bytes_per_block = sizeof(FLAC__int32) * blocksize;
for(channel = 0; channel < channels; channel++) {
if(0 != memcmp(buffer[channel], encoder->private_->verify.input_fifo.data[channel], bytes_per_block)) {
unsigned i, sample = 0;
FLAC__int32 expect = 0, got = 0;
for(i = 0; i < blocksize; i++) {
if(buffer[channel][i] != encoder->private_->verify.input_fifo.data[channel][i]) {
sample = i;
expect = (FLAC__int32)encoder->private_->verify.input_fifo.data[channel][i];
got = (FLAC__int32)buffer[channel][i];
break;
}
}
FLAC__ASSERT(i < blocksize);
FLAC__ASSERT(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER);
encoder->private_->verify.error_stats.absolute_sample = frame->header.number.sample_number + sample;
encoder->private_->verify.error_stats.frame_number = (unsigned)(frame->header.number.sample_number / blocksize);
encoder->private_->verify.error_stats.channel = channel;
encoder->private_->verify.error_stats.sample = sample;
encoder->private_->verify.error_stats.expected = expect;
encoder->private_->verify.error_stats.got = got;
encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA;
return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT;
}
}
/* dequeue the frame from the fifo */
for(channel = 0; channel < channels; channel++) {
memmove(&encoder->private_->verify.input_fifo.data[channel][0], &encoder->private_->verify.input_fifo.data[channel][blocksize], encoder->private_->verify.input_fifo.tail - blocksize);
}
encoder->private_->verify.input_fifo.tail -= blocksize;
return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE;
}
void verify_metadata_callback_(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data)
{
(void)decoder, (void)metadata, (void)client_data;
}
void verify_error_callback_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data)
{
FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data;
(void)decoder, (void)status;
encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR;
}