| $$ -*- mode: c++; -*- |
| $$ This is a Pump source file. Please use Pump to convert it to |
| $$ gmock-generated-variadic-actions.h. |
| $$ |
| $var n = 10 $$ The maximum arity we support. |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some commonly used variadic actions. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |
| |
| #include <gmock/gmock-actions.h> |
| #include <gmock/internal/gmock-port.h> |
| |
| namespace testing { |
| namespace internal { |
| |
| // InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary |
| // function or method with the unpacked values, where F is a function |
| // type that takes N arguments. |
| template <typename Result, typename ArgumentTuple> |
| class InvokeHelper; |
| |
| |
| $range i 0..n |
| $for i [[ |
| $range j 1..i |
| $var types = [[$for j [[, typename A$j]]]] |
| $var as = [[$for j, [[A$j]]]] |
| $var args = [[$if i==0 [[]] $else [[ args]]]] |
| $var import = [[$if i==0 [[]] $else [[ |
| using ::std::tr1::get; |
| |
| ]]]] |
| $var gets = [[$for j, [[get<$(j - 1)>(args)]]]] |
| template <typename R$types> |
| class InvokeHelper<R, ::std::tr1::tuple<$as> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<$as>&$args) { |
| $import return function($gets); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<$as>&$args) { |
| $import return (obj_ptr->*method_ptr)($gets); |
| } |
| }; |
| |
| |
| ]] |
| |
| // Implements the Invoke(f) action. The template argument |
| // FunctionImpl is the implementation type of f, which can be either a |
| // function pointer or a functor. Invoke(f) can be used as an |
| // Action<F> as long as f's type is compatible with F (i.e. f can be |
| // assigned to a tr1::function<F>). |
| template <typename FunctionImpl> |
| class InvokeAction { |
| public: |
| // The c'tor makes a copy of function_impl (either a function |
| // pointer or a functor). |
| explicit InvokeAction(FunctionImpl function_impl) |
| : function_impl_(function_impl) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& args) { |
| return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args); |
| } |
| private: |
| FunctionImpl function_impl_; |
| }; |
| |
| // Implements the Invoke(object_ptr, &Class::Method) action. |
| template <class Class, typename MethodPtr> |
| class InvokeMethodAction { |
| public: |
| InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr) |
| : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& args) const { |
| return InvokeHelper<Result, ArgumentTuple>::InvokeMethod( |
| obj_ptr_, method_ptr_, args); |
| } |
| private: |
| Class* const obj_ptr_; |
| const MethodPtr method_ptr_; |
| }; |
| |
| // A ReferenceWrapper<T> object represents a reference to type T, |
| // which can be either const or not. It can be explicitly converted |
| // from, and implicitly converted to, a T&. Unlike a reference, |
| // ReferenceWrapper<T> can be copied and can survive template type |
| // inference. This is used to support by-reference arguments in the |
| // InvokeArgument<N>(...) action. The idea was from "reference |
| // wrappers" in tr1, which we don't have in our source tree yet. |
| template <typename T> |
| class ReferenceWrapper { |
| public: |
| // Constructs a ReferenceWrapper<T> object from a T&. |
| explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT |
| |
| // Allows a ReferenceWrapper<T> object to be implicitly converted to |
| // a T&. |
| operator T&() const { return *pointer_; } |
| private: |
| T* pointer_; |
| }; |
| |
| // CallableHelper has static methods for invoking "callables", |
| // i.e. function pointers and functors. It uses overloading to |
| // provide a uniform interface for invoking different kinds of |
| // callables. In particular, you can use: |
| // |
| // CallableHelper<R>::Call(callable, a1, a2, ..., an) |
| // |
| // to invoke an n-ary callable, where R is its return type. If an |
| // argument, say a2, needs to be passed by reference, you should write |
| // ByRef(a2) instead of a2 in the above expression. |
| template <typename R> |
| class CallableHelper { |
| public: |
| // Calls a nullary callable. |
| template <typename Function> |
| static R Call(Function function) { return function(); } |
| |
| // Calls a unary callable. |
| |
