| // Formatting library for C++ |
| // |
| // Copyright (c) 2012 - 2016, Victor Zverovich |
| // All rights reserved. |
| // |
| // For the license information refer to format.h. |
| |
| #ifndef FMT_FORMAT_INL_H_ |
| #define FMT_FORMAT_INL_H_ |
| |
| #include "format.h" |
| |
| #include <string.h> |
| |
| #include <cctype> |
| #include <cerrno> |
| #include <climits> |
| #include <cmath> |
| #include <cstdarg> |
| #include <cstddef> // for std::ptrdiff_t |
| #include <cstring> // for std::memmove |
| #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) |
| # include <locale> |
| #endif |
| |
| #if FMT_USE_WINDOWS_H |
| # if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN) |
| # define WIN32_LEAN_AND_MEAN |
| # endif |
| # if defined(NOMINMAX) || defined(FMT_WIN_MINMAX) |
| # include <windows.h> |
| # else |
| # define NOMINMAX |
| # include <windows.h> |
| # undef NOMINMAX |
| # endif |
| #endif |
| |
| #if FMT_EXCEPTIONS |
| # define FMT_TRY try |
| # define FMT_CATCH(x) catch (x) |
| #else |
| # define FMT_TRY if (true) |
| # define FMT_CATCH(x) if (false) |
| #endif |
| |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable: 4127) // conditional expression is constant |
| # pragma warning(disable: 4702) // unreachable code |
| // Disable deprecation warning for strerror. The latter is not called but |
| // MSVC fails to detect it. |
| # pragma warning(disable: 4996) |
| #endif |
| |
| // Dummy implementations of strerror_r and strerror_s called if corresponding |
| // system functions are not available. |
| inline fmt::internal::null<> strerror_r(int, char *, ...) { |
| return fmt::internal::null<>(); |
| } |
| inline fmt::internal::null<> strerror_s(char *, std::size_t, ...) { |
| return fmt::internal::null<>(); |
| } |
| |
| FMT_BEGIN_NAMESPACE |
| |
| namespace { |
| |
| #ifndef _MSC_VER |
| # define FMT_SNPRINTF snprintf |
| #else // _MSC_VER |
| inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...) { |
| va_list args; |
| va_start(args, format); |
| int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); |
| va_end(args); |
| return result; |
| } |
| # define FMT_SNPRINTF fmt_snprintf |
| #endif // _MSC_VER |
| |
| #if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT) |
| # define FMT_SWPRINTF snwprintf |
| #else |
| # define FMT_SWPRINTF swprintf |
| #endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT) |
| |
| typedef void (*FormatFunc)(internal::buffer &, int, string_view); |
| |
| // Portable thread-safe version of strerror. |
| // Sets buffer to point to a string describing the error code. |
| // This can be either a pointer to a string stored in buffer, |
| // or a pointer to some static immutable string. |
| // Returns one of the following values: |
| // 0 - success |
| // ERANGE - buffer is not large enough to store the error message |
| // other - failure |
| // Buffer should be at least of size 1. |
| int safe_strerror( |
| int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT { |
| FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer"); |
| |
| class dispatcher { |
| private: |
| int error_code_; |
| char *&buffer_; |
| std::size_t buffer_size_; |
| |
| // A noop assignment operator to avoid bogus warnings. |
| void operator=(const dispatcher &) {} |
| |
| // Handle the result of XSI-compliant version of strerror_r. |
| int handle(int result) { |
| // glibc versions before 2.13 return result in errno. |
| return result == -1 ? errno : result; |
| } |
| |
| // Handle the result of GNU-specific version of strerror_r. |
| int handle(char *message) { |
| // If the buffer is full then the message is probably truncated. |
| if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1) |
| return ERANGE; |
| buffer_ = message; |
| return 0; |
| } |
| |
| // Handle the case when strerror_r is not available. |
| int handle(internal::null<>) { |
| return fallback(strerror_s(buffer_, buffer_size_, error_code_)); |
| } |
| |
