Joe Tsai | e2afdc2 | 2018-10-25 14:06:56 -0700 | [diff] [blame] | 1 | // Copyright 2018 The Go Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
| 5 | package impl |
| 6 | |
| 7 | import ( |
| 8 | "reflect" |
| 9 | |
| 10 | protoV1 "github.com/golang/protobuf/proto" |
| 11 | "github.com/golang/protobuf/v2/internal/encoding/wire" |
| 12 | pref "github.com/golang/protobuf/v2/reflect/protoreflect" |
| 13 | ) |
| 14 | |
| 15 | var ( |
| 16 | extTypeA = reflect.TypeOf(map[int32]protoV1.Extension(nil)) |
| 17 | extTypeB = reflect.TypeOf(protoV1.XXX_InternalExtensions{}) |
| 18 | ) |
| 19 | |
| 20 | func generateLegacyUnknownFieldFuncs(t reflect.Type, md pref.MessageDescriptor) func(p *messageDataType) pref.UnknownFields { |
| 21 | fu, ok := t.FieldByName("XXX_unrecognized") |
| 22 | if !ok || fu.Type != bytesType { |
| 23 | return nil |
| 24 | } |
| 25 | fx1, _ := t.FieldByName("XXX_extensions") |
| 26 | fx2, _ := t.FieldByName("XXX_InternalExtensions") |
| 27 | if fx1.Type == extTypeA || fx2.Type == extTypeB { |
| 28 | // TODO: In proto v1, the unknown fields are split between both |
| 29 | // XXX_unrecognized and XXX_InternalExtensions. If the message supports |
| 30 | // extensions, then we will need to create a wrapper data structure |
| 31 | // that presents unknown fields in both lists as a single ordered list. |
| 32 | panic("not implemented") |
| 33 | } |
| 34 | fieldOffset := offsetOf(fu) |
| 35 | return func(p *messageDataType) pref.UnknownFields { |
| 36 | rv := p.p.apply(fieldOffset).asType(bytesType) |
| 37 | return (*legacyUnknownBytes)(rv.Interface().(*[]byte)) |
| 38 | } |
| 39 | } |
| 40 | |
| 41 | // legacyUnknownBytes is a wrapper around XXX_unrecognized that implements |
| 42 | // the protoreflect.UnknownFields interface. This is challenging since we are |
| 43 | // limited to a []byte, so we do not have much flexibility in the choice |
| 44 | // of data structure that would have been ideal. |
| 45 | type legacyUnknownBytes []byte |
| 46 | |
| 47 | func (fs *legacyUnknownBytes) Len() int { |
| 48 | // Runtime complexity: O(n) |
| 49 | b := *fs |
| 50 | m := map[pref.FieldNumber]bool{} |
| 51 | for len(b) > 0 { |
| 52 | num, _, n := wire.ConsumeField(b) |
| 53 | m[num] = true |
| 54 | b = b[n:] |
| 55 | } |
| 56 | return len(m) |
| 57 | } |
| 58 | |
| 59 | func (fs *legacyUnknownBytes) Get(num pref.FieldNumber) (raw pref.RawFields) { |
| 60 | // Runtime complexity: O(n) |
| 61 | b := *fs |
| 62 | for len(b) > 0 { |
| 63 | num2, _, n := wire.ConsumeField(b) |
| 64 | if num == num2 { |
| 65 | raw = append(raw, b[:n]...) |
| 66 | } |
| 67 | b = b[n:] |
| 68 | } |
| 69 | return raw |
| 70 | } |
| 71 | |
| 72 | func (fs *legacyUnknownBytes) Set(num pref.FieldNumber, raw pref.RawFields) { |
| 73 | num2, _, _ := wire.ConsumeTag(raw) |
| 74 | if len(raw) > 0 && (!raw.IsValid() || num != num2) { |
| 75 | panic("invalid raw fields") |
| 76 | } |
| 77 | |
| 78 | // Remove all current fields of num. |
| 79 | // Runtime complexity: O(n) |
| 80 | b := *fs |
| 81 | out := (*fs)[:0] |
| 82 | for len(b) > 0 { |
| 83 | num2, _, n := wire.ConsumeField(b) |
| 84 | if num != num2 { |
| 85 | out = append(out, b[:n]...) |
| 86 | } |
| 87 | b = b[n:] |
| 88 | } |
| 89 | *fs = out |
| 90 | |
| 91 | // Append new fields of num. |
| 92 | *fs = append(*fs, raw...) |
| 93 | } |
| 94 | |
| 95 | func (fs *legacyUnknownBytes) Range(f func(pref.FieldNumber, pref.RawFields) bool) { |
| 96 | type entry struct { |
| 97 | num pref.FieldNumber |
| 98 | raw pref.RawFields |
| 99 | } |
| 100 | var xs []entry |
| 101 | |
| 102 | // Collect up a list of all the raw fields. |
| 103 | // We preserve the order such that the latest encountered fields |
| 104 | // are presented at the end. |
| 105 | // |
| 106 | // Runtime complexity: O(n) |
| 107 | b := *fs |
| 108 | m := map[pref.FieldNumber]int{} |
| 109 | for len(b) > 0 { |
| 110 | num, _, n := wire.ConsumeField(b) |
| 111 | |
| 112 | // Ensure the most recently updated entry is always at the end of xs. |
| 113 | x := entry{num: num} |
| 114 | if i, ok := m[num]; ok { |
| 115 | j := len(xs) - 1 |
| 116 | xs[i], xs[j] = xs[j], xs[i] // swap current entry with last entry |
| 117 | m[xs[i].num] = i // update index of swapped entry |
| 118 | x = xs[j] // retrieve the last entry |
| 119 | xs = xs[:j] // truncate off the last entry |
| 120 | } |
| 121 | m[num] = len(xs) |
| 122 | x.raw = append(x.raw, b[:n]...) |
| 123 | xs = append(xs, x) |
| 124 | |
| 125 | b = b[n:] |
| 126 | } |
| 127 | |
| 128 | // Iterate over all the raw fields. |
| 129 | // This ranges over a snapshot of the current state such that mutations |
| 130 | // while ranging are not observable. |
| 131 | // |
| 132 | // Runtime complexity: O(n) |
| 133 | for _, x := range xs { |
| 134 | if !f(x.num, x.raw) { |
| 135 | return |
| 136 | } |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | func (fs *legacyUnknownBytes) IsSupported() bool { |
| 141 | return true |
| 142 | } |