| // We deliberately pass a1 by value instead of const reference here |
| // in case it is a C-string literal. If we had declared the |
| // parameter as 'const A1& a1' and write Call(function, "Hi"), the |
| // compiler would've thought A1 is 'char[3]', which causes trouble |
| // when you need to copy a value of type A1. By declaring the |
| // parameter as 'A1 a1', the compiler will correctly infer that A1 |
| // is 'const char*' when it sees Call(function, "Hi"). |
| // |
| // Since this function is defined inline, the compiler can get rid |
| // of the copying of the arguments. Therefore the performance won't |
| // be hurt. |
| template <typename Function, typename A1> |
| static R Call(Function function, A1 a1) { return function(a1); } |
| |
| $range i 2..n |
| $for i |
| [[ |
| $var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]] |
| |
| // Calls a $arity callable. |
| |
| $range j 1..i |
| $var typename_As = [[$for j, [[typename A$j]]]] |
| $var Aas = [[$for j, [[A$j a$j]]]] |
| $var as = [[$for j, [[a$j]]]] |
| $var typename_Ts = [[$for j, [[typename T$j]]]] |
| $var Ts = [[$for j, [[T$j]]]] |
| template <typename Function, $typename_As> |
| static R Call(Function function, $Aas) { |
| return function($as); |
| } |
| |
| ]] |
| |
| }; // class CallableHelper |
| |
| // Invokes a nullary callable argument. |
| template <size_t N> |
| class InvokeArgumentAction0 { |
| public: |
| template <typename Result, typename ArgumentTuple> |
| static Result Perform(const ArgumentTuple& args) { |
| return CallableHelper<Result>::Call(::std::tr1::get<N>(args)); |
| } |
| }; |
| |
| // Invokes a unary callable argument with the given argument. |
| template <size_t N, typename A1> |
| class InvokeArgumentAction1 { |
| public: |
| // We deliberately pass a1 by value instead of const reference here |
| // in case it is a C-string literal. |
| // |
| // Since this function is defined inline, the compiler can get rid |
| // of the copying of the arguments. Therefore the performance won't |
| // be hurt. |
| explicit InvokeArgumentAction1(A1 a1) : arg1_(a1) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& args) { |
| return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_); |
| } |
| private: |
| const A1 arg1_; |
| }; |
| |
| $range i 2..n |
| $for i [[ |
| $var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]] |
| $range j 1..i |
| $var typename_As = [[$for j, [[typename A$j]]]] |
| $var args_ = [[$for j, [[arg$j[[]]_]]]] |
| |
| // Invokes a $arity callable argument with the given arguments. |
| template <size_t N, $typename_As> |
| class InvokeArgumentAction$i { |
| public: |
| InvokeArgumentAction$i($for j, [[A$j a$j]]) : |
| $for j, [[arg$j[[]]_(a$j)]] {} |
| |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& args) { |
| $if i <= 4 [[ |
| |
| return CallableHelper<Result>::Call(::std::tr1::get<N>(args), $args_); |
| |
| ]] $else [[ |
| |
| // We extract the callable to a variable before invoking it, in |
| // case it is a functor passed by value and its operator() is not |
| // const. |
| typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function = |
| ::std::tr1::get<N>(args); |
| return function($args_); |
| |
| ]] |
| } |
| private: |
| $for j [[ |
| |
| const A$j arg$j[[]]_; |
| ]] |
| |
| }; |
| |
| ]] |
| |
| // An INTERNAL macro for extracting the type of a tuple field. It's |
| // subject to change without notice - DO NOT USE IN USER CODE! |
| #define GMOCK_FIELD_(Tuple, N) \ |
| typename ::std::tr1::tuple_element<N, Tuple>::type |
| |
| $range i 1..n |
| |
| // SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the |
| // type of an n-ary function whose i-th (1-based) argument type is the |
| // k{i}-th (0-based) field of ArgumentTuple, which must be a tuple |
| // type, and whose return type is Result. For example, |
| // SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type |
| // is int(bool, long). |
| // |
| // SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args) |
| // returns the selected fields (k1, k2, ..., k_n) of args as a tuple. |
| // For example, |
| // SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select( |
| // ::std::tr1::make_tuple(true, 'a', 2.5)) |
| // returns ::std::tr1::tuple (2.5, true). |
| // |