| // Fallback to strerror_s when strerror_r is not available. |
| int fallback(int result) { |
| // If the buffer is full then the message is probably truncated. |
| return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? |
| ERANGE : result; |
| } |
| |
| // Fallback to strerror if strerror_r and strerror_s are not available. |
| int fallback(internal::null<>) { |
| errno = 0; |
| buffer_ = strerror(error_code_); |
| return errno; |
| } |
| |
| public: |
| dispatcher(int err_code, char *&buf, std::size_t buf_size) |
| : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {} |
| |
| int run() { |
| return handle(strerror_r(error_code_, buffer_, buffer_size_)); |
| } |
| }; |
| return dispatcher(error_code, buffer, buffer_size).run(); |
| } |
| |
| void format_error_code(internal::buffer &out, int error_code, |
| string_view message) FMT_NOEXCEPT { |
| // Report error code making sure that the output fits into |
| // inline_buffer_size to avoid dynamic memory allocation and potential |
| // bad_alloc. |
| out.resize(0); |
| static const char SEP[] = ": "; |
| static const char ERROR_STR[] = "error "; |
| // Subtract 2 to account for terminating null characters in SEP and ERROR_STR. |
| std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2; |
| typedef internal::int_traits<int>::main_type main_type; |
| main_type abs_value = static_cast<main_type>(error_code); |
| if (internal::is_negative(error_code)) { |
| abs_value = 0 - abs_value; |
| ++error_code_size; |
| } |
| error_code_size += internal::count_digits(abs_value); |
| writer w(out); |
| if (message.size() <= inline_buffer_size - error_code_size) { |
| w.write(message); |
| w.write(SEP); |
| } |
| w.write(ERROR_STR); |
| w.write(error_code); |
| assert(out.size() <= inline_buffer_size); |
| } |
| |
| void report_error(FormatFunc func, int error_code, |
| string_view message) FMT_NOEXCEPT { |
| memory_buffer full_message; |
| func(full_message, error_code, message); |
| // Use Writer::data instead of Writer::c_str to avoid potential memory |
| // allocation. |
| std::fwrite(full_message.data(), full_message.size(), 1, stderr); |
| std::fputc('\n', stderr); |
| } |
| } // namespace |
| |
| #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) |
| class locale { |
| private: |
| std::locale locale_; |
| |
| public: |
| explicit locale(std::locale loc = std::locale()) : locale_(loc) {} |
| std::locale get() { return locale_; } |
| }; |
| |
| FMT_FUNC size_t internal::count_code_points(u8string_view s) { |
| const char8_t *data = s.data(); |
| int num_code_points = 0; |
| for (size_t i = 0, size = s.size(); i != size; ++i) { |
| if ((data[i].value & 0xc0) != 0x80) |
| ++num_code_points; |
| } |
| return num_code_points; |
| } |
| |
| template <typename Char> |
| FMT_FUNC Char internal::thousands_sep(locale_provider *lp) { |
| std::locale loc = lp ? lp->locale().get() : std::locale(); |
| return std::use_facet<std::numpunct<Char>>(loc).thousands_sep(); |
| } |
| #else |
| template <typename Char> |
| FMT_FUNC Char internal::thousands_sep(locale_provider *lp) { |
| return FMT_STATIC_THOUSANDS_SEPARATOR; |
| } |
| #endif |
| |
| FMT_FUNC void system_error::init( |
| int err_code, string_view format_str, format_args args) { |
| error_code_ = err_code; |
| memory_buffer buffer; |
| format_system_error(buffer, err_code, vformat(format_str, args)); |
| std::runtime_error &base = *this; |
| base = std::runtime_error(to_string(buffer)); |
| } |
| |
| namespace internal { |
| template <typename T> |
| int char_traits<char>::format_float( |
| char *buffer, std::size_t size, const char *format, int precision, T value) { |
| return precision < 0 ? |
| FMT_SNPRINTF(buffer, size, format, value) : |
| FMT_SNPRINTF(buffer, size, format, precision, value); |
| } |
| |
| template <typename T> |
| int char_traits<wchar_t>::format_float( |
| wchar_t *buffer, std::size_t size, const wchar_t *format, int precision, |
| T value) { |
| return precision < 0 ? |