| // The numbers in list k1, k2, ..., k_n must be >= 0, where n can be |
| // in the range [0, $n]. Duplicates are allowed and they don't have |
| // to be in an ascending or descending order. |
| |
| template <typename Result, typename ArgumentTuple, $for i, [[int k$i]]> |
| class SelectArgs { |
| public: |
| typedef Result type($for i, [[GMOCK_FIELD_(ArgumentTuple, k$i)]]); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs($for i, [[get<k$i>(args)]]); |
| } |
| }; |
| |
| |
| $for i [[ |
| $range j 1..n |
| $range j1 1..i-1 |
| template <typename Result, typename ArgumentTuple$for j1[[, int k$j1]]> |
| class SelectArgs<Result, ArgumentTuple, |
| $for j, [[$if j <= i-1 [[k$j]] $else [[-1]]]]> { |
| public: |
| typedef Result type($for j1, [[GMOCK_FIELD_(ArgumentTuple, k$j1)]]); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs($for j1, [[get<k$j1>(args)]]); |
| } |
| }; |
| |
| |
| ]] |
| #undef GMOCK_FIELD_ |
| |
| $var ks = [[$for i, [[k$i]]]] |
| |
| // Implements the WithArgs action. |
| template <typename InnerAction, $for i, [[int k$i = -1]]> |
| class WithArgsAction { |
| public: |
| explicit WithArgsAction(const InnerAction& action) : action_(action) {} |
| |
| template <typename F> |
| operator Action<F>() const { return MakeAction(new Impl<F>(action_)); } |
| |
| private: |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(const InnerAction& action) : action_(action) {} |
| |
| virtual Result Perform(const ArgumentTuple& args) { |
| return action_.Perform(SelectArgs<Result, ArgumentTuple, $ks>::Select(args)); |
| } |
| |
| private: |
| typedef typename SelectArgs<Result, ArgumentTuple, |
| $ks>::type InnerFunctionType; |
| |
| Action<InnerFunctionType> action_; |
| }; |
| |
| const InnerAction action_; |
| }; |
| |
| // Does two actions sequentially. Used for implementing the DoAll(a1, |
| // a2, ...) action. |
| template <typename Action1, typename Action2> |
| class DoBothAction { |
| public: |
| DoBothAction(Action1 action1, Action2 action2) |
| : action1_(action1), action2_(action2) {} |
| |
| // This template type conversion operator allows DoAll(a1, ..., a_n) |
| // to be used in ANY function of compatible type. |
| template <typename F> |
| operator Action<F>() const { |
| return Action<F>(new Impl<F>(action1_, action2_)); |
| } |
| |
| private: |
| // Implements the DoAll(...) action for a particular function type F. |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| typedef typename Function<F>::MakeResultVoid VoidResult; |
| |
| Impl(const Action<VoidResult>& action1, const Action<F>& action2) |
| : action1_(action1), action2_(action2) {} |
| |
| virtual Result Perform(const ArgumentTuple& args) { |
| action1_.Perform(args); |
| return action2_.Perform(args); |
| } |
| |
| private: |
| const Action<VoidResult> action1_; |
| const Action<F> action2_; |
| }; |
| |
| Action1 action1_; |
| Action2 action2_; |
| }; |
| |
| // A macro from the ACTION* family (defined later in this file) |
| // defines an action that can be used in a mock function. Typically, |
| // these actions only care about a subset of the arguments of the mock |
| // function. For example, if such an action only uses the second |
| // argument, it can be used in any mock function that takes >= 2 |
| // arguments where the type of the second argument is compatible. |
| // |
| // Therefore, the action implementation must be prepared to take more |
| // arguments than it needs. The ExcessiveArg type is used to |
| // represent those excessive arguments. In order to keep the compiler |
| // error messages tractable, we define it in the testing namespace |
| // instead of testing::internal. However, this is an INTERNAL TYPE |
| // and subject to change without notice, so a user MUST NOT USE THIS |
| // TYPE DIRECTLY. |
| struct ExcessiveArg {}; |
| |
| // A helper class needed for implementing the ACTION* macros. |
| template <typename Result, class Impl> |
| class ActionHelper { |
| public: |
| $range i 0..n |
| $for i |
| |
| [[ |
| $var template = [[$if i==0 [[]] $else [[ |
| $range j 0..i-1 |
| template <$for j, [[typename A$j]]> |
| ]]]] |
| $range j 0..i-1 |
| $var As = [[$for j, [[A$j]]]] |
| $var as = [[$for j, [[get<$j>(args)]]]] |
| $range k 1..n-i |
| $var eas = [[$for k, [[ExcessiveArg()]]]] |
| $var arg_list = [[$if (i==0) | (i==n) [[$as$eas]] $else [[$as, $eas]]]] |
| $template |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<$As>& args) { |
| using ::std::tr1::get; |
| return impl->gmock_PerformImpl(args, $arg_list); |
| } |
| |
| ]] |
| }; |
| |
| } // namespace internal |
| |
| // Various overloads for Invoke(). |
| |
| // Creates an action that invokes 'function_impl' with the mock |
| // function's arguments. |
| template <typename FunctionImpl> |
| PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke( |
| FunctionImpl function_impl) { |
| return MakePolymorphicAction( |
| internal::InvokeAction<FunctionImpl>(function_impl)); |
| } |
| |
| // Creates an action that invokes the given method on the given object |
| // with the mock function's arguments. |
| template <class Class, typename MethodPtr> |
| PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke( |
| Class* obj_ptr, MethodPtr method_ptr) { |
| return MakePolymorphicAction( |
| internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr)); |
| } |
| |
| // Creates a reference wrapper for the given L-value. If necessary, |
| // you can explicitly specify the type of the reference. For example, |
| // suppose 'derived' is an object of type Derived, ByRef(derived) |
| // would wrap a Derived&. If you want to wrap a const Base& instead, |
| // where Base is a base class of Derived, just write: |
| // |
| // ByRef<const Base>(derived) |
| template <typename T> |
| inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT |
| return internal::ReferenceWrapper<T>(l_value); |
| } |
| |
| // Various overloads for InvokeArgument<N>(). |
| // |
| // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th |
| // (0-based) argument, which must be a k-ary callable, of the mock |
| // function, with arguments a1, a2, ..., a_k. |
| // |
| // Notes: |
| // |
| // 1. The arguments are passed by value by default. If you need to |
| // pass an argument by reference, wrap it inside ByRef(). For |
| // example, |
| // |
| // InvokeArgument<1>(5, string("Hello"), ByRef(foo)) |
| // |
| // passes 5 and string("Hello") by value, and passes foo by |
| // reference. |
| // |
| // 2. If the callable takes an argument by reference but ByRef() is |
| // not used, it will receive the reference to a copy of the value, |
| // instead of the original value. For example, when the 0-th |
| // argument of the mock function takes a const string&, the action |
| // |
| // InvokeArgument<0>(string("Hello")) |
| // |
| // makes a copy of the temporary string("Hello") object and passes a |
| // reference of the copy, instead of the original temporary object, |
| // to the callable. This makes it easy for a user to define an |
| // InvokeArgument action from temporary values and have it performed |
| // later. |
| template <size_t N> |
| inline PolymorphicAction<internal::InvokeArgumentAction0<N> > InvokeArgument() { |
| return MakePolymorphicAction(internal::InvokeArgumentAction0<N>()); |
| } |
| |
| // We deliberately pass a1 by value instead of const reference here in |
| // case it is a C-string literal. If we had declared the parameter as |
| // 'const A1& a1' and write InvokeArgument<0>("Hi"), the compiler |
| // would've thought A1 is 'char[3]', which causes trouble as the |
| // implementation needs to copy a value of type A1. By declaring the |
| // parameter as 'A1 a1', the compiler will correctly infer that A1 is |
| // 'const char*' when it sees InvokeArgument<0>("Hi"). |
| // |
| // Since this function is defined inline, the compiler can get rid of |
| // the copying of the arguments. Therefore the performance won't be |
| // hurt. |
| template <size_t N, typename A1> |
| inline PolymorphicAction<internal::InvokeArgumentAction1<N, A1> > |
| InvokeArgument(A1 a1) { |
| return MakePolymorphicAction(internal::InvokeArgumentAction1<N, A1>(a1)); |
| } |
| |
| $range i 2..n |
| $for i [[ |
| $range j 1..i |
| $var typename_As = [[$for j, [[typename A$j]]]] |
| $var As = [[$for j, [[A$j]]]] |
| $var Aas = [[$for j, [[A$j a$j]]]] |
| $var as = [[$for j, [[a$j]]]] |
| |
| template <size_t N, $typename_As> |
| inline PolymorphicAction<internal::InvokeArgumentAction$i<N, $As> > |