| FMT_SWPRINTF(buffer, size, format, value) : |
| FMT_SWPRINTF(buffer, size, format, precision, value); |
| } |
| |
| template <typename T> |
| const char basic_data<T>::DIGITS[] = |
| "0001020304050607080910111213141516171819" |
| "2021222324252627282930313233343536373839" |
| "4041424344454647484950515253545556575859" |
| "6061626364656667686970717273747576777879" |
| "8081828384858687888990919293949596979899"; |
| |
| #define FMT_POWERS_OF_10(factor) \ |
| factor * 10, \ |
| factor * 100, \ |
| factor * 1000, \ |
| factor * 10000, \ |
| factor * 100000, \ |
| factor * 1000000, \ |
| factor * 10000000, \ |
| factor * 100000000, \ |
| factor * 1000000000 |
| |
| template <typename T> |
| const uint32_t basic_data<T>::POWERS_OF_10_32[] = { |
| 1, FMT_POWERS_OF_10(1) |
| }; |
| |
| template <typename T> |
| const uint32_t basic_data<T>::ZERO_OR_POWERS_OF_10_32[] = { |
| 0, FMT_POWERS_OF_10(1) |
| }; |
| |
| template <typename T> |
| const uint64_t basic_data<T>::ZERO_OR_POWERS_OF_10_64[] = { |
| 0, |
| FMT_POWERS_OF_10(1), |
| FMT_POWERS_OF_10(1000000000ull), |
| 10000000000000000000ull |
| }; |
| |
| // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. |
| // These are generated by support/compute-powers.py. |
| template <typename T> |
| const uint64_t basic_data<T>::POW10_SIGNIFICANDS[] = { |
| 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, |
| 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, |
| 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, |
| 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, |
| 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, |
| 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, |
| 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, |
| 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, |
| 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, |
| 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, |
| 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, |
| 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, |
| 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, |
| 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, |
| 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, |
| 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, |
| 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, |
| 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, |
| 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, |
| 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, |
| 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, |
| 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, |
| 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, |
| 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, |
| 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, |
| 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, |
| 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, |
| 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, |
| 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, |
| }; |
| |
| // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding |
| // to significands above. |
| template <typename T> |
| const int16_t basic_data<T>::POW10_EXPONENTS[] = { |
| -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, |
| -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, |
| -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, |
| -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, |
| -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, |
| 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, |
| 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, |
| 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066 |
| }; |
| |
| template <typename T> const char basic_data<T>::RESET_COLOR[] = "\x1b[0m"; |
| template <typename T> const wchar_t basic_data<T>::WRESET_COLOR[] = L"\x1b[0m"; |
| |
| // A handmade floating-point number f * pow(2, e). |
| class fp { |
| private: |
| typedef uint64_t significand_type; |
| |
| // All sizes are in bits. |
| static FMT_CONSTEXPR_DECL const int char_size = |
| std::numeric_limits<unsigned char>::digits; |
| // Subtract 1 to account for an implicit most significant bit in the |
| // normalized form. |
| static FMT_CONSTEXPR_DECL const int double_significand_size = |
| std::numeric_limits<double>::digits - 1; |
| static FMT_CONSTEXPR_DECL const uint64_t implicit_bit = |
| 1ull << double_significand_size; |
| |
| public: |
| significand_type f; |
| int e; |
| |
| static FMT_CONSTEXPR_DECL const int significand_size = |
| sizeof(significand_type) * char_size; |
| |
| fp(): f(0), e(0) {} |
| fp(uint64_t f, int e): f(f), e(e) {} |
| |
| // Constructs fp from an IEEE754 double. It is a template to prevent compile |
| // errors on platforms where double is not IEEE754. |
| template <typename Double> |
| explicit fp(Double d) { |
| // Assume double is in the format [sign][exponent][significand]. |
| typedef std::numeric_limits<Double> limits; |
| const int double_size = sizeof(Double) * char_size; |
| const int exponent_size = |
| double_size - double_significand_size - 1; // -1 for sign |
| const uint64_t significand_mask = implicit_bit - 1; |
| const uint64_t exponent_mask = (~0ull >> 1) & ~significand_mask; |
| const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1; |
| auto u = bit_cast<uint64_t>(d); |
| auto biased_e = (u & exponent_mask) >> double_significand_size; |
| f = u & significand_mask; |
| if (biased_e != 0) |
| f += implicit_bit; |
| else |
| biased_e = 1; // Subnormals use biased exponent 1 (min exponent). |
| e = static_cast<int>(biased_e - exponent_bias - double_significand_size); |
| } |
| |
| // Normalizes the value converted from double and multiplied by (1 << SHIFT). |
| template <int SHIFT = 0> |
| void normalize() { |
| // Handle subnormals. |
| auto shifted_implicit_bit = implicit_bit << SHIFT; |
| while ((f & shifted_implicit_bit) == 0) { |
| f <<= 1; |
| --e; |
| } |
| // Subtract 1 to account for hidden bit. |
| auto offset = significand_size - double_significand_size - SHIFT - 1; |
| f <<= offset; |
| e -= offset; |
| } |
| |
| // Compute lower and upper boundaries (m^- and m^+ in the Grisu paper), where |
| // a boundary is a value half way between the number and its predecessor |
| // (lower) or successor (upper). The upper boundary is normalized and lower |
| // has the same exponent but may be not normalized. |
| void compute_boundaries(fp &lower, fp &upper) const { |
| lower = f == implicit_bit ? |
| fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1); |
| upper = fp((f << 1) + 1, e - 1); |
| upper.normalize<1>(); // 1 is to account for the exponent shift above. |
| lower.f <<= lower.e - upper.e; |
| lower.e = upper.e; |
| } |
| }; |
| |
| // Returns an fp number representing x - y. Result may not be normalized. |
| inline fp operator-(fp x, fp y) { |
| FMT_ASSERT(x.f >= y.f && x.e == y.e, "invalid operands"); |
| return fp(x.f - y.f, x.e); |
| } |
| |
| // Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest |
| // with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be normalized. |
| FMT_API fp operator*(fp x, fp y); |
| |
| // Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its |
| // (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 3. |
| FMT_API fp get_cached_power(int min_exponent, int &pow10_exponent); |
| |
| FMT_FUNC fp operator*(fp x, fp y) { |
| // Multiply 32-bit parts of significands. |
| uint64_t mask = (1ULL << 32) - 1; |
| uint64_t a = x.f >> 32, b = x.f & mask; |
| uint64_t c = y.f >> 32, d = y.f & mask; |
| uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; |
| // Compute mid 64-bit of result and round. |
| uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); |
| return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64); |
| } |
| |
| FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent) { |
| const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10) |
| int index = static_cast<int>(std::ceil( |
| (min_exponent + fp::significand_size - 1) * one_over_log2_10)); |
| // Decimal exponent of the first (smallest) cached power of 10. |
| const int first_dec_exp = -348; |
| // Difference between 2 consecutive decimal exponents in cached powers of 10. |
| const int dec_exp_step = 8; |
| index = (index - first_dec_exp - 1) / dec_exp_step + 1; |
| pow10_exponent = first_dec_exp + index * dec_exp_step; |
| return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]); |
| } |
| |
| // Generates output using Grisu2 digit-gen algorithm. |
| FMT_FUNC void grisu2_gen_digits( |
| const fp &scaled_value, const fp &scaled_upper, uint64_t delta, |
| char *buffer, size_t &size, int &dec_exp) { |
| internal::fp one(1ull << -scaled_upper.e, scaled_upper.e); |
| // hi (p1 in Grisu) contains the most significant digits of scaled_upper. |
| // hi = floor(scaled_upper / one). |
| uint32_t hi = static_cast<uint32_t>(scaled_upper.f >> -one.e); |
| // lo (p2 in Grisu) contains the least significants digits of scaled_upper. |
| // lo = scaled_upper mod 1. |
| uint64_t lo = scaled_upper.f & (one.f - 1); |
| size = 0; |
| auto exp = count_digits(hi); // kappa in Grisu. |
| while (exp > 0) { |
| uint32_t digit = 0; |
| // This optimization by miloyip reduces the number of integer divisions by |
| // one per iteration. |
| switch (exp) { |
| case 10: digit = hi / 1000000000; hi %= 1000000000; break; |
| case 9: digit = hi / 100000000; hi %= 100000000; break; |
| case 8: digit = hi / 10000000; hi %= 10000000; break; |
| case 7: digit = hi / 1000000; hi %= 1000000; break; |
| case 6: digit = hi / 100000; hi %= 100000; break; |
| case 5: digit = hi / 10000; hi %= 10000; break; |
| case 4: digit = hi / 1000; hi %= 1000; break; |
| case 3: digit = hi / 100; hi %= 100; break; |
| case 2: digit = hi / 10; hi %= 10; break; |
| case 1: digit = hi; hi = 0; break; |
| default: |
| FMT_ASSERT(false, "invalid number of digits"); |
| } |
| if (digit != 0 || size != 0) |
| buffer[size++] = static_cast<char>('0' + digit); |
| --exp; |
| uint64_t remainder = (static_cast<uint64_t>(hi) << -one.e) + lo; |
| if (remainder <= delta) { |
| dec_exp += exp; |
| // TODO: use scaled_value |
| (void)scaled_value; |
| return; |
| } |
| } |
| for (;;) { |
| lo *= 10; |
| delta *= 10; |
| char digit = static_cast<char>(lo >> -one.e); |
| if (digit != 0 || size != 0) |
| buffer[size++] = static_cast<char>('0' + digit); |
| lo &= one.f - 1; |
| --exp; |
| if (lo < delta) { |
| dec_exp += exp; |
| return; |
| } |
| } |
| } |
| |
| FMT_FUNC void grisu2_format_positive(double value, char *buffer, size_t &size, |
| int &dec_exp) { |
| FMT_ASSERT(value > 0, "value is nonpositive"); |
| fp fp_value(value); |
| fp lower, upper; // w^- and w^+ in the Grisu paper. |
| fp_value.compute_boundaries(lower, upper); |
| // Find a cached power of 10 close to 1 / upper. |
| const int min_exp = -60; // alpha in Grisu. |
| auto dec_pow = get_cached_power( // \tilde{c}_{-k} in Grisu. |
| min_exp - (upper.e + fp::significand_size), dec_exp); |
| dec_exp = -dec_exp; |
| fp_value.normalize(); |
| fp scaled_value = fp_value * dec_pow; |
| fp scaled_lower = lower * dec_pow; // \tilde{M}^- in Grisu. |
| fp scaled_upper = upper * dec_pow; // \tilde{M}^+ in Grisu. |
| ++scaled_lower.f; // \tilde{M}^- + 1 ulp -> M^-_{\uparrow}. |
| --scaled_upper.f; // \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}. |
| uint64_t delta = scaled_upper.f - scaled_lower.f; |
| grisu2_gen_digits(scaled_value, scaled_upper, delta, buffer, size, dec_exp); |
| } |
| |
| FMT_FUNC void round(char *buffer, size_t &size, int &exp, |
| int digits_to_remove) { |
| size -= to_unsigned(digits_to_remove); |
| exp += digits_to_remove; |
| int digit = buffer[size] - '0'; |
| // TODO: proper rounding and carry |
| if (digit > 5 || (digit == 5 && (digits_to_remove > 1 || |
| (buffer[size - 1] - '0') % 2) != 0)) { |
| ++buffer[size - 1]; |
| } |
| } |
| |
| // Writes the exponent exp in the form "[+-]d{1,3}" to buffer. |
| FMT_FUNC char *write_exponent(char *buffer, int exp) { |
| FMT_ASSERT(-1000 < exp && exp < 1000, "exponent out of range"); |
| if (exp < 0) { |
| *buffer++ = '-'; |
| exp = -exp; |
| } else { |
| *buffer++ = '+'; |
| } |
| if (exp >= 100) { |
| *buffer++ = static_cast<char>('0' + exp / 100); |
| exp %= 100; |
| const char *d = data::DIGITS + exp * 2; |
| *buffer++ = d[0]; |
| *buffer++ = d[1]; |
| } else { |
| const char *d = data::DIGITS + exp * 2; |
| *buffer++ = d[0]; |
| *buffer++ = d[1]; |
| } |
| return buffer; |
| } |
| |
| FMT_FUNC void format_exp_notation( |
| char *buffer, size_t &size, int exp, int precision, bool upper) { |
| // Insert a decimal point after the first digit and add an exponent. |
| std::memmove(buffer + 2, buffer + 1, size - 1); |
| buffer[1] = '.'; |
| exp += static_cast<int>(size) - 1; |
| int num_digits = precision - static_cast<int>(size) + 1; |
| if (num_digits > 0) { |
| std::uninitialized_fill_n(buffer + size + 1, num_digits, '0'); |
| size += to_unsigned(num_digits); |
| } else if (num_digits < 0) { |
| round(buffer, size, exp, -num_digits); |
| } |
| char *p = buffer + size + 1; |
| *p++ = upper ? 'E' : 'e'; |
| size = to_unsigned(write_exponent(p, exp) - buffer); |
| } |
| |
| // Prettifies the output of the Grisu2 algorithm. |
| // The number is given as v = buffer * 10^exp. |
| FMT_FUNC void grisu2_prettify(char *buffer, size_t &size, int exp, |
| int precision, bool upper) { |
| // pow(10, full_exp - 1) <= v <= pow(10, full_exp). |
| int int_size = static_cast<int>(size); |
| int full_exp = int_size + exp; |
| const int exp_threshold = 21; |
| if (int_size <= full_exp && full_exp <= exp_threshold) { |
| // 1234e7 -> 12340000000[.0+] |
| std::uninitialized_fill_n(buffer + int_size, full_exp - int_size, '0'); |
| char *p = buffer + full_exp; |
| if (precision > 0) { |
| *p++ = '.'; |
| std::uninitialized_fill_n(p, precision, '0'); |
| p += precision; |
| } |
| size = to_unsigned(p - buffer); |
| } else if (0 < full_exp && full_exp <= exp_threshold) { |
| // 1234e-2 -> 12.34[0+] |
| int fractional_size = -exp; |
| std::memmove(buffer + full_exp + 1, buffer + full_exp, |
| to_unsigned(fractional_size)); |
| buffer[full_exp] = '.'; |
| int num_zeros = precision - fractional_size; |
| if (num_zeros > 0) { |
| std::uninitialized_fill_n(buffer + size + 1, num_zeros, '0'); |
| size += to_unsigned(num_zeros); |
| } |
| ++size; |
| } else if (-6 < full_exp && full_exp <= 0) { |
| // 1234e-6 -> 0.001234 |
| int offset = 2 - full_exp; |
| std::memmove(buffer + offset, buffer, size); |
| buffer[0] = '0'; |
| buffer[1] = '.'; |
| std::uninitialized_fill_n(buffer + 2, -full_exp, '0'); |
| size = to_unsigned(int_size + offset); |
| } else { |
| format_exp_notation(buffer, size, exp, precision, upper); |
| } |
| } |
| |
| #if FMT_CLANG_VERSION |
| # define FMT_FALLTHROUGH [[clang::fallthrough]]; |
| #else |
| # define FMT_FALLTHROUGH |
| #endif |
| |
| // Formats a nonnegative value using Grisu2 algorithm. Grisu2 doesn't give any |
| // guarantees on the shortness of the result. |
| FMT_FUNC void grisu2_format(double value, char *buffer, size_t &size, char type, |
| int precision, bool write_decimal_point) { |
| FMT_ASSERT(value >= 0, "value is negative"); |
| int dec_exp = 0; // K in Grisu. |
| if (value > 0) { |
| grisu2_format_positive(value, buffer, size, dec_exp); |
| } else { |
| *buffer = '0'; |
| size = 1; |
| } |
| const int default_precision = 6; |
| if (precision < 0) |
| precision = default_precision; |
| bool upper = false; |
| switch (type) { |
| case 'G': |
| upper = true; |
| FMT_FALLTHROUGH |
| case '\0': case 'g': { |
| int digits_to_remove = static_cast<int>(size) - precision; |
| if (digits_to_remove > 0) { |
| round(buffer, size, dec_exp, digits_to_remove); |
| // Remove trailing zeros. |
| while (size > 0 && buffer[size - 1] == '0') { |
| --size; |
| ++dec_exp; |
| } |
| } |
| precision = 0; |
| break; |
| } |
| case 'F': |
| upper = true; |
| FMT_FALLTHROUGH |
| case 'f': { |
| int digits_to_remove = -dec_exp - precision; |
| if (digits_to_remove > 0) { |
| if (digits_to_remove >= static_cast<int>(size)) |
| digits_to_remove = static_cast<int>(size) - 1; |
| round(buffer, size, dec_exp, digits_to_remove); |
| } |
| break; |
| } |
| case 'e': case 'E': |
| format_exp_notation(buffer, size, dec_exp, precision, type == 'E'); |
| return; |
| } |
| if (write_decimal_point && precision < 1) |
| precision = 1; |
| grisu2_prettify(buffer, size, dec_exp, precision, upper); |
| } |
| } // namespace internal |
| |
| #if FMT_USE_WINDOWS_H |
| |
| FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) { |
| static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16"; |
| if (s.size() > INT_MAX) |
| FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG)); |
| int s_size = static_cast<int>(s.size()); |
| if (s_size == 0) { |
| // MultiByteToWideChar does not support zero length, handle separately. |
| buffer_.resize(1); |
| buffer_[0] = 0; |
| return; |
| } |
| |
| int length = MultiByteToWideChar( |
| CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0); |
| if (length == 0) |
| FMT_THROW(windows_error(GetLastError(), ERROR_MSG)); |
| buffer_.resize(length + 1); |
| length = MultiByteToWideChar( |
| CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length); |
| if (length == 0) |
| FMT_THROW(windows_error(GetLastError(), ERROR_MSG)); |
| buffer_[length] = 0; |
| } |
| |
| FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) { |
| if (int error_code = convert(s)) { |
| FMT_THROW(windows_error(error_code, |
| "cannot convert string from UTF-16 to UTF-8")); |
| } |
| } |
| |
| FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) { |
| if (s.size() > INT_MAX) |
| return ERROR_INVALID_PARAMETER; |
| int s_size = static_cast<int>(s.size()); |
| if (s_size == 0) { |
| // WideCharToMultiByte does not support zero length, handle separately. |
| buffer_.resize(1); |
| buffer_[0] = 0; |
| return 0; |
| } |
| |
| int length = WideCharToMultiByte( |
| CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL); |
| if (length == 0) |
| return GetLastError(); |
| buffer_.resize(length + 1); |
| length = WideCharToMultiByte( |
| CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL); |
| if (length == 0) |
| return GetLastError(); |
| buffer_[length] = 0; |
| return 0; |
| } |
| |
| FMT_FUNC void windows_error::init( |
| int err_code, string_view format_str, format_args args) { |
| error_code_ = err_code; |
| memory_buffer buffer; |
| internal::format_windows_error(buffer, err_code, vformat(format_str, args)); |
| std::runtime_error &base = *this; |
| base = std::runtime_error(to_string(buffer)); |
| } |
| |
| FMT_FUNC void internal::format_windows_error( |
| internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT { |
| FMT_TRY { |
| wmemory_buffer buf; |
| buf.resize(inline_buffer_size); |
| for (;;) { |
| wchar_t *system_message = &buf[0]; |
| int result = FormatMessageW( |
| FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, |
| FMT_NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), |
| system_message, static_cast<uint32_t>(buf.size()), FMT_NULL); |
| if (result != 0) { |
| utf16_to_utf8 utf8_message; |
| if (utf8_message.convert(system_message) == ERROR_SUCCESS) { |
| writer w(out); |
| w.write(message); |
| w.write(": "); |
| w.write(utf8_message); |
| return; |
| } |
| break; |
| } |
| if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) |
| break; // Can't get error message, report error code instead. |
| buf.resize(buf.size() * 2); |
| } |
| } FMT_CATCH(...) {} |
| format_error_code(out, error_code, message); |
| } |
| |
| #endif // FMT_USE_WINDOWS_H |
| |
| FMT_FUNC void format_system_error( |
| internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT { |
| FMT_TRY { |
| memory_buffer buf; |
| buf.resize(inline_buffer_size); |
| for (;;) { |
| char *system_message = &buf[0]; |
| int result = safe_strerror(error_code, system_message, buf.size()); |
| if (result == 0) { |
| writer w(out); |
| w.write(message); |
| w.write(": "); |
| w.write(system_message); |
| return; |
| } |
| if (result != ERANGE) |
| break; // Can't get error message, report error code instead. |
| buf.resize(buf.size() * 2); |
| } |
| } FMT_CATCH(...) {} |
| format_error_code(out, error_code, message); |
| } |
| |
| template <typename Char> |
| void basic_fixed_buffer<Char>::grow(std::size_t) { |
| FMT_THROW(std::runtime_error("buffer overflow")); |
| } |
| |
| FMT_FUNC void internal::error_handler::on_error(const char *message) { |
| FMT_THROW(format_error(message)); |
| } |
| |
| FMT_FUNC void report_system_error( |
| int error_code, fmt::string_view message) FMT_NOEXCEPT { |
| report_error(format_system_error, error_code, message); |
| } |
| |
| #if FMT_USE_WINDOWS_H |
| FMT_FUNC void report_windows_error( |
| int error_code, fmt::string_view message) FMT_NOEXCEPT { |
| report_error(internal::format_windows_error, error_code, message); |
| } |
| #endif |
| |
| FMT_FUNC void vprint(std::FILE *f, string_view format_str, format_args args) { |
| memory_buffer buffer; |
| vformat_to(buffer, format_str, args); |
| std::fwrite(buffer.data(), 1, buffer.size(), f); |
| } |
| |
| FMT_FUNC void vprint(std::FILE *f, wstring_view format_str, wformat_args args) { |
| wmemory_buffer buffer; |
| vformat_to(buffer, format_str, args); |
| std::fwrite(buffer.data(), sizeof(wchar_t), buffer.size(), f); |
| } |
| |
| FMT_FUNC void vprint(string_view format_str, format_args args) { |
| vprint(stdout, format_str, args); |
| } |
| |
| FMT_FUNC void vprint(wstring_view format_str, wformat_args args) { |
| vprint(stdout, format_str, args); |
| } |
| |
| #ifndef FMT_EXTENDED_COLORS |
| FMT_FUNC void vprint_colored(color c, string_view format, format_args args) { |
| char escape[] = "\x1b[30m"; |
| escape[3] = static_cast<char>('0' + c); |
| std::fputs(escape, stdout); |
| vprint(format, args); |
| std::fputs(internal::data::RESET_COLOR, stdout); |
| } |
| |
| FMT_FUNC void vprint_colored(color c, wstring_view format, wformat_args args) { |
| wchar_t escape[] = L"\x1b[30m"; |
| escape[3] = static_cast<wchar_t>('0' + c); |
| std::fputws(escape, stdout); |
| vprint(format, args); |
| std::fputws(internal::data::WRESET_COLOR, stdout); |
| } |
| #else |
| namespace internal { |
| FMT_CONSTEXPR void to_esc(uint8_t c, char out[], int offset) { |
| out[offset + 0] = static_cast<char>('0' + c / 100); |
| out[offset + 1] = static_cast<char>('0' + c / 10 % 10); |
| out[offset + 2] = static_cast<char>('0' + c % 10); |
| } |
| } // namespace internal |
| |
| FMT_FUNC void vprint_rgb(rgb fd, string_view format, format_args args) { |
| char escape_fd[] = "\x1b[38;2;000;000;000m"; |
| internal::to_esc(fd.r, escape_fd, 7); |
| internal::to_esc(fd.g, escape_fd, 11); |
| internal::to_esc(fd.b, escape_fd, 15); |
| |
| std::fputs(escape_fd, stdout); |
| vprint(format, args); |
| std::fputs(internal::data::RESET_COLOR, stdout); |
| } |
| |
| FMT_FUNC void vprint_rgb(rgb fd, rgb bg, string_view format, format_args args) { |
| char escape_fd[] = "\x1b[38;2;000;000;000m"; // foreground color |
| char escape_bg[] = "\x1b[48;2;000;000;000m"; // background color |
| internal::to_esc(fd.r, escape_fd, 7); |
| internal::to_esc(fd.g, escape_fd, 11); |
| internal::to_esc(fd.b, escape_fd, 15); |
| |
| internal::to_esc(bg.r, escape_bg, 7); |
| internal::to_esc(bg.g, escape_bg, 11); |
| internal::to_esc(bg.b, escape_bg, 15); |
| |
| std::fputs(escape_fd, stdout); |
| std::fputs(escape_bg, stdout); |
| vprint(format, args); |
| std::fputs(internal::data::RESET_COLOR, stdout); |
| } |
| #endif |
| #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) |
| FMT_FUNC locale locale_provider::locale() { return fmt::locale(); } |
| #endif |
| |
| FMT_END_NAMESPACE |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| #endif // FMT_FORMAT_INL_H_ |