| InvokeArgument($Aas) { |
| return MakePolymorphicAction( |
| internal::InvokeArgumentAction$i<N, $As>($as)); |
| } |
| |
| ]] |
| |
| // WithoutArgs(inner_action) can be used in a mock function with a |
| // non-empty argument list to perform inner_action, which takes no |
| // argument. In other words, it adapts an action accepting no |
| // argument to one that accepts (and ignores) arguments. |
| template <typename InnerAction> |
| inline internal::WithArgsAction<InnerAction> |
| WithoutArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction>(action); |
| } |
| |
| // WithArg<k>(an_action) creates an action that passes the k-th |
| // (0-based) argument of the mock function to an_action and performs |
| // it. It adapts an action accepting one argument to one that accepts |
| // multiple arguments. For convenience, we also provide |
| // WithArgs<k>(an_action) (defined below) as a synonym. |
| template <int k, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k> |
| WithArg(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k>(action); |
| } |
| |
| // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes |
| // the selected arguments of the mock function to an_action and |
| // performs it. It serves as an adaptor between actions with |
| // different argument lists. C++ doesn't support default arguments for |
| // function templates, so we have to overload it. |
| |
| $range i 1..n |
| $for i [[ |
| $range j 1..i |
| template <$for j [[int k$j, ]]typename InnerAction> |
| inline internal::WithArgsAction<InnerAction$for j [[, k$j]]> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction$for j [[, k$j]]>(action); |
| } |
| |
| |
| ]] |
| // Creates an action that does actions a1, a2, ..., sequentially in |
| // each invocation. |
| $range i 2..n |
| $for i [[ |
| $range j 2..i |
| $var types = [[$for j, [[typename Action$j]]]] |
| $var Aas = [[$for j [[, Action$j a$j]]]] |
| |
| template <typename Action1, $types> |
| $range k 1..i-1 |
| |
| inline $for k [[internal::DoBothAction<Action$k, ]]Action$i$for k [[>]] |
| |
| DoAll(Action1 a1$Aas) { |
| $if i==2 [[ |
| |
| return internal::DoBothAction<Action1, Action2>(a1, a2); |
| ]] $else [[ |
| $range j2 2..i |
| |
| return DoAll(a1, DoAll($for j2, [[a$j2]])); |
| ]] |
| |
| } |
| |
| ]] |
| |
| } // namespace testing |
| |
| // The ACTION* family of macros can be used in a namespace scope to |
| // define custom actions easily. The syntax: |
| // |
| // ACTION(name) { statements; } |
| // |
| // will define an action with the given name that executes the |
| // statements. The value returned by the statements will be used as |
| // the return value of the action. Inside the statements, you can |
| // refer to the K-th (0-based) argument of the mock function by |
| // 'argK', and refer to its type by 'argK_type'. For example: |
| // |
| // ACTION(IncrementArg1) { |
| // arg1_type temp = arg1; |
| // return ++(*temp); |
| // } |
| // |
| // allows you to write |
| // |
| // ...WillOnce(IncrementArg1()); |
| // |
| // You can also refer to the entire argument tuple and its type by |
| // 'args' and 'args_type', and refer to the mock function type and its |
| // return type by 'function_type' and 'return_type'. |
| // |
| // Note that you don't need to specify the types of the mock function |
| // arguments. However rest assured that your code is still type-safe: |
| // you'll get a compiler error if *arg1 doesn't support the ++ |
| // operator, or if the type of ++(*arg1) isn't compatible with the |
| // mock function's return type, for example. |
| // |
| // Sometimes you'll want to parameterize the action. For that you can use |
| // another macro: |
| // |
| // ACTION_P(name, param_name) { statements; } |
| // |
| // For example: |
| // |
| // ACTION_P(Add, n) { return arg0 + n; } |
| // |
| // will allow you to write: |
| // |
| // ...WillOnce(Add(5)); |
| // |
| // Note that you don't need to provide the type of the parameter |
| // either. If you need to reference the type of a parameter named |
| // 'foo', you can write 'foo_type'. For example, in the body of |
| // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type |
| // of 'n'. |
| // |
| // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P$n to support |
| // multi-parameter actions. |
| // |
| // For the purpose of typing, you can view |
| // |
| // ACTION_Pk(Foo, p1, ..., pk) { ... } |
| // |
| // as shorthand for |
| // |
| // template <typename p1_type, ..., typename pk_type> |
| // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } |
| // |
| // In particular, you can provide the template type arguments |
| // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); |
| // although usually you can rely on the compiler to infer the types |
| // for you automatically. You can assign the result of expression |
| // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., |
| // pk_type>. This can be useful when composing actions. |
| // |
| // You can also overload actions with different numbers of parameters: |
| // |
| // ACTION_P(Plus, a) { ... } |
| // ACTION_P2(Plus, a, b) { ... } |
| // |
| // While it's tempting to always use the ACTION* macros when defining |
| // a new action, you should also consider implementing ActionInterface |
| // or using MakePolymorphicAction() instead, especially if you need to |
| // use the action a lot. While these approaches require more work, |
| // they give you more control on the types of the mock function |
| // arguments and the action parameters, which in general leads to |
| // better compiler error messages that pay off in the long run. They |
| // also allow overloading actions based on parameter types (as opposed |
| // to just based on the number of parameters). |
| // |
| // CAVEAT: |
| // |
| // ACTION*() can only be used in a namespace scope. The reason is |
| // that C++ doesn't yet allow function-local types to be used to |
| // instantiate templates. The up-coming C++0x standard will fix this. |
| // Once that's done, we'll consider supporting using ACTION*() inside |
| // a function. |
| // |
| // MORE INFORMATION: |
| // |
| // To learn more about using these macros, please search for 'ACTION' |
| // on http://code.google.com/p/googlemock/wiki/CookBook. |
| |
| $range i 0..n |
| $for i |
| |
| [[ |
| $var template = [[$if i==0 [[]] $else [[ |
| $range j 0..i-1 |
| |
| template <$for j, [[typename p$j##_type]]>\ |
| ]]]] |
| $var class_name = [[name##Action[[$if i==0 [[]] $elif i==1 [[P]] |
| $else [[P$i]]]]]] |
| $range j 0..i-1 |
| $var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]] |
| $var param_types_and_names = [[$for j, [[p$j##_type p$j]]]] |
| $var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]] |
| $var param_field_decls = [[$for j |
| [[ |
| |
| p$j##_type p$j;\ |
| ]]]] |
| $var param_field_decls2 = [[$for j |
| [[ |
| |
| p$j##_type p$j;\ |
| ]]]] |
| $var params = [[$for j, [[p$j]]]] |
| $var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]] |
| $range k 0..n-1 |
| $var typename_arg_types = [[$for k, [[typename arg$k[[]]_type]]]] |
| $var arg_types_and_names = [[$for k, [[arg$k[[]]_type arg$k]]]] |
| $var macro_name = [[$if i==0 [[ACTION]] $elif i==1 [[ACTION_P]] |
| $else [[ACTION_P$i]]]] |
| |
| #define $macro_name(name$for j [[, p$j]])\$template |
| class $class_name {\ |
| public:\ |
| $class_name($ctor_param_list)$inits {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| [[$if i==1 [[explicit ]]]]gmock_Impl($ctor_param_list)$inits {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <$typename_arg_types>\ |
| return_type gmock_PerformImpl(const args_type& args, [[]] |
| $arg_types_and_names) const;\$param_field_decls |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>($params));\ |
| }\$param_field_decls2 |
| };\$template |
| inline $class_name$param_types name($param_types_and_names) {\ |
| return $class_name$param_types($params);\ |
| }\$template |
| template <typename F>\ |
| template <$typename_arg_types>\ |
| typename ::testing::internal::Function<F>::Result\ |
| $class_name$param_types::\ |
| gmock_Impl<F>::gmock_PerformImpl(const args_type& args, [[]] |
| $arg_types_and_names) const |
| ]] |
| |
| |
| namespace testing { |
| |
| // Action Throw(exception) can be used in a mock function of any type |
| // to throw the given exception. Any copyable value can be thrown. |
| #if GTEST_HAS_EXCEPTIONS |
| ACTION_P(Throw, exception) { throw exception; } |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |