| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // The MATCHER* family of macros can be used in a namespace scope to |
| // define custom matchers easily. |
| // |
| // Basic Usage |
| // =========== |
| // |
| // The syntax |
| // |
| // MATCHER(name, description_string) { statements; } |
| // |
| // defines a matcher with the given name that executes the statements, |
| // which must return a bool to indicate if the match succeeds. Inside |
| // the statements, you can refer to the value being matched by 'arg', |
| // and refer to its type by 'arg_type'. |
| // |
| // The description string documents what the matcher does, and is used |
| // to generate the failure message when the match fails. Since a |
| // MATCHER() is usually defined in a header file shared by multiple |
| // C++ source files, we require the description to be a C-string |
| // literal to avoid possible side effects. It can be empty, in which |
| // case we'll use the sequence of words in the matcher name as the |
| // description. |
| // |
| // For example: |
| // |
| // MATCHER(IsEven, "") { return (arg % 2) == 0; } |
| // |
| // allows you to write |
| // |
| // // Expects mock_foo.Bar(n) to be called where n is even. |
| // EXPECT_CALL(mock_foo, Bar(IsEven())); |
| // |
| // or, |
| // |
| // // Verifies that the value of some_expression is even. |
| // EXPECT_THAT(some_expression, IsEven()); |
| // |
| // If the above assertion fails, it will print something like: |
| // |
| // Value of: some_expression |
| // Expected: is even |
| // Actual: 7 |
| // |
| // where the description "is even" is automatically calculated from the |
| // matcher name IsEven. |
| // |
| // Argument Type |
| // ============= |
| // |
| // Note that the type of the value being matched (arg_type) is |
| // determined by the context in which you use the matcher and is |
| // supplied to you by the compiler, so you don't need to worry about |
| // declaring it (nor can you). This allows the matcher to be |
| // polymorphic. For example, IsEven() can be used to match any type |
| // where the value of "(arg % 2) == 0" can be implicitly converted to |
| // a bool. In the "Bar(IsEven())" example above, if method Bar() |
| // takes an int, 'arg_type' will be int; if it takes an unsigned long, |
| // 'arg_type' will be unsigned long; and so on. |
| // |
| // Parameterizing Matchers |
| // ======================= |
| // |
| // Sometimes you'll want to parameterize the matcher. For that you |
| // can use another macro: |
| // |
| // MATCHER_P(name, param_name, description_string) { statements; } |
| // |
| // For example: |
| // |
| // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } |
| // |
| // will allow you to write: |
| // |
| // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); |
| // |
| // which may lead to this message (assuming n is 10): |
| // |
| // Value of: Blah("a") |
| // Expected: has absolute value 10 |
| // Actual: -9 |
| // |
| // Note that both the matcher description and its parameter are |
| // printed, making the message human-friendly. |
| // |
| // In the matcher definition body, you can write 'foo_type' to |
| // reference the type of a parameter named 'foo'. For example, in the |
| // body of MATCHER_P(HasAbsoluteValue, value) above, you can write |
| // 'value_type' to refer to the type of 'value'. |
| // |
| // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to |
| // support multi-parameter matchers. |
| // |
| // Describing Parameterized Matchers |
| // ================================= |
| // |
| // The last argument to MATCHER*() is a string-typed expression. The |
| // expression can reference all of the matcher's parameters and a |
| // special bool-typed variable named 'negation'. When 'negation' is |
| // false, the expression should evaluate to the matcher's description; |
| // otherwise it should evaluate to the description of the negation of |
| // the matcher. For example, |
| // |
| // using testing::PrintToString; |
| // |
| // MATCHER_P2(InClosedRange, low, hi, |
| // std::string(negation ? "is not" : "is") + " in range [" + |
| // PrintToString(low) + ", " + PrintToString(hi) + "]") { |
| // return low <= arg && arg <= hi; |
| // } |
| // ... |
| // EXPECT_THAT(3, InClosedRange(4, 6)); |
| // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
| // |
| // would generate two failures that contain the text: |
| // |
| // Expected: is in range [4, 6] |
| // ... |
| // Expected: is not in range [2, 4] |
| // |
| // If you specify "" as the description, the failure message will |
| // contain the sequence of words in the matcher name followed by the |
| // parameter values printed as a tuple. For example, |
| // |
| // MATCHER_P2(InClosedRange, low, hi, "") { ... } |
| // ... |
| // EXPECT_THAT(3, InClosedRange(4, 6)); |
| // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
| // |
| // would generate two failures that contain the text: |
| // |
| // Expected: in closed range (4, 6) |
| // ... |
| // Expected: not (in closed range (2, 4)) |
| // |
| // Types of Matcher Parameters |
| // =========================== |
| // |
| // For the purpose of typing, you can view |
| // |
| // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } |
| // |
| // as shorthand for |
| // |
| // template <typename p1_type, ..., typename pk_type> |
| // FooMatcherPk<p1_type, ..., pk_type> |
| // Foo(p1_type p1, ..., pk_type pk) { ... } |
| // |
| // When you write Foo(v1, ..., vk), the compiler infers the types of |
| // the parameters v1, ..., and vk for you. If you are not happy with |
| // the result of the type inference, you can specify the types by |
| // explicitly instantiating the template, as in Foo<long, bool>(5, |
| // false). As said earlier, you don't get to (or need to) specify |
| // 'arg_type' as that's determined by the context in which the matcher |
| // is used. You can assign the result of expression Foo(p1, ..., pk) |
| // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This |
| // can be useful when composing matchers. |
| // |
| // While you can instantiate a matcher template with reference types, |
| // passing the parameters by pointer usually makes your code more |
| // readable. If, however, you still want to pass a parameter by |
| // reference, be aware that in the failure message generated by the |
| // matcher you will see the value of the referenced object but not its |
| // address. |
| // |
| // Explaining Match Results |
| // ======================== |
| // |
| // Sometimes the matcher description alone isn't enough to explain why |
| // the match has failed or succeeded. For example, when expecting a |
| // long string, it can be very helpful to also print the diff between |
| // the expected string and the actual one. To achieve that, you can |
| // optionally stream additional information to a special variable |
| // named result_listener, whose type is a pointer to class |
| // MatchResultListener: |
| // |
| // MATCHER_P(EqualsLongString, str, "") { |
| // if (arg == str) return true; |
| // |
| // *result_listener << "the difference: " |
| /// << DiffStrings(str, arg); |
| // return false; |
| // } |
| // |
| // Overloading Matchers |
| // ==================== |
| // |
| // You can overload matchers with different numbers of parameters: |
| // |
| // MATCHER_P(Blah, a, description_string1) { ... } |
| // MATCHER_P2(Blah, a, b, description_string2) { ... } |
| // |
| // Caveats |
| // ======= |
| // |
| // When defining a new matcher, you should also consider implementing |
| // MatcherInterface or using MakePolymorphicMatcher(). These |
| // approaches require more work than the MATCHER* macros, but also |
| // give you more control on the types of the value being matched and |
| // the matcher parameters, which may leads to better compiler error |
| // messages when the matcher is used wrong. They also allow |
| // overloading matchers based on parameter types (as opposed to just |
| // based on the number of parameters). |
| // |
| // MATCHER*() can only be used in a namespace scope as templates cannot be |
| // declared inside of a local class. |
| // |
| // More Information |
| // ================ |
| // |
| // To learn more about using these macros, please search for 'MATCHER' |
| // on |
| // https://github.com/google/googletest/blob/master/googlemock/docs/cook_book.md |
| // |
| // This file also implements some commonly used argument matchers. More |
| // matchers can be defined by the user implementing the |
| // MatcherInterface<T> interface if necessary. |
| // |
| // See googletest/include/gtest/gtest-matchers.h for the definition of class |
| // Matcher, class MatcherInterface, and others. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <initializer_list> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <ostream> // NOLINT |
| #include <sstream> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| #include "gmock/internal/gmock-internal-utils.h" |
| #include "gmock/internal/gmock-port.h" |
| #include "gmock/internal/gmock-pp.h" |
| #include "gtest/gtest.h" |
| |
| // MSVC warning C5046 is new as of VS2017 version 15.8. |
| #if defined(_MSC_VER) && _MSC_VER >= 1915 |
| #define GMOCK_MAYBE_5046_ 5046 |
| #else |
| #define GMOCK_MAYBE_5046_ |
| #endif |
| |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
| 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
| clients of class B */ |
| /* Symbol involving type with internal linkage not defined */) |
| |
| namespace testing { |
| |
| // To implement a matcher Foo for type T, define: |
| // 1. a class FooMatcherImpl that implements the |
| // MatcherInterface<T> interface, and |
| // 2. a factory function that creates a Matcher<T> object from a |
| // FooMatcherImpl*. |
| // |
| // The two-level delegation design makes it possible to allow a user |
| // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
| // is impossible if we pass matchers by pointers. It also eases |
| // ownership management as Matcher objects can now be copied like |
| // plain values. |
| |
| // A match result listener that stores the explanation in a string. |
| class StringMatchResultListener : public MatchResultListener { |
| public: |
| StringMatchResultListener() : MatchResultListener(&ss_) {} |
| |
| // Returns the explanation accumulated so far. |
| std::string str() const { return ss_.str(); } |
| |
| // Clears the explanation accumulated so far. |
| void Clear() { ss_.str(""); } |
| |
| private: |
| ::std::stringstream ss_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); |
| }; |
| |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| // and MUST NOT BE USED IN USER CODE!!! |
| namespace internal { |
| |
| // The MatcherCastImpl class template is a helper for implementing |
| // MatcherCast(). We need this helper in order to partially |
| // specialize the implementation of MatcherCast() (C++ allows |
| // class/struct templates to be partially specialized, but not |
| // function templates.). |
| |
| // This general version is used when MatcherCast()'s argument is a |
| // polymorphic matcher (i.e. something that can be converted to a |
| // Matcher but is not one yet; for example, Eq(value)) or a value (for |
| // example, "hello"). |
| template <typename T, typename M> |
| class MatcherCastImpl { |
| public: |
| static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
| // M can be a polymorphic matcher, in which case we want to use |
| // its conversion operator to create Matcher<T>. Or it can be a value |
| // that should be passed to the Matcher<T>'s constructor. |
| // |
| // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
| // polymorphic matcher because it'll be ambiguous if T has an implicit |
| // constructor from M (this usually happens when T has an implicit |
| // constructor from any type). |
| // |
| // It won't work to unconditionally implict_cast |
| // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
| // a user-defined conversion from M to T if one exists (assuming M is |
| // a value). |
| return CastImpl(polymorphic_matcher_or_value, |
| std::is_convertible<M, Matcher<T>>{}, |
| std::is_convertible<M, T>{}); |
| } |
| |
| private: |
| template <bool Ignore> |
| static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
| std::true_type /* convertible_to_matcher */, |
| std::integral_constant<bool, Ignore>) { |
| // M is implicitly convertible to Matcher<T>, which means that either |
| // M is a polymorphic matcher or Matcher<T> has an implicit constructor |
| // from M. In both cases using the implicit conversion will produce a |
| // matcher. |
| // |
| // Even if T has an implicit constructor from M, it won't be called because |
| // creating Matcher<T> would require a chain of two user-defined conversions |
| // (first to create T from M and then to create Matcher<T> from T). |
| return polymorphic_matcher_or_value; |
| } |
| |
| // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
| // matcher. It's a value of a type implicitly convertible to T. Use direct |
| // initialization to create a matcher. |
| static Matcher<T> CastImpl(const M& value, |
| std::false_type /* convertible_to_matcher */, |
| std::true_type /* convertible_to_T */) { |
| return Matcher<T>(ImplicitCast_<T>(value)); |
| } |
| |
| // M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
| // polymorphic matcher Eq(value) in this case. |
| // |
| // Note that we first attempt to perform an implicit cast on the value and |
| // only fall back to the polymorphic Eq() matcher afterwards because the |
| // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
| // which might be undefined even when Rhs is implicitly convertible to Lhs |
| // (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
| // |
| // We don't define this method inline as we need the declaration of Eq(). |
| static Matcher<T> CastImpl(const M& value, |
| std::false_type /* convertible_to_matcher */, |
| std::false_type /* convertible_to_T */); |
| }; |
| |
| // This more specialized version is used when MatcherCast()'s argument |
| // is already a Matcher. This only compiles when type T can be |
| // statically converted to type U. |
| template <typename T, typename U> |
| class MatcherCastImpl<T, Matcher<U> > { |
| public: |
| static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
| return Matcher<T>(new Impl(source_matcher)); |
| } |
| |
| private: |
| class Impl : public MatcherInterface<T> { |
| public: |
| explicit Impl(const Matcher<U>& source_matcher) |
| : source_matcher_(source_matcher) {} |
| |
| // We delegate the matching logic to the source matcher. |
| bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
| using FromType = typename std::remove_cv<typename std::remove_pointer< |
| typename std::remove_reference<T>::type>::type>::type; |
| using ToType = typename std::remove_cv<typename std::remove_pointer< |
| typename std::remove_reference<U>::type>::type>::type; |
| // Do not allow implicitly converting base*/& to derived*/&. |
| static_assert( |
| // Do not trigger if only one of them is a pointer. That implies a |
| // regular conversion and not a down_cast. |
| (std::is_pointer<typename std::remove_reference<T>::type>::value != |
| std::is_pointer<typename std::remove_reference<U>::type>::value) || |
| std::is_same<FromType, ToType>::value || |
| !std::is_base_of<FromType, ToType>::value, |
| "Can't implicitly convert from <base> to <derived>"); |
| |
| // Do the cast to `U` explicitly if necessary. |
| // Otherwise, let implicit conversions do the trick. |
| using CastType = |
| typename std::conditional<std::is_convertible<T&, const U&>::value, |
| T&, U>::type; |
| |
| return source_matcher_.MatchAndExplain(static_cast<CastType>(x), |
| listener); |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| source_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| source_matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| const Matcher<U> source_matcher_; |
| }; |
| }; |
| |
| // This even more specialized version is used for efficiently casting |
| // a matcher to its own type. |
| template <typename T> |
| class MatcherCastImpl<T, Matcher<T> > { |
| public: |
| static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
| }; |
| |
| // Template specialization for parameterless Matcher. |
| template <typename Derived> |
| class MatcherBaseImpl { |
| public: |
| MatcherBaseImpl() = default; |
| |
| template <typename T> |
| operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) |
| return ::testing::Matcher<T>(new |
| typename Derived::template gmock_Impl<T>()); |
| } |
| }; |
| |
| // Template specialization for Matcher with parameters. |
| template <template <typename...> class Derived, typename... Ts> |
| class MatcherBaseImpl<Derived<Ts...>> { |
| public: |
| // Mark the constructor explicit for single argument T to avoid implicit |
| // conversions. |
| template <typename E = std::enable_if<sizeof...(Ts) == 1>, |
| typename E::type* = nullptr> |
| explicit MatcherBaseImpl(Ts... params) |
| : params_(std::forward<Ts>(params)...) {} |
| template <typename E = std::enable_if<sizeof...(Ts) != 1>, |
| typename = typename E::type> |
| MatcherBaseImpl(Ts... params) // NOLINT |
| : params_(std::forward<Ts>(params)...) {} |
| |
| template <typename F> |
| operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) |
| return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); |
| } |
| |
| private: |
| template <typename F, std::size_t... tuple_ids> |
| ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { |
| return ::testing::Matcher<F>( |
| new typename Derived<Ts...>::template gmock_Impl<F>( |
| std::get<tuple_ids>(params_)...)); |
| } |
| |
| const std::tuple<Ts...> params_; |
| }; |
| |
| } // namespace internal |
| |
| // In order to be safe and clear, casting between different matcher |
| // types is done explicitly via MatcherCast<T>(m), which takes a |
| // matcher m and returns a Matcher<T>. It compiles only when T can be |
| // statically converted to the argument type of m. |
| template <typename T, typename M> |
| inline Matcher<T> MatcherCast(const M& matcher) { |
| return internal::MatcherCastImpl<T, M>::Cast(matcher); |
| } |
| |
| // This overload handles polymorphic matchers and values only since |
| // monomorphic matchers are handled by the next one. |
| template <typename T, typename M> |
| inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { |
| return MatcherCast<T>(polymorphic_matcher_or_value); |
| } |
| |
| // This overload handles monomorphic matchers. |
| // |
| // In general, if type T can be implicitly converted to type U, we can |
| // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
| // contravariant): just keep a copy of the original Matcher<U>, convert the |
| // argument from type T to U, and then pass it to the underlying Matcher<U>. |
| // The only exception is when U is a reference and T is not, as the |
| // underlying Matcher<U> may be interested in the argument's address, which |
| // is not preserved in the conversion from T to U. |
| template <typename T, typename U> |
| inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { |
| // Enforce that T can be implicitly converted to U. |
| static_assert(std::is_convertible<const T&, const U&>::value, |
| "T must be implicitly convertible to U"); |
| // Enforce that we are not converting a non-reference type T to a reference |
| // type U. |
| GTEST_COMPILE_ASSERT_( |
| std::is_reference<T>::value || !std::is_reference<U>::value, |
| cannot_convert_non_reference_arg_to_reference); |
| // In case both T and U are arithmetic types, enforce that the |
| // conversion is not lossy. |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
| constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
| constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
| GTEST_COMPILE_ASSERT_( |
| kTIsOther || kUIsOther || |
| (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
| conversion_of_arithmetic_types_must_be_lossless); |
| return MatcherCast<T>(matcher); |
| } |
| |
| // A<T>() returns a matcher that matches any value of type T. |
| template <typename T> |
| Matcher<T> A(); |
| |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| // and MUST NOT BE USED IN USER CODE!!! |
| namespace internal { |
| |
| // If the explanation is not empty, prints it to the ostream. |
| inline void PrintIfNotEmpty(const std::string& explanation, |
| ::std::ostream* os) { |
| if (explanation != "" && os != nullptr) { |
| *os << ", " << explanation; |
| } |
| } |
| |
| // Returns true if the given type name is easy to read by a human. |
| // This is used to decide whether printing the type of a value might |
| // be helpful. |
| inline bool IsReadableTypeName(const std::string& type_name) { |
| // We consider a type name readable if it's short or doesn't contain |
| // a template or function type. |
| return (type_name.length() <= 20 || |
| type_name.find_first_of("<(") == std::string::npos); |
| } |
| |
| // Matches the value against the given matcher, prints the value and explains |
| // the match result to the listener. Returns the match result. |
| // 'listener' must not be NULL. |
| // Value cannot be passed by const reference, because some matchers take a |
| // non-const argument. |
| template <typename Value, typename T> |
| bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
| MatchResultListener* listener) { |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we do not need to construct the |
| // inner explanation. |
| return matcher.Matches(value); |
| } |
| |
| StringMatchResultListener inner_listener; |
| const bool match = matcher.MatchAndExplain(value, &inner_listener); |
| |
| UniversalPrint(value, listener->stream()); |
| #if GTEST_HAS_RTTI |
| const std::string& type_name = GetTypeName<Value>(); |
| if (IsReadableTypeName(type_name)) |
| *listener->stream() << " (of type " << type_name << ")"; |
| #endif |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| |
| return match; |
| } |
| |
| // An internal helper class for doing compile-time loop on a tuple's |
| // fields. |
| template <size_t N> |
| class TuplePrefix { |
| public: |
| // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
| // if and only if the first N fields of matcher_tuple matches |
| // the first N fields of value_tuple, respectively. |
| template <typename MatcherTuple, typename ValueTuple> |
| static bool Matches(const MatcherTuple& matcher_tuple, |
| const ValueTuple& value_tuple) { |
| return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
| std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
| } |
| |
| // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
| // describes failures in matching the first N fields of matchers |
| // against the first N fields of values. If there is no failure, |
| // nothing will be streamed to os. |
| template <typename MatcherTuple, typename ValueTuple> |
| static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
| const ValueTuple& values, |
| ::std::ostream* os) { |
| // First, describes failures in the first N - 1 fields. |
| TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
| |
| // Then describes the failure (if any) in the (N - 1)-th (0-based) |
| // field. |
| typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
| std::get<N - 1>(matchers); |
| typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
| const Value& value = std::get<N - 1>(values); |
| StringMatchResultListener listener; |
| if (!matcher.MatchAndExplain(value, &listener)) { |
| *os << " Expected arg #" << N - 1 << ": "; |
| std::get<N - 1>(matchers).DescribeTo(os); |
| *os << "\n Actual: "; |
| // We remove the reference in type Value to prevent the |
| // universal printer from printing the address of value, which |
| // isn't interesting to the user most of the time. The |
| // matcher's MatchAndExplain() method handles the case when |
| // the address is interesting. |
| internal::UniversalPrint(value, os); |
| PrintIfNotEmpty(listener.str(), os); |
| *os << "\n"; |
| } |
| } |
| }; |
| |
| // The base case. |
| template <> |
| class TuplePrefix<0> { |
| public: |
| template <typename MatcherTuple, typename ValueTuple> |
| static bool Matches(const MatcherTuple& /* matcher_tuple */, |
| const ValueTuple& /* value_tuple */) { |
| return true; |
| } |
| |
| template <typename MatcherTuple, typename ValueTuple> |
| static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
| const ValueTuple& /* values */, |
| ::std::ostream* /* os */) {} |
| }; |
| |
| // TupleMatches(matcher_tuple, value_tuple) returns true if and only if |
| // all matchers in matcher_tuple match the corresponding fields in |
| // value_tuple. It is a compiler error if matcher_tuple and |
| // value_tuple have different number of fields or incompatible field |
| // types. |
| template <typename MatcherTuple, typename ValueTuple> |
| bool TupleMatches(const MatcherTuple& matcher_tuple, |
| const ValueTuple& value_tuple) { |
| // Makes sure that matcher_tuple and value_tuple have the same |
| // number of fields. |
| GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == |
| std::tuple_size<ValueTuple>::value, |
| matcher_and_value_have_different_numbers_of_fields); |
| return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
| value_tuple); |
| } |
| |
| // Describes failures in matching matchers against values. If there |
| // is no failure, nothing will be streamed to os. |
| template <typename MatcherTuple, typename ValueTuple> |
| void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
| const ValueTuple& values, |
| ::std::ostream* os) { |
| TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
| matchers, values, os); |
| } |
| |
| // TransformTupleValues and its helper. |
| // |
| // TransformTupleValuesHelper hides the internal machinery that |
| // TransformTupleValues uses to implement a tuple traversal. |
| template <typename Tuple, typename Func, typename OutIter> |
| class TransformTupleValuesHelper { |
| private: |
| typedef ::std::tuple_size<Tuple> TupleSize; |
| |
| public: |
| // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
| // Returns the final value of 'out' in case the caller needs it. |
| static OutIter Run(Func f, const Tuple& t, OutIter out) { |
| return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
| } |
| |
| private: |
| template <typename Tup, size_t kRemainingSize> |
| struct IterateOverTuple { |
| OutIter operator() (Func f, const Tup& t, OutIter out) const { |
| *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
| return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
| } |
| }; |
| template <typename Tup> |
| struct IterateOverTuple<Tup, 0> { |
| OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { |
| return out; |
| } |
| }; |
| }; |
| |
| // Successively invokes 'f(element)' on each element of the tuple 't', |
| // appending each result to the 'out' iterator. Returns the final value |
| // of 'out'. |
| template <typename Tuple, typename Func, typename OutIter> |
| OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
| return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
| } |
| |
| // Implements A<T>(). |
| template <typename T> |
| class AnyMatcherImpl : public MatcherInterface<const T&> { |
| public: |
| bool MatchAndExplain(const T& /* x */, |
| MatchResultListener* /* listener */) const override { |
| return true; |
| } |
| void DescribeTo(::std::ostream* os) const override { *os << "is anything"; } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| // This is mostly for completeness' safe, as it's not very useful |
| // to write Not(A<bool>()). However we cannot completely rule out |
| // such a possibility, and it doesn't hurt to be prepared. |
| *os << "never matches"; |
| } |
| }; |
| |
| // Implements _, a matcher that matches any value of any |
| // type. This is a polymorphic matcher, so we need a template type |
| // conversion operator to make it appearing as a Matcher<T> for any |
| // type T. |
| class AnythingMatcher { |
| public: |
| template <typename T> |
| operator Matcher<T>() const { return A<T>(); } |
| }; |
| |
| // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
| // pointer that is NULL. |
| class IsNullMatcher { |
| public: |
| template <typename Pointer> |
| bool MatchAndExplain(const Pointer& p, |
| MatchResultListener* /* listener */) const { |
| return p == nullptr; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "isn't NULL"; |
| } |
| }; |
| |
| // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
| // pointer that is not NULL. |
| class NotNullMatcher { |
| public: |
| template <typename Pointer> |
| bool MatchAndExplain(const Pointer& p, |
| MatchResultListener* /* listener */) const { |
| return p != nullptr; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is NULL"; |
| } |
| }; |
| |
| // Ref(variable) matches any argument that is a reference to |
| // 'variable'. This matcher is polymorphic as it can match any |
| // super type of the type of 'variable'. |
| // |
| // The RefMatcher template class implements Ref(variable). It can |
| // only be instantiated with a reference type. This prevents a user |
| // from mistakenly using Ref(x) to match a non-reference function |
| // argument. For example, the following will righteously cause a |
| // compiler error: |
| // |
| // int n; |
| // Matcher<int> m1 = Ref(n); // This won't compile. |
| // Matcher<int&> m2 = Ref(n); // This will compile. |
| template <typename T> |
| class RefMatcher; |
| |
| template <typename T> |
| class RefMatcher<T&> { |
| // Google Mock is a generic framework and thus needs to support |
| // mocking any function types, including those that take non-const |
| // reference arguments. Therefore the template parameter T (and |
| // Super below) can be instantiated to either a const type or a |
| // non-const type. |
| public: |
| // RefMatcher() takes a T& instead of const T&, as we want the |
| // compiler to catch using Ref(const_value) as a matcher for a |
| // non-const reference. |
| explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
| |
| template <typename Super> |
| operator Matcher<Super&>() const { |
| // By passing object_ (type T&) to Impl(), which expects a Super&, |
| // we make sure that Super is a super type of T. In particular, |
| // this catches using Ref(const_value) as a matcher for a |
| // non-const reference, as you cannot implicitly convert a const |
| // reference to a non-const reference. |
| return MakeMatcher(new Impl<Super>(object_)); |
| } |
| |
| private: |
| template <typename Super> |
| class Impl : public MatcherInterface<Super&> { |
| public: |
| explicit Impl(Super& x) : object_(x) {} // NOLINT |
| |
| // MatchAndExplain() takes a Super& (as opposed to const Super&) |
| // in order to match the interface MatcherInterface<Super&>. |
| bool MatchAndExplain(Super& x, |
| MatchResultListener* listener) const override { |
| *listener << "which is located @" << static_cast<const void*>(&x); |
| return &x == &object_; |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "references the variable "; |
| UniversalPrinter<Super&>::Print(object_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "does not reference the variable "; |
| UniversalPrinter<Super&>::Print(object_, os); |
| } |
| |
| private: |
| const Super& object_; |
| }; |
| |
| T& object_; |
| }; |
| |
| // Polymorphic helper functions for narrow and wide string matchers. |
| inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
| return String::CaseInsensitiveCStringEquals(lhs, rhs); |
| } |
| |
| inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
| const wchar_t* rhs) { |
| return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
| } |
| |
| // String comparison for narrow or wide strings that can have embedded NUL |
| // characters. |
| template <typename StringType> |
| bool CaseInsensitiveStringEquals(const StringType& s1, |
| const StringType& s2) { |
| // Are the heads equal? |
| if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
| return false; |
| } |
| |
| // Skip the equal heads. |
| const typename StringType::value_type nul = 0; |
| const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
| |
| // Are we at the end of either s1 or s2? |
| if (i1 == StringType::npos || i2 == StringType::npos) { |
| return i1 == i2; |
| } |
| |
| // Are the tails equal? |
| return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
| } |
| |
| // String matchers. |
| |
| // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
| template <typename StringType> |
| class StrEqualityMatcher { |
| public: |
| StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) |
| : string_(std::move(str)), |
| expect_eq_(expect_eq), |
| case_sensitive_(case_sensitive) {} |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| bool MatchAndExplain(const internal::StringView& s, |
| MatchResultListener* listener) const { |
| // This should fail to compile if StringView is used with wide |
| // strings. |
| const StringType& str = std::string(s); |
| return MatchAndExplain(str, listener); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| if (s == nullptr) { |
| return !expect_eq_; |
| } |
| return MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringView has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType s2(s); |
| const bool eq = case_sensitive_ ? s2 == string_ : |
| CaseInsensitiveStringEquals(s2, string_); |
| return expect_eq_ == eq; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| DescribeToHelper(expect_eq_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| DescribeToHelper(!expect_eq_, os); |
| } |
| |
| private: |
| void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
| *os << (expect_eq ? "is " : "isn't "); |
| *os << "equal to "; |
| if (!case_sensitive_) { |
| *os << "(ignoring case) "; |
| } |
| UniversalPrint(string_, os); |
| } |
| |
| const StringType string_; |
| const bool expect_eq_; |
| const bool case_sensitive_; |
| }; |
| |
| // Implements the polymorphic HasSubstr(substring) matcher, which |
| // can be used as a Matcher<T> as long as T can be converted to a |
| // string. |
| template <typename StringType> |
| class HasSubstrMatcher { |
| public: |
| explicit HasSubstrMatcher(const StringType& substring) |
| : substring_(substring) {} |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| bool MatchAndExplain(const internal::StringView& s, |
| MatchResultListener* listener) const { |
| // This should fail to compile if StringView is used with wide |
| // strings. |
| const StringType& str = std::string(s); |
| return MatchAndExplain(str, listener); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != nullptr && MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringView has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| return StringType(s).find(substring_) != StringType::npos; |
| } |
| |
| // Describes what this matcher matches. |
| void DescribeTo(::std::ostream* os) const { |
| *os << "has substring "; |
| UniversalPrint(substring_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "has no substring "; |
| UniversalPrint(substring_, os); |
| } |
| |
| private: |
| const StringType substring_; |
| }; |
| |
| // Implements the polymorphic StartsWith(substring) matcher, which |
| // can be used as a Matcher<T> as long as T can be converted to a |
| // string. |
| template <typename StringType> |
| class StartsWithMatcher { |
| public: |
| explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { |
| } |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| bool MatchAndExplain(const internal::StringView& s, |
| MatchResultListener* listener) const { |
| // This should fail to compile if StringView is used with wide |
| // strings. |
| const StringType& str = std::string(s); |
| return MatchAndExplain(str, listener); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != nullptr && MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringView has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType& s2(s); |
| return s2.length() >= prefix_.length() && |
| s2.substr(0, prefix_.length()) == prefix_; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "starts with "; |
| UniversalPrint(prefix_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't start with "; |
| UniversalPrint(prefix_, os); |
| } |
| |
| private: |
| const StringType prefix_; |
| }; |
| |
| // Implements the polymorphic EndsWith(substring) matcher, which |
| // can be used as a Matcher<T> as long as T can be converted to a |
| // string. |
| template <typename StringType> |
| class EndsWithMatcher { |
| public: |
| explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| bool MatchAndExplain(const internal::StringView& s, |
| MatchResultListener* listener) const { |
| // This should fail to compile if StringView is used with wide |
| // strings. |
| const StringType& str = std::string(s); |
| return MatchAndExplain(str, listener); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != nullptr && MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringView has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType& s2(s); |
| return s2.length() >= suffix_.length() && |
| s2.substr(s2.length() - suffix_.length()) == suffix_; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "ends with "; |
| UniversalPrint(suffix_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't end with "; |
| UniversalPrint(suffix_, os); |
| } |
| |
| private: |
| const StringType suffix_; |
| }; |
| |
| // Implements a matcher that compares the two fields of a 2-tuple |
| // using one of the ==, <=, <, etc, operators. The two fields being |
| // compared don't have to have the same type. |
| // |
| // The matcher defined here is polymorphic (for example, Eq() can be |
| // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
| // etc). Therefore we use a template type conversion operator in the |
| // implementation. |
| template <typename D, typename Op> |
| class PairMatchBase { |
| public: |
| template <typename T1, typename T2> |
| operator Matcher<::std::tuple<T1, T2>>() const { |
| return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
| } |
| template <typename T1, typename T2> |
| operator Matcher<const ::std::tuple<T1, T2>&>() const { |
| return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
| } |
| |
| private: |
| static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
| return os << D::Desc(); |
| } |
| |
| template <typename Tuple> |
| class Impl : public MatcherInterface<Tuple> { |
| public: |
| bool MatchAndExplain(Tuple args, |
| MatchResultListener* /* listener */) const override { |
| return Op()(::std::get<0>(args), ::std::get<1>(args)); |
| } |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "are " << GetDesc; |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "aren't " << GetDesc; |
| } |
| }; |
| }; |
| |
| class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { |
| public: |
| static const char* Desc() { return "an equal pair"; } |
| }; |
| class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { |
| public: |
| static const char* Desc() { return "an unequal pair"; } |
| }; |
| class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { |
| public: |
| static const char* Desc() { return "a pair where the first < the second"; } |
| }; |
| class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { |
| public: |
| static const char* Desc() { return "a pair where the first > the second"; } |
| }; |
| class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { |
| public: |
| static const char* Desc() { return "a pair where the first <= the second"; } |
| }; |
| class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { |
| public: |
| static const char* Desc() { return "a pair where the first >= the second"; } |
| }; |
| |
| // Implements the Not(...) matcher for a particular argument type T. |
| // We do not nest it inside the NotMatcher class template, as that |
| // will prevent different instantiations of NotMatcher from sharing |
| // the same NotMatcherImpl<T> class. |
| template <typename T> |
| class NotMatcherImpl : public MatcherInterface<const T&> { |
| public: |
| explicit NotMatcherImpl(const Matcher<T>& matcher) |
| : matcher_(matcher) {} |
| |
| bool MatchAndExplain(const T& x, |
| MatchResultListener* listener) const override { |
| return !matcher_.MatchAndExplain(x, listener); |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| matcher_.DescribeTo(os); |
| } |
| |
| private: |
| const Matcher<T> matcher_; |
| }; |
| |
| // Implements the Not(m) matcher, which matches a value that doesn't |
| // match matcher m. |
| template <typename InnerMatcher> |
| class NotMatcher { |
| public: |
| explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
| |
| // This template type conversion operator allows Not(m) to be used |
| // to match any type m can match. |
| template <typename T> |
| operator Matcher<T>() const { |
| return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
| } |
| |
| private: |
| InnerMatcher matcher_; |
| }; |
| |
| // Implements the AllOf(m1, m2) matcher for a particular argument type |
| // T. We do not nest it inside the BothOfMatcher class template, as |
| // that will prevent different instantiations of BothOfMatcher from |
| // sharing the same BothOfMatcherImpl<T> class. |
| template <typename T> |
| class AllOfMatcherImpl : public MatcherInterface<const T&> { |
| public: |
| explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) |
| : matchers_(std::move(matchers)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "("; |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| if (i != 0) *os << ") and ("; |
| matchers_[i].DescribeTo(os); |
| } |
| *os << ")"; |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "("; |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| if (i != 0) *os << ") or ("; |
| matchers_[i].DescribeNegationTo(os); |
| } |
| *os << ")"; |
| } |
| |
| bool MatchAndExplain(const T& x, |
| MatchResultListener* listener) const override { |
| // If either matcher1_ or matcher2_ doesn't match x, we only need |
| // to explain why one of them fails. |
| std::string all_match_result; |
| |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| StringMatchResultListener slistener; |
| if (matchers_[i].MatchAndExplain(x, &slistener)) { |
| if (all_match_result.empty()) { |
| all_match_result = slistener.str(); |
| } else { |
| std::string result = slistener.str(); |
| if (!result.empty()) { |
| all_match_result += ", and "; |
| all_match_result += result; |
| } |
| } |
| } else { |
| *listener << slistener.str(); |
| return false; |
| } |
| } |
| |
| // Otherwise we need to explain why *both* of them match. |
| *listener << all_match_result; |
| return true; |
| } |
| |
| private: |
| const std::vector<Matcher<T> > matchers_; |
| }; |
| |
| // VariadicMatcher is used for the variadic implementation of |
| // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
| // CombiningMatcher<T> is used to recursively combine the provided matchers |
| // (of type Args...). |
| template <template <typename T> class CombiningMatcher, typename... Args> |
| class VariadicMatcher { |
| public: |
| VariadicMatcher(const Args&... matchers) // NOLINT |
| : matchers_(matchers...) { |
| static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); |
| } |
| |
| VariadicMatcher(const VariadicMatcher&) = default; |
| VariadicMatcher& operator=(const VariadicMatcher&) = delete; |
| |
| // This template type conversion operator allows an |
| // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
| // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
| template <typename T> |
| operator Matcher<T>() const { |
| std::vector<Matcher<T> > values; |
| CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
| return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
| } |
| |
| private: |
| template <typename T, size_t I> |
| void CreateVariadicMatcher(std::vector<Matcher<T> >* values, |
| std::integral_constant<size_t, I>) const { |
| values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
| CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
| } |
| |
| template <typename T> |
| void CreateVariadicMatcher( |
| std::vector<Matcher<T> >*, |
| std::integral_constant<size_t, sizeof...(Args)>) const {} |
| |
| std::tuple<Args...> matchers_; |
| }; |
| |
| template <typename... Args> |
| using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
| |
| // Implements the AnyOf(m1, m2) matcher for a particular argument type |
| // T. We do not nest it inside the AnyOfMatcher class template, as |
| // that will prevent different instantiations of AnyOfMatcher from |
| // sharing the same EitherOfMatcherImpl<T> class. |
| template <typename T> |
| class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
| public: |
| explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) |
| : matchers_(std::move(matchers)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "("; |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| if (i != 0) *os << ") or ("; |
| matchers_[i].DescribeTo(os); |
| } |
| *os << ")"; |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "("; |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| if (i != 0) *os << ") and ("; |
| matchers_[i].DescribeNegationTo(os); |
| } |
| *os << ")"; |
| } |
| |
| bool MatchAndExplain(const T& x, |
| MatchResultListener* listener) const override { |
| std::string no_match_result; |
| |
| // If either matcher1_ or matcher2_ matches x, we just need to |
| // explain why *one* of them matches. |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| StringMatchResultListener slistener; |
| if (matchers_[i].MatchAndExplain(x, &slistener)) { |
| *listener << slistener.str(); |
| return true; |
| } else { |
| if (no_match_result.empty()) { |
| no_match_result = slistener.str(); |
| } else { |
| std::string result = slistener.str(); |
| if (!result.empty()) { |
| no_match_result += ", and "; |
| no_match_result += result; |
| } |
| } |
| } |
| } |
| |
| // Otherwise we need to explain why *both* of them fail. |
| *listener << no_match_result; |
| return false; |
| } |
| |
| private: |
| const std::vector<Matcher<T> > matchers_; |
| }; |
| |
| // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
| template <typename... Args> |
| using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
| |
| // Wrapper for implementation of Any/AllOfArray(). |
| template <template <class> class MatcherImpl, typename T> |
| class SomeOfArrayMatcher { |
| public: |
| // Constructs the matcher from a sequence of element values or |
| // element matchers. |
| template <typename Iter> |
| SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
| |
| template <typename U> |
| operator Matcher<U>() const { // NOLINT |
| using RawU = typename std::decay<U>::type; |
| std::vector<Matcher<RawU>> matchers; |
| for (const auto& matcher : matchers_) { |
| matchers.push_back(MatcherCast<RawU>(matcher)); |
| } |
| return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
| } |
| |
| private: |
| const ::std::vector<T> matchers_; |
| }; |
| |
| template <typename T> |
| using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
| |
| template <typename T> |
| using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
| |
| // Used for implementing Truly(pred), which turns a predicate into a |
| // matcher. |
| template <typename Predicate> |
| class TrulyMatcher { |
| public: |
| explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
| |
| // This method template allows Truly(pred) to be used as a matcher |
| // for type T where T is the argument type of predicate 'pred'. The |
| // argument is passed by reference as the predicate may be |
| // interested in the address of the argument. |
| template <typename T> |
| bool MatchAndExplain(T& x, // NOLINT |
| MatchResultListener* /* listener */) const { |
| // Without the if-statement, MSVC sometimes warns about converting |
| // a value to bool (warning 4800). |
| // |
| // We cannot write 'return !!predicate_(x);' as that doesn't work |
| // when predicate_(x) returns a class convertible to bool but |
| // having no operator!(). |
| if (predicate_(x)) |
| return true; |
| return false; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "satisfies the given predicate"; |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't satisfy the given predicate"; |
| } |
| |
| private: |
| Predicate predicate_; |
| }; |
| |
| // Used for implementing Matches(matcher), which turns a matcher into |
| // a predicate. |
| template <typename M> |
| class MatcherAsPredicate { |
| public: |
| explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
| |
| // This template operator() allows Matches(m) to be used as a |
| // predicate on type T where m is a matcher on type T. |
| // |
| // The argument x is passed by reference instead of by value, as |
| // some matcher may be interested in its address (e.g. as in |
| // Matches(Ref(n))(x)). |
| template <typename T> |
| bool operator()(const T& x) const { |
| // We let matcher_ commit to a particular type here instead of |
| // when the MatcherAsPredicate object was constructed. This |
| // allows us to write Matches(m) where m is a polymorphic matcher |
| // (e.g. Eq(5)). |
| // |
| // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
| // compile when matcher_ has type Matcher<const T&>; if we write |
| // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
| // when matcher_ has type Matcher<T>; if we just write |
| // matcher_.Matches(x), it won't compile when matcher_ is |
| // polymorphic, e.g. Eq(5). |
| // |
| // MatcherCast<const T&>() is necessary for making the code work |
| // in all of the above situations. |
| return MatcherCast<const T&>(matcher_).Matches(x); |
| } |
| |
| private: |
| M matcher_; |
| }; |
| |
| // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
| // argument M must be a type that can be converted to a matcher. |
| template <typename M> |
| class PredicateFormatterFromMatcher { |
| public: |
| explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
| |
| // This template () operator allows a PredicateFormatterFromMatcher |
| // object to act as a predicate-formatter suitable for using with |
| // Google Test's EXPECT_PRED_FORMAT1() macro. |
| template <typename T> |
| AssertionResult operator()(const char* value_text, const T& x) const { |
| // We convert matcher_ to a Matcher<const T&> *now* instead of |
| // when the PredicateFormatterFromMatcher object was constructed, |
| // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
| // know which type to instantiate it to until we actually see the |
| // type of x here. |
| // |
| // We write SafeMatcherCast<const T&>(matcher_) instead of |
| // Matcher<const T&>(matcher_), as the latter won't compile when |
| // matcher_ has type Matcher<T> (e.g. An<int>()). |
| // We don't write MatcherCast<const T&> either, as that allows |
| // potentially unsafe downcasting of the matcher argument. |
| const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
| |
| // The expected path here is that the matcher should match (i.e. that most |
| // tests pass) so optimize for this case. |
| if (matcher.Matches(x)) { |
| return AssertionSuccess(); |
| } |
| |
| ::std::stringstream ss; |
| ss << "Value of: " << value_text << "\n" |
| << "Expected: "; |
| matcher.DescribeTo(&ss); |
| |
| // Rerun the matcher to "PrintAndExplain" the failure. |
| StringMatchResultListener listener; |
| if (MatchPrintAndExplain(x, matcher, &listener)) { |
| ss << "\n The matcher failed on the initial attempt; but passed when " |
| "rerun to generate the explanation."; |
| } |
| ss << "\n Actual: " << listener.str(); |
| return AssertionFailure() << ss.str(); |
| } |
| |
| private: |
| const M matcher_; |
| }; |
| |
| // A helper function for converting a matcher to a predicate-formatter |
| // without the user needing to explicitly write the type. This is |
| // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
| // Implementation detail: 'matcher' is received by-value to force decaying. |
| template <typename M> |
| inline PredicateFormatterFromMatcher<M> |
| MakePredicateFormatterFromMatcher(M matcher) { |
| return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
| } |
| |
| // Implements the polymorphic IsNan() matcher, which matches any floating type |
| // value that is Nan. |
| class IsNanMatcher { |
| public: |
| template <typename FloatType> |
| bool MatchAndExplain(const FloatType& f, |
| MatchResultListener* /* listener */) const { |
| return (::std::isnan)(f); |
| } |
| |
| void DescribeTo(::std::ostream* os) const { *os << "is NaN"; } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "isn't NaN"; |
| } |
| }; |
| |
| // Implements the polymorphic floating point equality matcher, which matches |
| // two float values using ULP-based approximation or, optionally, a |
| // user-specified epsilon. The template is meant to be instantiated with |
| // FloatType being either float or double. |
| template <typename FloatType> |
| class FloatingEqMatcher { |
| public: |
| // Constructor for FloatingEqMatcher. |
| // The matcher's input will be compared with expected. The matcher treats two |
| // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
| // equality comparisons between NANs will always return false. We specify a |
| // negative max_abs_error_ term to indicate that ULP-based approximation will |
| // be used for comparison. |
| FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : |
| expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { |
| } |
| |
| // Constructor that supports a user-specified max_abs_error that will be used |
| // for comparison instead of ULP-based approximation. The max absolute |
| // should be non-negative. |
| FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
| FloatType max_abs_error) |
| : expected_(expected), |
| nan_eq_nan_(nan_eq_nan), |
| max_abs_error_(max_abs_error) { |
| GTEST_CHECK_(max_abs_error >= 0) |
| << ", where max_abs_error is" << max_abs_error; |
| } |
| |
| // Implements floating point equality matcher as a Matcher<T>. |
| template <typename T> |
| class Impl : public MatcherInterface<T> { |
| public: |
| Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
| : expected_(expected), |
| nan_eq_nan_(nan_eq_nan), |
| max_abs_error_(max_abs_error) {} |
| |
| bool MatchAndExplain(T value, |
| MatchResultListener* listener) const override { |
| const FloatingPoint<FloatType> actual(value), expected(expected_); |
| |
| // Compares NaNs first, if nan_eq_nan_ is true. |
| if (actual.is_nan() || expected.is_nan()) { |
| if (actual.is_nan() && expected.is_nan()) { |
| return nan_eq_nan_; |
| } |
| // One is nan; the other is not nan. |
| return false; |
| } |
| if (HasMaxAbsError()) { |
| // We perform an equality check so that inf will match inf, regardless |
| // of error bounds. If the result of value - expected_ would result in |
| // overflow or if either value is inf, the default result is infinity, |
| // which should only match if max_abs_error_ is also infinity. |
| if (value == expected_) { |
| return true; |
| } |
| |
| const FloatType diff = value - expected_; |
| if (::std::fabs(diff) <= max_abs_error_) { |
| return true; |
| } |
| |
| if (listener->IsInterested()) { |
| *listener << "which is " << diff << " from " << expected_; |
| } |
| return false; |
| } else { |
| return actual.AlmostEquals(expected); |
| } |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| // os->precision() returns the previously set precision, which we |
| // store to restore the ostream to its original configuration |
| // after outputting. |
| const ::std::streamsize old_precision = os->precision( |
| ::std::numeric_limits<FloatType>::digits10 + 2); |
| if (FloatingPoint<FloatType>(expected_).is_nan()) { |
| if (nan_eq_nan_) { |
| *os << "is NaN"; |
| } else { |
| *os << "never matches"; |
| } |
| } else { |
| *os << "is approximately " << expected_; |
| if (HasMaxAbsError()) { |
| *os << " (absolute error <= " << max_abs_error_ << ")"; |
| } |
| } |
| os->precision(old_precision); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| // As before, get original precision. |
| const ::std::streamsize old_precision = os->precision( |
| ::std::numeric_limits<FloatType>::digits10 + 2); |
| if (FloatingPoint<FloatType>(expected_).is_nan()) { |
| if (nan_eq_nan_) { |
| *os << "isn't NaN"; |
| } else { |
| *os << "is anything"; |
| } |
| } else { |
| *os << "isn't approximately " << expected_; |
| if (HasMaxAbsError()) { |
| *os << " (absolute error > " << max_abs_error_ << ")"; |
| } |
| } |
| // Restore original precision. |
| os->precision(old_precision); |
| } |
| |
| private: |
| bool HasMaxAbsError() const { |
| return max_abs_error_ >= 0; |
| } |
| |
| const FloatType expected_; |
| const bool nan_eq_nan_; |
| // max_abs_error will be used for value comparison when >= 0. |
| const FloatType max_abs_error_; |
| }; |
| |
| // The following 3 type conversion operators allow FloatEq(expected) and |
| // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
| // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
| // (While Google's C++ coding style doesn't allow arguments passed |
| // by non-const reference, we may see them in code not conforming to |
| // the style. Therefore Google Mock needs to support them.) |
| operator Matcher<FloatType>() const { |
| return MakeMatcher( |
| new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
| } |
| |
| operator Matcher<const FloatType&>() const { |
| return MakeMatcher( |
| new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
| } |
| |
| operator Matcher<FloatType&>() const { |
| return MakeMatcher( |
| new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
| } |
| |
| private: |
| const FloatType expected_; |
| const bool nan_eq_nan_; |
| // max_abs_error will be used for value comparison when >= 0. |
| const FloatType max_abs_error_; |
| }; |
| |
| // A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
| // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
| // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
| // against y. The former implements "Eq", the latter "Near". At present, there |
| // is no version that compares NaNs as equal. |
| template <typename FloatType> |
| class FloatingEq2Matcher { |
| public: |
| FloatingEq2Matcher() { Init(-1, false); } |
| |
| explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } |
| |
| explicit FloatingEq2Matcher(FloatType max_abs_error) { |
| Init(max_abs_error, false); |
| } |
| |
| FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
| Init(max_abs_error, nan_eq_nan); |
| } |
| |
| template <typename T1, typename T2> |
| operator Matcher<::std::tuple<T1, T2>>() const { |
| return MakeMatcher( |
| new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
| } |
| template <typename T1, typename T2> |
| operator Matcher<const ::std::tuple<T1, T2>&>() const { |
| return MakeMatcher( |
| new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
| } |
| |
| private: |
| static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
| return os << "an almost-equal pair"; |
| } |
| |
| template <typename Tuple> |
| class Impl : public MatcherInterface<Tuple> { |
| public: |
| Impl(FloatType max_abs_error, bool nan_eq_nan) : |
| max_abs_error_(max_abs_error), |
| nan_eq_nan_(nan_eq_nan) {} |
| |
| bool MatchAndExplain(Tuple args, |
| MatchResultListener* listener) const override { |
| if (max_abs_error_ == -1) { |
| FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
| return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
| ::std::get<1>(args), listener); |
| } else { |
| FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
| max_abs_error_); |
| return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
| ::std::get<1>(args), listener); |
| } |
| } |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "are " << GetDesc; |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "aren't " << GetDesc; |
| } |
| |
| private: |
| FloatType max_abs_error_; |
| const bool nan_eq_nan_; |
| }; |
| |
| void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
| max_abs_error_ = max_abs_error_val; |
| nan_eq_nan_ = nan_eq_nan_val; |
| } |
| FloatType max_abs_error_; |
| bool nan_eq_nan_; |
| }; |
| |
| // Implements the Pointee(m) matcher for matching a pointer whose |
| // pointee matches matcher m. The pointer can be either raw or smart. |
| template <typename InnerMatcher> |
| class PointeeMatcher { |
| public: |
| explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
| |
| // This type conversion operator template allows Pointee(m) to be |
| // used as a matcher for any pointer type whose pointee type is |
| // compatible with the inner matcher, where type Pointer can be |
| // either a raw pointer or a smart pointer. |
| // |
| // The reason we do this instead of relying on |
| // MakePolymorphicMatcher() is that the latter is not flexible |
| // enough for implementing the DescribeTo() method of Pointee(). |
| template <typename Pointer> |
| operator Matcher<Pointer>() const { |
| return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
| } |
| |
| private: |
| // The monomorphic implementation that works for a particular pointer type. |
| template <typename Pointer> |
| class Impl : public MatcherInterface<Pointer> { |
| public: |
| typedef typename PointeeOf<GTEST_REMOVE_REFERENCE_AND_CONST_(Pointer)>::type |
| Pointee; |
| |
| explicit Impl(const InnerMatcher& matcher) |
| : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "points to a value that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "does not point to a value that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| bool MatchAndExplain(Pointer pointer, |
| MatchResultListener* listener) const override { |
| if (GetRawPointer(pointer) == nullptr) return false; |
| |
| *listener << "which points to "; |
| return MatchPrintAndExplain(*pointer, matcher_, listener); |
| } |
| |
| private: |
| const Matcher<const Pointee&> matcher_; |
| }; |
| |
| const InnerMatcher matcher_; |
| }; |
| |
| #if GTEST_HAS_RTTI |
| // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
| // reference that matches inner_matcher when dynamic_cast<T> is applied. |
| // The result of dynamic_cast<To> is forwarded to the inner matcher. |
| // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
| // If To is a reference and the cast fails, this matcher returns false |
| // immediately. |
| template <typename To> |
| class WhenDynamicCastToMatcherBase { |
| public: |
| explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
| : matcher_(matcher) {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| GetCastTypeDescription(os); |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| GetCastTypeDescription(os); |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| protected: |
| const Matcher<To> matcher_; |
| |
| static std::string GetToName() { |
| return GetTypeName<To>(); |
| } |
| |
| private: |
| static void GetCastTypeDescription(::std::ostream* os) { |
| *os << "when dynamic_cast to " << GetToName() << ", "; |
| } |
| }; |
| |
| // Primary template. |
| // To is a pointer. Cast and forward the result. |
| template <typename To> |
| class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
| public: |
| explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
| : WhenDynamicCastToMatcherBase<To>(matcher) {} |
| |
| template <typename From> |
| bool MatchAndExplain(From from, MatchResultListener* listener) const { |
| To to = dynamic_cast<To>(from); |
| return MatchPrintAndExplain(to, this->matcher_, listener); |
| } |
| }; |
| |
| // Specialize for references. |
| // In this case we return false if the dynamic_cast fails. |
| template <typename To> |
| class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
| public: |
| explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
| : WhenDynamicCastToMatcherBase<To&>(matcher) {} |
| |
| template <typename From> |
| bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
| // We don't want an std::bad_cast here, so do the cast with pointers. |
| To* to = dynamic_cast<To*>(&from); |
| if (to == nullptr) { |
| *listener << "which cannot be dynamic_cast to " << this->GetToName(); |
| return false; |
| } |
| return MatchPrintAndExplain(*to, this->matcher_, listener); |
| } |
| }; |
| #endif // GTEST_HAS_RTTI |
| |
| // Implements the Field() matcher for matching a field (i.e. member |
| // variable) of an object. |
| template <typename Class, typename FieldType> |
| class FieldMatcher { |
| public: |
| FieldMatcher(FieldType Class::*field, |
| const Matcher<const FieldType&>& matcher) |
| : field_(field), matcher_(matcher), whose_field_("whose given field ") {} |
| |
| FieldMatcher(const std::string& field_name, FieldType Class::*field, |
| const Matcher<const FieldType&>& matcher) |
| : field_(field), |
| matcher_(matcher), |
| whose_field_("whose field `" + field_name + "` ") {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "is an object " << whose_field_; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is an object " << whose_field_; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| template <typename T> |
| bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
| // FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
| // a compiler bug, and can now be removed. |
| return MatchAndExplainImpl( |
| typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
| value, listener); |
| } |
| |
| private: |
| bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
| const Class& obj, |
| MatchResultListener* listener) const { |
| *listener << whose_field_ << "is "; |
| return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
| } |
| |
| bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
| MatchResultListener* listener) const { |
| if (p == nullptr) return false; |
| |
| *listener << "which points to an object "; |
| // Since *p has a field, it must be a class/struct/union type and |
| // thus cannot be a pointer. Therefore we pass false_type() as |
| // the first argument. |
| return MatchAndExplainImpl(std::false_type(), *p, listener); |
| } |
| |
| const FieldType Class::*field_; |
| const Matcher<const FieldType&> matcher_; |
| |
| // Contains either "whose given field " if the name of the field is unknown |
| // or "whose field `name_of_field` " if the name is known. |
| const std::string whose_field_; |
| }; |
| |
| // Implements the Property() matcher for matching a property |
| // (i.e. return value of a getter method) of an object. |
| // |
| // Property is a const-qualified member function of Class returning |
| // PropertyType. |
| template <typename Class, typename PropertyType, typename Property> |
| class PropertyMatcher { |
| public: |
| typedef const PropertyType& RefToConstProperty; |
| |
| PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
| : property_(property), |
| matcher_(matcher), |
| whose_property_("whose given property ") {} |
| |
| PropertyMatcher(const std::string& property_name, Property property, |
| const Matcher<RefToConstProperty>& matcher) |
| : property_(property), |
| matcher_(matcher), |
| whose_property_("whose property `" + property_name + "` ") {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "is an object " << whose_property_; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is an object " << whose_property_; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| template <typename T> |
| bool MatchAndExplain(const T&value, MatchResultListener* listener) const { |
| return MatchAndExplainImpl( |
| typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
| value, listener); |
| } |
| |
| private: |
| bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
| const Class& obj, |
| MatchResultListener* listener) const { |
| *listener << whose_property_ << "is "; |
| // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
| // which takes a non-const reference as argument. |
| RefToConstProperty result = (obj.*property_)(); |
| return MatchPrintAndExplain(result, matcher_, listener); |
| } |
| |
| bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
| MatchResultListener* listener) const { |
| if (p == nullptr) return false; |
| |
| *listener << "which points to an object "; |
| // Since *p has a property method, it must be a class/struct/union |
| // type and thus cannot be a pointer. Therefore we pass |
| // false_type() as the first argument. |
| return MatchAndExplainImpl(std::false_type(), *p, listener); |
| } |
| |
| Property property_; |
| const Matcher<RefToConstProperty> matcher_; |
| |
| // Contains either "whose given property " if the name of the property is |
| // unknown or "whose property `name_of_property` " if the name is known. |
| const std::string whose_property_; |
| }; |
| |
| // Type traits specifying various features of different functors for ResultOf. |
| // The default template specifies features for functor objects. |
| template <typename Functor> |
| struct CallableTraits { |
| typedef Functor StorageType; |
| |
| static void CheckIsValid(Functor /* functor */) {} |
| |
| template <typename T> |
| static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { |
| return f(arg); |
| } |
| }; |
| |
| // Specialization for function pointers. |
| template <typename ArgType, typename ResType> |
| struct CallableTraits<ResType(*)(ArgType)> { |
| typedef ResType ResultType; |
| typedef ResType(*StorageType)(ArgType); |
| |
| static void CheckIsValid(ResType(*f)(ArgType)) { |
| GTEST_CHECK_(f != nullptr) |
| << "NULL function pointer is passed into ResultOf()."; |
| } |
| template <typename T> |
| static ResType Invoke(ResType(*f)(ArgType), T arg) { |
| return (*f)(arg); |
| } |
| }; |
| |
| // Implements the ResultOf() matcher for matching a return value of a |
| // unary function of an object. |
| template <typename Callable, typename InnerMatcher> |
| class ResultOfMatcher { |
| public: |
| ResultOfMatcher(Callable callable, InnerMatcher matcher) |
| : callable_(std::move(callable)), matcher_(std::move(matcher)) { |
| CallableTraits<Callable>::CheckIsValid(callable_); |
| } |
| |
| template <typename T> |
| operator Matcher<T>() const { |
| return Matcher<T>(new Impl<const T&>(callable_, matcher_)); |
| } |
| |
| private: |
| typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
| |
| template <typename T> |
| class Impl : public MatcherInterface<T> { |
| using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
| std::declval<CallableStorageType>(), std::declval<T>())); |
| |
| public: |
| template <typename M> |
| Impl(const CallableStorageType& callable, const M& matcher) |
| : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "is mapped by the given callable to a value that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "is mapped by the given callable to a value that "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
| *listener << "which is mapped by the given callable to "; |
| // Cannot pass the return value directly to MatchPrintAndExplain, which |
| // takes a non-const reference as argument. |
| // Also, specifying template argument explicitly is needed because T could |
| // be a non-const reference (e.g. Matcher<Uncopyable&>). |
| ResultType result = |
| CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
| return MatchPrintAndExplain(result, matcher_, listener); |
| } |
| |
| private: |
| // Functors often define operator() as non-const method even though |
| // they are actually stateless. But we need to use them even when |
| // 'this' is a const pointer. It's the user's responsibility not to |
| // use stateful callables with ResultOf(), which doesn't guarantee |
| // how many times the callable will be invoked. |
| mutable CallableStorageType callable_; |
| const Matcher<ResultType> matcher_; |
| }; // class Impl |
| |
| const CallableStorageType callable_; |
| const InnerMatcher matcher_; |
| }; |
| |
| // Implements a matcher that checks the size of an STL-style container. |
| template <typename SizeMatcher> |
| class SizeIsMatcher { |
| public: |
| explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
| : size_matcher_(size_matcher) { |
| } |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
| } |
| |
| template <typename Container> |
| class Impl : public MatcherInterface<Container> { |
| public: |
| using SizeType = decltype(std::declval<Container>().size()); |
| explicit Impl(const SizeMatcher& size_matcher) |
| : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "size "; |
| size_matcher_.DescribeTo(os); |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "size "; |
| size_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| SizeType size = container.size(); |
| StringMatchResultListener size_listener; |
| const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
| *listener |
| << "whose size " << size << (result ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(size_listener.str(), listener->stream()); |
| return result; |
| } |
| |
| private: |
| const Matcher<SizeType> size_matcher_; |
| }; |
| |
| private: |
| const SizeMatcher size_matcher_; |
| }; |
| |
| // Implements a matcher that checks the begin()..end() distance of an STL-style |
| // container. |
| template <typename DistanceMatcher> |
| class BeginEndDistanceIsMatcher { |
| public: |
| explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
| : distance_matcher_(distance_matcher) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
| } |
| |
| template <typename Container> |
| class Impl : public MatcherInterface<Container> { |
| public: |
| typedef internal::StlContainerView< |
| GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; |
| typedef typename std::iterator_traits< |
| typename ContainerView::type::const_iterator>::difference_type |
| DistanceType; |
| explicit Impl(const DistanceMatcher& distance_matcher) |
| : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "distance between begin() and end() "; |
| distance_matcher_.DescribeTo(os); |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "distance between begin() and end() "; |
| distance_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| using std::begin; |
| using std::end; |
| DistanceType distance = std::distance(begin(container), end(container)); |
| StringMatchResultListener distance_listener; |
| const bool result = |
| distance_matcher_.MatchAndExplain(distance, &distance_listener); |
| *listener << "whose distance between begin() and end() " << distance |
| << (result ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(distance_listener.str(), listener->stream()); |
| return result; |
| } |
| |
| private: |
| const Matcher<DistanceType> distance_matcher_; |
| }; |
| |
| private: |
| const DistanceMatcher distance_matcher_; |
| }; |
| |
| // Implements an equality matcher for any STL-style container whose elements |
| // support ==. This matcher is like Eq(), but its failure explanations provide |
| // more detailed information that is useful when the container is used as a set. |
| // The failure message reports elements that are in one of the operands but not |
| // the other. The failure messages do not report duplicate or out-of-order |
| // elements in the containers (which don't properly matter to sets, but can |
| // occur if the containers are vectors or lists, for example). |
| // |
| // Uses the container's const_iterator, value_type, operator ==, |
| // begin(), and end(). |
| template <typename Container> |
| class ContainerEqMatcher { |
| public: |
| typedef internal::StlContainerView<Container> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| |
| static_assert(!std::is_const<Container>::value, |
| "Container type must not be const"); |
| static_assert(!std::is_reference<Container>::value, |
| "Container type must not be a reference"); |
| |
| // We make a copy of expected in case the elements in it are modified |
| // after this matcher is created. |
| explicit ContainerEqMatcher(const Container& expected) |
| : expected_(View::Copy(expected)) {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "equals "; |
| UniversalPrint(expected_, os); |
| } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "does not equal "; |
| UniversalPrint(expected_, os); |
| } |
| |
| template <typename LhsContainer> |
| bool MatchAndExplain(const LhsContainer& lhs, |
| MatchResultListener* listener) const { |
| typedef internal::StlContainerView< |
| typename std::remove_const<LhsContainer>::type> |
| LhsView; |
| typedef typename LhsView::type LhsStlContainer; |
| StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| if (lhs_stl_container == expected_) |
| return true; |
| |
| ::std::ostream* const os = listener->stream(); |
| if (os != nullptr) { |
| // Something is different. Check for extra values first. |
| bool printed_header = false; |
| for (typename LhsStlContainer::const_iterator it = |
| lhs_stl_container.begin(); |
| it != lhs_stl_container.end(); ++it) { |
| if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
| expected_.end()) { |
| if (printed_header) { |
| *os << ", "; |
| } else { |
| *os << "which has these unexpected elements: "; |
| printed_header = true; |
| } |
| UniversalPrint(*it, os); |
| } |
| } |
| |
| // Now check for missing values. |
| bool printed_header2 = false; |
| for (typename StlContainer::const_iterator it = expected_.begin(); |
| it != expected_.end(); ++it) { |
| if (internal::ArrayAwareFind( |
| lhs_stl_container.begin(), lhs_stl_container.end(), *it) == |
| lhs_stl_container.end()) { |
| if (printed_header2) { |
| *os << ", "; |
| } else { |
| *os << (printed_header ? ",\nand" : "which") |
| << " doesn't have these expected elements: "; |
| printed_header2 = true; |
| } |
| UniversalPrint(*it, os); |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| private: |
| const StlContainer expected_; |
| }; |
| |
| // A comparator functor that uses the < operator to compare two values. |
| struct LessComparator { |
| template <typename T, typename U> |
| bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } |
| }; |
| |
| // Implements WhenSortedBy(comparator, container_matcher). |
| template <typename Comparator, typename ContainerMatcher> |
| class WhenSortedByMatcher { |
| public: |
| WhenSortedByMatcher(const Comparator& comparator, |
| const ContainerMatcher& matcher) |
| : comparator_(comparator), matcher_(matcher) {} |
| |
| template <typename LhsContainer> |
| operator Matcher<LhsContainer>() const { |
| return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
| } |
| |
| template <typename LhsContainer> |
| class Impl : public MatcherInterface<LhsContainer> { |
| public: |
| typedef internal::StlContainerView< |
| GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
| typedef typename LhsView::type LhsStlContainer; |
| typedef typename LhsView::const_reference LhsStlContainerReference; |
| // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
| // so that we can match associative containers. |
| typedef typename RemoveConstFromKey< |
| typename LhsStlContainer::value_type>::type LhsValue; |
| |
| Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
| : comparator_(comparator), matcher_(matcher) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "(when sorted) "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "(when sorted) "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(LhsContainer lhs, |
| MatchResultListener* listener) const override { |
| LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
| lhs_stl_container.end()); |
| ::std::sort( |
| sorted_container.begin(), sorted_container.end(), comparator_); |
| |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we do not need to |
| // construct the inner explanation. |
| return matcher_.Matches(sorted_container); |
| } |
| |
| *listener << "which is "; |
| UniversalPrint(sorted_container, listener->stream()); |
| *listener << " when sorted"; |
| |
| StringMatchResultListener inner_listener; |
| const bool match = matcher_.MatchAndExplain(sorted_container, |
| &inner_listener); |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| private: |
| const Comparator comparator_; |
| const Matcher<const ::std::vector<LhsValue>&> matcher_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
| }; |
| |
| private: |
| const Comparator comparator_; |
| const ContainerMatcher matcher_; |
| }; |
| |
| // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
| // must be able to be safely cast to Matcher<std::tuple<const T1&, const |
| // T2&> >, where T1 and T2 are the types of elements in the LHS |
| // container and the RHS container respectively. |
| template <typename TupleMatcher, typename RhsContainer> |
| class PointwiseMatcher { |
| GTEST_COMPILE_ASSERT_( |
| !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
| use_UnorderedPointwise_with_hash_tables); |
| |
| public: |
| typedef internal::StlContainerView<RhsContainer> RhsView; |
| typedef typename RhsView::type RhsStlContainer; |
| typedef typename RhsStlContainer::value_type RhsValue; |
| |
| static_assert(!std::is_const<RhsContainer>::value, |
| "RhsContainer type must not be const"); |
| static_assert(!std::is_reference<RhsContainer>::value, |
| "RhsContainer type must not be a reference"); |
| |
| // Like ContainerEq, we make a copy of rhs in case the elements in |
| // it are modified after this matcher is created. |
| PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
| : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} |
| |
| template <typename LhsContainer> |
| operator Matcher<LhsContainer>() const { |
| GTEST_COMPILE_ASSERT_( |
| !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
| use_UnorderedPointwise_with_hash_tables); |
| |
| return Matcher<LhsContainer>( |
| new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
| } |
| |
| template <typename LhsContainer> |
| class Impl : public MatcherInterface<LhsContainer> { |
| public: |
| typedef internal::StlContainerView< |
| GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
| typedef typename LhsView::type LhsStlContainer; |
| typedef typename LhsView::const_reference LhsStlContainerReference; |
| typedef typename LhsStlContainer::value_type LhsValue; |
| // We pass the LHS value and the RHS value to the inner matcher by |
| // reference, as they may be expensive to copy. We must use tuple |
| // instead of pair here, as a pair cannot hold references (C++ 98, |
| // 20.2.2 [lib.pairs]). |
| typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
| |
| Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
| // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
| : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
| rhs_(rhs) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "contains " << rhs_.size() |
| << " values, where each value and its corresponding value in "; |
| UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
| *os << " "; |
| mono_tuple_matcher_.DescribeTo(os); |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "doesn't contain exactly " << rhs_.size() |
| << " values, or contains a value x at some index i" |
| << " where x and the i-th value of "; |
| UniversalPrint(rhs_, os); |
| *os << " "; |
| mono_tuple_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(LhsContainer lhs, |
| MatchResultListener* listener) const override { |
| LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| const size_t actual_size = lhs_stl_container.size(); |
| if (actual_size != rhs_.size()) { |
| *listener << "which contains " << actual_size << " values"; |
| return false; |
| } |
| |
| typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); |
| typename RhsStlContainer::const_iterator right = rhs_.begin(); |
| for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
| if (listener->IsInterested()) { |
| StringMatchResultListener inner_listener; |
| // Create InnerMatcherArg as a temporarily object to avoid it outlives |
| // *left and *right. Dereference or the conversion to `const T&` may |
| // return temp objects, e.g for vector<bool>. |
| if (!mono_tuple_matcher_.MatchAndExplain( |
| InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
| ImplicitCast_<const RhsValue&>(*right)), |
| &inner_listener)) { |
| *listener << "where the value pair ("; |
| UniversalPrint(*left, listener->stream()); |
| *listener << ", "; |
| UniversalPrint(*right, listener->stream()); |
| *listener << ") at index #" << i << " don't match"; |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return false; |
| } |
| } else { |
| if (!mono_tuple_matcher_.Matches( |
| InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
| ImplicitCast_<const RhsValue&>(*right)))) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| private: |
| const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
| const RhsStlContainer rhs_; |
| }; |
| |
| private: |
| const TupleMatcher tuple_matcher_; |
| const RhsStlContainer rhs_; |
| }; |
| |
| // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
| template <typename Container> |
| class QuantifierMatcherImpl : public MatcherInterface<Container> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef StlContainerView<RawContainer> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| typedef typename StlContainer::value_type Element; |
| |
| template <typename InnerMatcher> |
| explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
| : inner_matcher_( |
| testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
| |
| // Checks whether: |
| // * All elements in the container match, if all_elements_should_match. |
| // * Any element in the container matches, if !all_elements_should_match. |
| bool MatchAndExplainImpl(bool all_elements_should_match, |
| Container container, |
| MatchResultListener* listener) const { |
| StlContainerReference stl_container = View::ConstReference(container); |
| size_t i = 0; |
| for (typename StlContainer::const_iterator it = stl_container.begin(); |
| it != stl_container.end(); ++it, ++i) { |
| StringMatchResultListener inner_listener; |
| const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
| |
| if (matches != all_elements_should_match) { |
| *listener << "whose element #" << i |
| << (matches ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return !all_elements_should_match; |
| } |
| } |
| return all_elements_should_match; |
| } |
| |
| protected: |
| const Matcher<const Element&> inner_matcher_; |
| }; |
| |
| // Implements Contains(element_matcher) for the given argument type Container. |
| // Symmetric to EachMatcherImpl. |
| template <typename Container> |
| class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
| public: |
| template <typename InnerMatcher> |
| explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
| : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "contains at least one element that "; |
| this->inner_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "doesn't contain any element that "; |
| this->inner_matcher_.DescribeTo(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| return this->MatchAndExplainImpl(false, container, listener); |
| } |
| }; |
| |
| // Implements Each(element_matcher) for the given argument type Container. |
| // Symmetric to ContainsMatcherImpl. |
| template <typename Container> |
| class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
| public: |
| template <typename InnerMatcher> |
| explicit EachMatcherImpl(InnerMatcher inner_matcher) |
| : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "only contains elements that "; |
| this->inner_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "contains some element that "; |
| this->inner_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| return this->MatchAndExplainImpl(true, container, listener); |
| } |
| }; |
| |
| // Implements polymorphic Contains(element_matcher). |
| template <typename M> |
| class ContainsMatcher { |
| public: |
| explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>( |
| new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
| } |
| |
| private: |
| const M inner_matcher_; |
| }; |
| |
| // Implements polymorphic Each(element_matcher). |
| template <typename M> |
| class EachMatcher { |
| public: |
| explicit EachMatcher(M m) : inner_matcher_(m) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>( |
| new EachMatcherImpl<const Container&>(inner_matcher_)); |
| } |
| |
| private: |
| const M inner_matcher_; |
| }; |
| |
| struct Rank1 {}; |
| struct Rank0 : Rank1 {}; |
| |
| namespace pair_getters { |
| using std::get; |
| template <typename T> |
| auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
| return get<0>(x); |
| } |
| template <typename T> |
| auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
| return x.first; |
| } |
| |
| template <typename T> |
| auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
| return get<1>(x); |
| } |
| template <typename T> |
| auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
| return x.second; |
| } |
| } // namespace pair_getters |
| |
| // Implements Key(inner_matcher) for the given argument pair type. |
| // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| // std::map that contains at least one element whose key is >= 5. |
| template <typename PairType> |
| class KeyMatcherImpl : public MatcherInterface<PairType> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| typedef typename RawPairType::first_type KeyType; |
| |
| template <typename InnerMatcher> |
| explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
| : inner_matcher_( |
| testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { |
| } |
| |
| // Returns true if and only if 'key_value.first' (the key) matches the inner |
| // matcher. |
| bool MatchAndExplain(PairType key_value, |
| MatchResultListener* listener) const override { |
| StringMatchResultListener inner_listener; |
| const bool match = inner_matcher_.MatchAndExplain( |
| pair_getters::First(key_value, Rank0()), &inner_listener); |
| const std::string explanation = inner_listener.str(); |
| if (explanation != "") { |
| *listener << "whose first field is a value " << explanation; |
| } |
| return match; |
| } |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "has a key that "; |
| inner_matcher_.DescribeTo(os); |
| } |
| |
| // Describes what the negation of this matcher does. |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "doesn't have a key that "; |
| inner_matcher_.DescribeTo(os); |
| } |
| |
| private: |
| const Matcher<const KeyType&> inner_matcher_; |
| }; |
| |
| // Implements polymorphic Key(matcher_for_key). |
| template <typename M> |
| class KeyMatcher { |
| public: |
| explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
| |
| template <typename PairType> |
| operator Matcher<PairType>() const { |
| return Matcher<PairType>( |
| new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
| } |
| |
| private: |
| const M matcher_for_key_; |
| }; |
| |
| // Implements Pair(first_matcher, second_matcher) for the given argument pair |
| // type with its two matchers. See Pair() function below. |
| template <typename PairType> |
| class PairMatcherImpl : public MatcherInterface<PairType> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| typedef typename RawPairType::first_type FirstType; |
| typedef typename RawPairType::second_type SecondType; |
| |
| template <typename FirstMatcher, typename SecondMatcher> |
| PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| : first_matcher_( |
| testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
| second_matcher_( |
| testing::SafeMatcherCast<const SecondType&>(second_matcher)) { |
| } |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "has a first field that "; |
| first_matcher_.DescribeTo(os); |
| *os << ", and has a second field that "; |
| second_matcher_.DescribeTo(os); |
| } |
| |
| // Describes what the negation of this matcher does. |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "has a first field that "; |
| first_matcher_.DescribeNegationTo(os); |
| *os << ", or has a second field that "; |
| second_matcher_.DescribeNegationTo(os); |
| } |
| |
| // Returns true if and only if 'a_pair.first' matches first_matcher and |
| // 'a_pair.second' matches second_matcher. |
| bool MatchAndExplain(PairType a_pair, |
| MatchResultListener* listener) const override { |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we don't need to construct the |
| // explanation. |
| return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
| second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
| } |
| StringMatchResultListener first_inner_listener; |
| if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
| &first_inner_listener)) { |
| *listener << "whose first field does not match"; |
| PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); |
| return false; |
| } |
| StringMatchResultListener second_inner_listener; |
| if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
| &second_inner_listener)) { |
| *listener << "whose second field does not match"; |
| PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); |
| return false; |
| } |
| ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), |
| listener); |
| return true; |
| } |
| |
| private: |
| void ExplainSuccess(const std::string& first_explanation, |
| const std::string& second_explanation, |
| MatchResultListener* listener) const { |
| *listener << "whose both fields match"; |
| if (first_explanation != "") { |
| *listener << ", where the first field is a value " << first_explanation; |
| } |
| if (second_explanation != "") { |
| *listener << ", "; |
| if (first_explanation != "") { |
| *listener << "and "; |
| } else { |
| *listener << "where "; |
| } |
| *listener << "the second field is a value " << second_explanation; |
| } |
| } |
| |
| const Matcher<const FirstType&> first_matcher_; |
| const Matcher<const SecondType&> second_matcher_; |
| }; |
| |
| // Implements polymorphic Pair(first_matcher, second_matcher). |
| template <typename FirstMatcher, typename SecondMatcher> |
| class PairMatcher { |
| public: |
| PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
| |
| template <typename PairType> |
| operator Matcher<PairType> () const { |
| return Matcher<PairType>( |
| new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
| } |
| |
| private: |
| const FirstMatcher first_matcher_; |
| const SecondMatcher second_matcher_; |
| }; |
| |
| template <typename T, size_t... I> |
| auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) |
| -> decltype(std::tie(get<I>(t)...)) { |
| static_assert(std::tuple_size<T>::value == sizeof...(I), |
| "Number of arguments doesn't match the number of fields."); |
| return std::tie(get<I>(t)...); |
| } |
| |
| #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { |
| const auto& [a] = t; |
| return std::tie(a); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { |
| const auto& [a, b] = t; |
| return std::tie(a, b); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { |
| const auto& [a, b, c] = t; |
| return std::tie(a, b, c); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { |
| const auto& [a, b, c, d] = t; |
| return std::tie(a, b, c, d); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { |
| const auto& [a, b, c, d, e] = t; |
| return std::tie(a, b, c, d, e); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { |
| const auto& [a, b, c, d, e, f] = t; |
| return std::tie(a, b, c, d, e, f); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { |
| const auto& [a, b, c, d, e, f, g] = t; |
| return std::tie(a, b, c, d, e, f, g); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { |
| const auto& [a, b, c, d, e, f, g, h] = t; |
| return std::tie(a, b, c, d, e, f, g, h); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); |
| } |
| #endif // defined(__cpp_structured_bindings) |
| |
| template <size_t I, typename T> |
| auto UnpackStruct(const T& t) |
| -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { |
| return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); |
| } |
| |
| // Helper function to do comma folding in C++11. |
| // The array ensures left-to-right order of evaluation. |
| // Usage: VariadicExpand({expr...}); |
| template <typename T, size_t N> |
| void VariadicExpand(const T (&)[N]) {} |
| |
| template <typename Struct, typename StructSize> |
| class FieldsAreMatcherImpl; |
| |
| template <typename Struct, size_t... I> |
| class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> |
| : public MatcherInterface<Struct> { |
| using UnpackedType = |
| decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); |
| using MatchersType = std::tuple< |
| Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; |
| |
| public: |
| template <typename Inner> |
| explicit FieldsAreMatcherImpl(const Inner& matchers) |
| : matchers_(testing::SafeMatcherCast< |
| const typename std::tuple_element<I, UnpackedType>::type&>( |
| std::get<I>(matchers))...) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| const char* separator = ""; |
| VariadicExpand( |
| {(*os << separator << "has field #" << I << " that ", |
| std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...}); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| const char* separator = ""; |
| VariadicExpand({(*os << separator << "has field #" << I << " that ", |
| std::get<I>(matchers_).DescribeNegationTo(os), |
| separator = ", or ")...}); |
| } |
| |
| bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { |
| return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener); |
| } |
| |
| private: |
| bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we don't need to construct the |
| // explanation. |
| bool good = true; |
| VariadicExpand({good = good && std::get<I>(matchers_).Matches( |
| std::get<I>(tuple))...}); |
| return good; |
| } |
| |
| size_t failed_pos = ~size_t{}; |
| |
| std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); |
| |
| VariadicExpand( |
| {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( |
| std::get<I>(tuple), &inner_listener[I]) |
| ? failed_pos = I |
| : 0 ...}); |
| if (failed_pos != ~size_t{}) { |
| *listener << "whose field #" << failed_pos << " does not match"; |
| PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream()); |
| return false; |
| } |
| |
| *listener << "whose all elements match"; |
| const char* separator = ", where"; |
| for (size_t index = 0; index < sizeof...(I); ++index) { |
| const std::string str = inner_listener[index].str(); |
| if (!str.empty()) { |
| *listener << separator << " field #" << index << " is a value " << str; |
| separator = ", and"; |
| } |
| } |
| |
| return true; |
| } |
| |
| MatchersType matchers_; |
| }; |
| |
| template <typename... Inner> |
| class FieldsAreMatcher { |
| public: |
| explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} |
| |
| template <typename Struct> |
| operator Matcher<Struct>() const { // NOLINT |
| return Matcher<Struct>( |
| new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( |
| matchers_)); |
| } |
| |
| private: |
| std::tuple<Inner...> matchers_; |
| }; |
| |
| // Implements ElementsAre() and ElementsAreArray(). |
| template <typename Container> |
| class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef internal::StlContainerView<RawContainer> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| typedef typename StlContainer::value_type Element; |
| |
| // Constructs the matcher from a sequence of element values or |
| // element matchers. |
| template <typename InputIter> |
| ElementsAreMatcherImpl(InputIter first, InputIter last) { |
| while (first != last) { |
| matchers_.push_back(MatcherCast<const Element&>(*first++)); |
| } |
| } |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| if (count() == 0) { |
| *os << "is empty"; |
| } else if (count() == 1) { |
| *os << "has 1 element that "; |
| matchers_[0].DescribeTo(os); |
| } else { |
| *os << "has " << Elements(count()) << " where\n"; |
| for (size_t i = 0; i != count(); ++i) { |
| *os << "element #" << i << " "; |
| matchers_[i].DescribeTo(os); |
| if (i + 1 < count()) { |
| *os << ",\n"; |
| } |
| } |
| } |
| } |
| |
| // Describes what the negation of this matcher does. |
| void DescribeNegationTo(::std::ostream* os) const override { |
| if (count() == 0) { |
| *os << "isn't empty"; |
| return; |
| } |
| |
| *os << "doesn't have " << Elements(count()) << ", or\n"; |
| for (size_t i = 0; i != count(); ++i) { |
| *os << "element #" << i << " "; |
| matchers_[i].DescribeNegationTo(os); |
| if (i + 1 < count()) { |
| *os << ", or\n"; |
| } |
| } |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| // To work with stream-like "containers", we must only walk |
| // through the elements in one pass. |
| |
| const bool listener_interested = listener->IsInterested(); |
| |
| // explanations[i] is the explanation of the element at index i. |
| ::std::vector<std::string> explanations(count()); |
| StlContainerReference stl_container = View::ConstReference(container); |
| typename StlContainer::const_iterator it = stl_container.begin(); |
| size_t exam_pos = 0; |
| bool mismatch_found = false; // Have we found a mismatched element yet? |
| |
| // Go through the elements and matchers in pairs, until we reach |
| // the end of either the elements or the matchers, or until we find a |
| // mismatch. |
| for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
| bool match; // Does the current element match the current matcher? |
| if (listener_interested) { |
| StringMatchResultListener s; |
| match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
| explanations[exam_pos] = s.str(); |
| } else { |
| match = matchers_[exam_pos].Matches(*it); |
| } |
| |
| if (!match) { |
| mismatch_found = true; |
| break; |
| } |
| } |
| // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
| |
| // Find how many elements the actual container has. We avoid |
| // calling size() s.t. this code works for stream-like "containers" |
| // that don't define size(). |
| size_t actual_count = exam_pos; |
| for (; it != stl_container.end(); ++it) { |
| ++actual_count; |
| } |
| |
| if (actual_count != count()) { |
| // The element count doesn't match. If the container is empty, |
| // there's no need to explain anything as Google Mock already |
| // prints the empty container. Otherwise we just need to show |
| // how many elements there actually are. |
| if (listener_interested && (actual_count != 0)) { |
| *listener << "which has " << Elements(actual_count); |
| } |
| return false; |
| } |
| |
| if (mismatch_found) { |
| // The element count matches, but the exam_pos-th element doesn't match. |
| if (listener_interested) { |
| *listener << "whose element #" << exam_pos << " doesn't match"; |
| PrintIfNotEmpty(explanations[exam_pos], listener->stream()); |
| } |
| return false; |
| } |
| |
| // Every element matches its expectation. We need to explain why |
| // (the obvious ones can be skipped). |
| if (listener_interested) { |
| bool reason_printed = false; |
| for (size_t i = 0; i != count(); ++i) { |
| const std::string& s = explanations[i]; |
| if (!s.empty()) { |
| if (reason_printed) { |
| *listener << ",\nand "; |
| } |
| *listener << "whose element #" << i << " matches, " << s; |
| reason_printed = true; |
| } |
| } |
| } |
| return true; |
| } |
| |
| private: |
| static Message Elements(size_t count) { |
| return Message() << count << (count == 1 ? " element" : " elements"); |
| } |
| |
| size_t count() const { return matchers_.size(); } |
| |
| ::std::vector<Matcher<const Element&> > matchers_; |
| }; |
| |
| // Connectivity matrix of (elements X matchers), in element-major order. |
| // Initially, there are no edges. |
| // Use NextGraph() to iterate over all possible edge configurations. |
| // Use Randomize() to generate a random edge configuration. |
| class GTEST_API_ MatchMatrix { |
| public: |
| MatchMatrix(size_t num_elements, size_t num_matchers) |
| : num_elements_(num_elements), |
| num_matchers_(num_matchers), |
| matched_(num_elements_* num_matchers_, 0) { |
| } |
| |
| size_t LhsSize() const { return num_elements_; } |
| size_t RhsSize() const { return num_matchers_; } |
| bool HasEdge(size_t ilhs, size_t irhs) const { |
| return matched_[SpaceIndex(ilhs, irhs)] == 1; |
| } |
| void SetEdge(size_t ilhs, size_t irhs, bool b) { |
| matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
| } |
| |
| // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
| // adds 1 to that number; returns false if incrementing the graph left it |
| // empty. |
| bool NextGraph(); |
| |
| void Randomize(); |
| |
| std::string DebugString() const; |
| |
| private: |
| size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
| return ilhs * num_matchers_ + irhs; |
| } |
| |
| size_t num_elements_; |
| size_t num_matchers_; |
| |
| // Each element is a char interpreted as bool. They are stored as a |
| // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
| // a (ilhs, irhs) matrix coordinate into an offset. |
| ::std::vector<char> matched_; |
| }; |
| |
| typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
| typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
| |
| // Returns a maximum bipartite matching for the specified graph 'g'. |
| // The matching is represented as a vector of {element, matcher} pairs. |
| GTEST_API_ ElementMatcherPairs |
| FindMaxBipartiteMatching(const MatchMatrix& g); |
| |
| struct UnorderedMatcherRequire { |
| enum Flags { |
| Superset = 1 << 0, |
| Subset = 1 << 1, |
| ExactMatch = Superset | Subset, |
| }; |
| }; |
| |
| // Untyped base class for implementing UnorderedElementsAre. By |
| // putting logic that's not specific to the element type here, we |
| // reduce binary bloat and increase compilation speed. |
| class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
| protected: |
| explicit UnorderedElementsAreMatcherImplBase( |
| UnorderedMatcherRequire::Flags matcher_flags) |
| : match_flags_(matcher_flags) {} |
| |
| // A vector of matcher describers, one for each element matcher. |
| // Does not own the describers (and thus can be used only when the |
| // element matchers are alive). |
| typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
| |
| // Describes this UnorderedElementsAre matcher. |
| void DescribeToImpl(::std::ostream* os) const; |
| |
| // Describes the negation of this UnorderedElementsAre matcher. |
| void DescribeNegationToImpl(::std::ostream* os) const; |
| |
| bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
| const MatchMatrix& matrix, |
| MatchResultListener* listener) const; |
| |
| bool FindPairing(const MatchMatrix& matrix, |
| MatchResultListener* listener) const; |
| |
| MatcherDescriberVec& matcher_describers() { |
| return matcher_describers_; |
| } |
| |
| static Message Elements(size_t n) { |
| return Message() << n << " element" << (n == 1 ? "" : "s"); |
| } |
| |
| UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
| |
| private: |
| UnorderedMatcherRequire::Flags match_flags_; |
| MatcherDescriberVec matcher_describers_; |
| }; |
| |
| // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
| // IsSupersetOf. |
| template <typename Container> |
| class UnorderedElementsAreMatcherImpl |
| : public MatcherInterface<Container>, |
| public UnorderedElementsAreMatcherImplBase { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef internal::StlContainerView<RawContainer> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| typedef typename StlContainer::const_iterator StlContainerConstIterator; |
| typedef typename StlContainer::value_type Element; |
| |
| template <typename InputIter> |
| UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
| InputIter first, InputIter last) |
| : UnorderedElementsAreMatcherImplBase(matcher_flags) { |
| for (; first != last; ++first) { |
| matchers_.push_back(MatcherCast<const Element&>(*first)); |
| matcher_describers().push_back(matchers_.back().GetDescriber()); |
| } |
| } |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
| } |
| |
| // Describes what the negation of this matcher does. |
| void DescribeNegationTo(::std::ostream* os) const override { |
| return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| StlContainerReference stl_container = View::ConstReference(container); |
| ::std::vector<std::string> element_printouts; |
| MatchMatrix matrix = |
| AnalyzeElements(stl_container.begin(), stl_container.end(), |
| &element_printouts, listener); |
| |
| if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { |
| return true; |
| } |
| |
| if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
| if (matrix.LhsSize() != matrix.RhsSize()) { |
| // The element count doesn't match. If the container is empty, |
| // there's no need to explain anything as Google Mock already |
| // prints the empty container. Otherwise we just need to show |
| // how many elements there actually are. |
| if (matrix.LhsSize() != 0 && listener->IsInterested()) { |
| *listener << "which has " << Elements(matrix.LhsSize()); |
| } |
| return false; |
| } |
| } |
| |
| return VerifyMatchMatrix(element_printouts, matrix, listener) && |
| FindPairing(matrix, listener); |
| } |
| |
| private: |
| template <typename ElementIter> |
| MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
| ::std::vector<std::string>* element_printouts, |
| MatchResultListener* listener) const { |
| element_printouts->clear(); |
| ::std::vector<char> did_match; |
| size_t num_elements = 0; |
| DummyMatchResultListener dummy; |
| for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
| if (listener->IsInterested()) { |
| element_printouts->push_back(PrintToString(*elem_first)); |
| } |
| for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| did_match.push_back( |
| matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); |
| } |
| } |
| |
| MatchMatrix matrix(num_elements, matchers_.size()); |
| ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
| for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
| for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); |
| } |
| } |
| return matrix; |
| } |
| |
| ::std::vector<Matcher<const Element&> > matchers_; |
| }; |
| |
| // Functor for use in TransformTuple. |
| // Performs MatcherCast<Target> on an input argument of any type. |
| template <typename Target> |
| struct CastAndAppendTransform { |
| template <typename Arg> |
| Matcher<Target> operator()(const Arg& a) const { |
| return MatcherCast<Target>(a); |
| } |
| }; |
| |
| // Implements UnorderedElementsAre. |
| template <typename MatcherTuple> |
| class UnorderedElementsAreMatcher { |
| public: |
| explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
| : matchers_(args) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef typename internal::StlContainerView<RawContainer>::type View; |
| typedef typename View::value_type Element; |
| typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
| MatcherVec matchers; |
| matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
| TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| ::std::back_inserter(matchers)); |
| return Matcher<Container>( |
| new UnorderedElementsAreMatcherImpl<const Container&>( |
| UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
| matchers.end())); |
| } |
| |
| private: |
| const MatcherTuple matchers_; |
| }; |
| |
| // Implements ElementsAre. |
| template <typename MatcherTuple> |
| class ElementsAreMatcher { |
| public: |
| explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| GTEST_COMPILE_ASSERT_( |
| !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
| ::std::tuple_size<MatcherTuple>::value < 2, |
| use_UnorderedElementsAre_with_hash_tables); |
| |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef typename internal::StlContainerView<RawContainer>::type View; |
| typedef typename View::value_type Element; |
| typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
| MatcherVec matchers; |
| matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
| TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| ::std::back_inserter(matchers)); |
| return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
| matchers.begin(), matchers.end())); |
| } |
| |
| private: |
| const MatcherTuple matchers_; |
| }; |
| |
| // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
| template <typename T> |
| class UnorderedElementsAreArrayMatcher { |
| public: |
| template <typename Iter> |
| UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
| Iter first, Iter last) |
| : match_flags_(match_flags), matchers_(first, last) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>( |
| new UnorderedElementsAreMatcherImpl<const Container&>( |
| match_flags_, matchers_.begin(), matchers_.end())); |
| } |
| |
| private: |
| UnorderedMatcherRequire::Flags match_flags_; |
| ::std::vector<T> matchers_; |
| }; |
| |
| // Implements ElementsAreArray(). |
| template <typename T> |
| class ElementsAreArrayMatcher { |
| public: |
| template <typename Iter> |
| ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| GTEST_COMPILE_ASSERT_( |
| !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
| use_UnorderedElementsAreArray_with_hash_tables); |
| |
| return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
| matchers_.begin(), matchers_.end())); |
| } |
| |
| private: |
| const ::std::vector<T> matchers_; |
| }; |
| |
| // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
| // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
| // second) is a polymorphic matcher that matches a value x if and only if |
| // tm matches tuple (x, second). Useful for implementing |
| // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
| // |
| // BoundSecondMatcher is copyable and assignable, as we need to put |
| // instances of this class in a vector when implementing |
| // UnorderedPointwise(). |
| template <typename Tuple2Matcher, typename Second> |
| class BoundSecondMatcher { |
| public: |
| BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
| : tuple2_matcher_(tm), second_value_(second) {} |
| |
| BoundSecondMatcher(const BoundSecondMatcher& other) = default; |
| |
| template <typename T> |
| operator Matcher<T>() const { |
| return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
| } |
| |
| // We have to define this for UnorderedPointwise() to compile in |
| // C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
| // which requires the elements to be assignable in C++98. The |
| // compiler cannot generate the operator= for us, as Tuple2Matcher |
| // and Second may not be assignable. |
| // |
| // However, this should never be called, so the implementation just |
| // need to assert. |
| void operator=(const BoundSecondMatcher& /*rhs*/) { |
| GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; |
| } |
| |
| private: |
| template <typename T> |
| class Impl : public MatcherInterface<T> { |
| public: |
| typedef ::std::tuple<T, Second> ArgTuple; |
| |
| Impl(const Tuple2Matcher& tm, const Second& second) |
| : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
| second_value_(second) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "and "; |
| UniversalPrint(second_value_, os); |
| *os << " "; |
| mono_tuple2_matcher_.DescribeTo(os); |
| } |
| |
| bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
| return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
| listener); |
| } |
| |
| private: |
| const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
| const Second second_value_; |
| }; |
| |
| const Tuple2Matcher tuple2_matcher_; |
| const Second second_value_; |
| }; |
| |
| // Given a 2-tuple matcher tm and a value second, |
| // MatcherBindSecond(tm, second) returns a matcher that matches a |
| // value x if and only if tm matches tuple (x, second). Useful for |
| // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
| template <typename Tuple2Matcher, typename Second> |
| BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
| const Tuple2Matcher& tm, const Second& second) { |
| return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
| } |
| |
| // Returns the description for a matcher defined using the MATCHER*() |
| // macro where the user-supplied description string is "", if |
| // 'negation' is false; otherwise returns the description of the |
| // negation of the matcher. 'param_values' contains a list of strings |
| // that are the print-out of the matcher's parameters. |
| GTEST_API_ std::string FormatMatcherDescription(bool negation, |
| const char* matcher_name, |
| const Strings& param_values); |
| |
| // Implements a matcher that checks the value of a optional<> type variable. |
| template <typename ValueMatcher> |
| class OptionalMatcher { |
| public: |
| explicit OptionalMatcher(const ValueMatcher& value_matcher) |
| : value_matcher_(value_matcher) {} |
| |
| template <typename Optional> |
| operator Matcher<Optional>() const { |
| return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
| } |
| |
| template <typename Optional> |
| class Impl : public MatcherInterface<Optional> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
| typedef typename OptionalView::value_type ValueType; |
| explicit Impl(const ValueMatcher& value_matcher) |
| : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "value "; |
| value_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "value "; |
| value_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(Optional optional, |
| MatchResultListener* listener) const override { |
| if (!optional) { |
| *listener << "which is not engaged"; |
| return false; |
| } |
| const ValueType& value = *optional; |
| StringMatchResultListener value_listener; |
| const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
| *listener << "whose value " << PrintToString(value) |
| << (match ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(value_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| private: |
| const Matcher<ValueType> value_matcher_; |
| }; |
| |
| private: |
| const ValueMatcher value_matcher_; |
| }; |
| |
| namespace variant_matcher { |
| // Overloads to allow VariantMatcher to do proper ADL lookup. |
| template <typename T> |
| void holds_alternative() {} |
| template <typename T> |
| void get() {} |
| |
| // Implements a matcher that checks the value of a variant<> type variable. |
| template <typename T> |
| class VariantMatcher { |
| public: |
| explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
| : matcher_(std::move(matcher)) {} |
| |
| template <typename Variant> |
| bool MatchAndExplain(const Variant& value, |
| ::testing::MatchResultListener* listener) const { |
| using std::get; |
| if (!listener->IsInterested()) { |
| return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
| } |
| |
| if (!holds_alternative<T>(value)) { |
| *listener << "whose value is not of type '" << GetTypeName() << "'"; |
| return false; |
| } |
| |
| const T& elem = get<T>(value); |
| StringMatchResultListener elem_listener; |
| const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
| *listener << "whose value " << PrintToString(elem) |
| << (match ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| void DescribeTo(std::ostream* os) const { |
| *os << "is a variant<> with value of type '" << GetTypeName() |
| << "' and the value "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(std::ostream* os) const { |
| *os << "is a variant<> with value of type other than '" << GetTypeName() |
| << "' or the value "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| static std::string GetTypeName() { |
| #if GTEST_HAS_RTTI |
| GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
| return internal::GetTypeName<T>()); |
| #endif |
| return "the element type"; |
| } |
| |
| const ::testing::Matcher<const T&> matcher_; |
| }; |
| |
| } // namespace variant_matcher |
| |
| namespace any_cast_matcher { |
| |
| // Overloads to allow AnyCastMatcher to do proper ADL lookup. |
| template <typename T> |
| void any_cast() {} |
| |
| // Implements a matcher that any_casts the value. |
| template <typename T> |
| class AnyCastMatcher { |
| public: |
| explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
| : matcher_(matcher) {} |
| |
| template <typename AnyType> |
| bool MatchAndExplain(const AnyType& value, |
| ::testing::MatchResultListener* listener) const { |
| if (!listener->IsInterested()) { |
| const T* ptr = any_cast<T>(&value); |
| return ptr != nullptr && matcher_.Matches(*ptr); |
| } |
| |
| const T* elem = any_cast<T>(&value); |
| if (elem == nullptr) { |
| *listener << "whose value is not of type '" << GetTypeName() << "'"; |
| return false; |
| } |
| |
| StringMatchResultListener elem_listener; |
| const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
| *listener << "whose value " << PrintToString(*elem) |
| << (match ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| void DescribeTo(std::ostream* os) const { |
| *os << "is an 'any' type with value of type '" << GetTypeName() |
| << "' and the value "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(std::ostream* os) const { |
| *os << "is an 'any' type with value of type other than '" << GetTypeName() |
| << "' or the value "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| static std::string GetTypeName() { |
| #if GTEST_HAS_RTTI |
| GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
| return internal::GetTypeName<T>()); |
| #endif |
| return "the element type"; |
| } |
| |
| const ::testing::Matcher<const T&> matcher_; |
| }; |
| |
| } // namespace any_cast_matcher |
| |
| // Implements the Args() matcher. |
| template <class ArgsTuple, size_t... k> |
| class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
| public: |
| using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
| using SelectedArgs = |
| std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
| using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
| |
| template <typename InnerMatcher> |
| explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
| : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
| |
| bool MatchAndExplain(ArgsTuple args, |
| MatchResultListener* listener) const override { |
| // Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
| (void)args; |
| const SelectedArgs& selected_args = |
| std::forward_as_tuple(std::get<k>(args)...); |
| if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
| |
| PrintIndices(listener->stream()); |
| *listener << "are " << PrintToString(selected_args); |
| |
| StringMatchResultListener inner_listener; |
| const bool match = |
| inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "are a tuple "; |
| PrintIndices(os); |
| inner_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "are a tuple "; |
| PrintIndices(os); |
| inner_matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| // Prints the indices of the selected fields. |
| static void PrintIndices(::std::ostream* os) { |
| *os << "whose fields ("; |
| const char* sep = ""; |
| // Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
| (void)sep; |
| const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...}; |
| (void)dummy; |
| *os << ") "; |
| } |
| |
| MonomorphicInnerMatcher inner_matcher_; |
| }; |
| |
| template <class InnerMatcher, size_t... k> |
| class ArgsMatcher { |
| public: |
| explicit ArgsMatcher(InnerMatcher inner_matcher) |
| : inner_matcher_(std::move(inner_matcher)) {} |
| |
| template <typename ArgsTuple> |
| operator Matcher<ArgsTuple>() const { // NOLINT |
| return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
| } |
| |
| private: |
| InnerMatcher inner_matcher_; |
| }; |
| |
| } // namespace internal |
| |
| // ElementsAreArray(iterator_first, iterator_last) |
| // ElementsAreArray(pointer, count) |
| // ElementsAreArray(array) |
| // ElementsAreArray(container) |
| // ElementsAreArray({ e1, e2, ..., en }) |
| // |
| // The ElementsAreArray() functions are like ElementsAre(...), except |
| // that they are given a homogeneous sequence rather than taking each |
| // element as a function argument. The sequence can be specified as an |
| // array, a pointer and count, a vector, an initializer list, or an |
| // STL iterator range. In each of these cases, the underlying sequence |
| // can be either a sequence of values or a sequence of matchers. |
| // |
| // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
| |
| template <typename Iter> |
| inline internal::ElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| ElementsAreArray(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::ElementsAreArrayMatcher<T>(first, last); |
| } |
| |
| template <typename T> |
| inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
| const T* pointer, size_t count) { |
| return ElementsAreArray(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
| const T (&array)[N]) { |
| return ElementsAreArray(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::ElementsAreArrayMatcher<typename Container::value_type> |
| ElementsAreArray(const Container& container) { |
| return ElementsAreArray(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::ElementsAreArrayMatcher<T> |
| ElementsAreArray(::std::initializer_list<T> xs) { |
| return ElementsAreArray(xs.begin(), xs.end()); |
| } |
| |
| // UnorderedElementsAreArray(iterator_first, iterator_last) |
| // UnorderedElementsAreArray(pointer, count) |
| // UnorderedElementsAreArray(array) |
| // UnorderedElementsAreArray(container) |
| // UnorderedElementsAreArray({ e1, e2, ..., en }) |
| // |
| // UnorderedElementsAreArray() verifies that a bijective mapping onto a |
| // collection of matchers exists. |
| // |
| // The matchers can be specified as an array, a pointer and count, a container, |
| // an initializer list, or an STL iterator range. In each of these cases, the |
| // underlying matchers can be either values or matchers. |
| |
| template <typename Iter> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| UnorderedElementsAreArray(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::UnorderedElementsAreArrayMatcher<T>( |
| internal::UnorderedMatcherRequire::ExactMatch, first, last); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(const T* pointer, size_t count) { |
| return UnorderedElementsAreArray(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(const T (&array)[N]) { |
| return UnorderedElementsAreArray(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename Container::value_type> |
| UnorderedElementsAreArray(const Container& container) { |
| return UnorderedElementsAreArray(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(::std::initializer_list<T> xs) { |
| return UnorderedElementsAreArray(xs.begin(), xs.end()); |
| } |
| |
| // _ is a matcher that matches anything of any type. |
| // |
| // This definition is fine as: |
| // |
| // 1. The C++ standard permits using the name _ in a namespace that |
| // is not the global namespace or ::std. |
| // 2. The AnythingMatcher class has no data member or constructor, |
| // so it's OK to create global variables of this type. |
| // 3. c-style has approved of using _ in this case. |
| const internal::AnythingMatcher _ = {}; |
| // Creates a matcher that matches any value of the given type T. |
| template <typename T> |
| inline Matcher<T> A() { |
| return Matcher<T>(new internal::AnyMatcherImpl<T>()); |
| } |
| |
| // Creates a matcher that matches any value of the given type T. |
| template <typename T> |
| inline Matcher<T> An() { return A<T>(); } |
| |
| template <typename T, typename M> |
| Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
| const M& value, std::false_type /* convertible_to_matcher */, |
| std::false_type /* convertible_to_T */) { |
| return Eq(value); |
| } |
| |
| // Creates a polymorphic matcher that matches any NULL pointer. |
| inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { |
| return MakePolymorphicMatcher(internal::IsNullMatcher()); |
| } |
| |
| // Creates a polymorphic matcher that matches any non-NULL pointer. |
| // This is convenient as Not(NULL) doesn't compile (the compiler |
| // thinks that that expression is comparing a pointer with an integer). |
| inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { |
| return MakePolymorphicMatcher(internal::NotNullMatcher()); |
| } |
| |
| // Creates a polymorphic matcher that matches any argument that |
| // references variable x. |
| template <typename T> |
| inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
| return internal::RefMatcher<T&>(x); |
| } |
| |
| // Creates a polymorphic matcher that matches any NaN floating point. |
| inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { |
| return MakePolymorphicMatcher(internal::IsNanMatcher()); |
| } |
| |
| // Creates a matcher that matches any double argument approximately |
| // equal to rhs, where two NANs are considered unequal. |
| inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
| return internal::FloatingEqMatcher<double>(rhs, false); |
| } |
| |
| // Creates a matcher that matches any double argument approximately |
| // equal to rhs, including NaN values when rhs is NaN. |
| inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
| return internal::FloatingEqMatcher<double>(rhs, true); |
| } |
| |
| // Creates a matcher that matches any double argument approximately equal to |
| // rhs, up to the specified max absolute error bound, where two NANs are |
| // considered unequal. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<double> DoubleNear( |
| double rhs, double max_abs_error) { |
| return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
| } |
| |
| // Creates a matcher that matches any double argument approximately equal to |
| // rhs, up to the specified max absolute error bound, including NaN values when |
| // rhs is NaN. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
| double rhs, double max_abs_error) { |
| return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
| } |
| |
| // Creates a matcher that matches any float argument approximately |
| // equal to rhs, where two NANs are considered unequal. |
| inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
| return internal::FloatingEqMatcher<float>(rhs, false); |
| } |
| |
| // Creates a matcher that matches any float argument approximately |
| // equal to rhs, including NaN values when rhs is NaN. |
| inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
| return internal::FloatingEqMatcher<float>(rhs, true); |
| } |
| |
| // Creates a matcher that matches any float argument approximately equal to |
| // rhs, up to the specified max absolute error bound, where two NANs are |
| // considered unequal. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<float> FloatNear( |
| float rhs, float max_abs_error) { |
| return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
| } |
| |
| // Creates a matcher that matches any float argument approximately equal to |
| // rhs, up to the specified max absolute error bound, including NaN values when |
| // rhs is NaN. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
| float rhs, float max_abs_error) { |
| return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
| } |
| |
| // Creates a matcher that matches a pointer (raw or smart) that points |
| // to a value that matches inner_matcher. |
| template <typename InnerMatcher> |
| inline internal::PointeeMatcher<InnerMatcher> Pointee( |
| const InnerMatcher& inner_matcher) { |
| return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
| } |
| |
| #if GTEST_HAS_RTTI |
| // Creates a matcher that matches a pointer or reference that matches |
| // inner_matcher when dynamic_cast<To> is applied. |
| // The result of dynamic_cast<To> is forwarded to the inner matcher. |
| // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
| // If To is a reference and the cast fails, this matcher returns false |
| // immediately. |
| template <typename To> |
| inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > |
| WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
| return MakePolymorphicMatcher( |
| internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
| } |
| #endif // GTEST_HAS_RTTI |
| |
| // Creates a matcher that matches an object whose given field matches |
| // 'matcher'. For example, |
| // Field(&Foo::number, Ge(5)) |
| // matches a Foo object x if and only if x.number >= 5. |
| template <typename Class, typename FieldType, typename FieldMatcher> |
| inline PolymorphicMatcher< |
| internal::FieldMatcher<Class, FieldType> > Field( |
| FieldType Class::*field, const FieldMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::FieldMatcher<Class, FieldType>( |
| field, MatcherCast<const FieldType&>(matcher))); |
| // The call to MatcherCast() is required for supporting inner |
| // matchers of compatible types. For example, it allows |
| // Field(&Foo::bar, m) |
| // to compile where bar is an int32 and m is a matcher for int64. |
| } |
| |
| // Same as Field() but also takes the name of the field to provide better error |
| // messages. |
| template <typename Class, typename FieldType, typename FieldMatcher> |
| inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( |
| const std::string& field_name, FieldType Class::*field, |
| const FieldMatcher& matcher) { |
| return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
| field_name, field, MatcherCast<const FieldType&>(matcher))); |
| } |
| |
| // Creates a matcher that matches an object whose given property |
| // matches 'matcher'. For example, |
| // Property(&Foo::str, StartsWith("hi")) |
| // matches a Foo object x if and only if x.str() starts with "hi". |
| template <typename Class, typename PropertyType, typename PropertyMatcher> |
| inline PolymorphicMatcher<internal::PropertyMatcher< |
| Class, PropertyType, PropertyType (Class::*)() const> > |
| Property(PropertyType (Class::*property)() const, |
| const PropertyMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::PropertyMatcher<Class, PropertyType, |
| PropertyType (Class::*)() const>( |
| property, MatcherCast<const PropertyType&>(matcher))); |
| // The call to MatcherCast() is required for supporting inner |
| // matchers of compatible types. For example, it allows |
| // Property(&Foo::bar, m) |
| // to compile where bar() returns an int32 and m is a matcher for int64. |
| } |
| |
| // Same as Property() above, but also takes the name of the property to provide |
| // better error messages. |
| template <typename Class, typename PropertyType, typename PropertyMatcher> |
| inline PolymorphicMatcher<internal::PropertyMatcher< |
| Class, PropertyType, PropertyType (Class::*)() const> > |
| Property(const std::string& property_name, |
| PropertyType (Class::*property)() const, |
| const PropertyMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::PropertyMatcher<Class, PropertyType, |
| PropertyType (Class::*)() const>( |
| property_name, property, MatcherCast<const PropertyType&>(matcher))); |
| } |
| |
| // The same as above but for reference-qualified member functions. |
| template <typename Class, typename PropertyType, typename PropertyMatcher> |
| inline PolymorphicMatcher<internal::PropertyMatcher< |
| Class, PropertyType, PropertyType (Class::*)() const &> > |
| Property(PropertyType (Class::*property)() const &, |
| const PropertyMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::PropertyMatcher<Class, PropertyType, |
| PropertyType (Class::*)() const&>( |
| property, MatcherCast<const PropertyType&>(matcher))); |
| } |
| |
| // Three-argument form for reference-qualified member functions. |
| template <typename Class, typename PropertyType, typename PropertyMatcher> |
| inline PolymorphicMatcher<internal::PropertyMatcher< |
| Class, PropertyType, PropertyType (Class::*)() const &> > |
| Property(const std::string& property_name, |
| PropertyType (Class::*property)() const &, |
| const PropertyMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::PropertyMatcher<Class, PropertyType, |
| PropertyType (Class::*)() const&>( |
| property_name, property, MatcherCast<const PropertyType&>(matcher))); |
| } |
| |
| // Creates a matcher that matches an object if and only if the result of |
| // applying a callable to x matches 'matcher'. For example, |
| // ResultOf(f, StartsWith("hi")) |
| // matches a Foo object x if and only if f(x) starts with "hi". |
| // `callable` parameter can be a function, function pointer, or a functor. It is |
| // required to keep no state affecting the results of the calls on it and make |
| // no assumptions about how many calls will be made. Any state it keeps must be |
| // protected from the concurrent access. |
| template <typename Callable, typename InnerMatcher> |
| internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
| Callable callable, InnerMatcher matcher) { |
| return internal::ResultOfMatcher<Callable, InnerMatcher>( |
| std::move(callable), std::move(matcher)); |
| } |
| |
| // String matchers. |
| |
| // Matches a string equal to str. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( |
| const internal::StringLike<T>& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); |
| } |
| |
| // Matches a string not equal to str. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( |
| const internal::StringLike<T>& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); |
| } |
| |
| // Matches a string equal to str, ignoring case. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( |
| const internal::StringLike<T>& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); |
| } |
| |
| // Matches a string not equal to str, ignoring case. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( |
| const internal::StringLike<T>& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>( |
| std::string(str), false, false)); |
| } |
| |
| // Creates a matcher that matches any string, std::string, or C string |
| // that contains the given substring. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( |
| const internal::StringLike<T>& substring) { |
| return MakePolymorphicMatcher( |
| internal::HasSubstrMatcher<std::string>(std::string(substring))); |
| } |
| |
| // Matches a string that starts with 'prefix' (case-sensitive). |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( |
| const internal::StringLike<T>& prefix) { |
| return MakePolymorphicMatcher( |
| internal::StartsWithMatcher<std::string>(std::string(prefix))); |
| } |
| |
| // Matches a string that ends with 'suffix' (case-sensitive). |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( |
| const internal::StringLike<T>& suffix) { |
| return MakePolymorphicMatcher( |
| internal::EndsWithMatcher<std::string>(std::string(suffix))); |
| } |
| |
| #if GTEST_HAS_STD_WSTRING |
| // Wide string matchers. |
| |
| // Matches a string equal to str. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( |
| const std::wstring& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
| } |
| |
| // Matches a string not equal to str. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( |
| const std::wstring& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
| } |
| |
| // Matches a string equal to str, ignoring case. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
| StrCaseEq(const std::wstring& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
| } |
| |
| // Matches a string not equal to str, ignoring case. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
| StrCaseNe(const std::wstring& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
| } |
| |
| // Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
| // that contains the given substring. |
| inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( |
| const std::wstring& substring) { |
| return MakePolymorphicMatcher( |
| internal::HasSubstrMatcher<std::wstring>(substring)); |
| } |
| |
| // Matches a string that starts with 'prefix' (case-sensitive). |
| inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > |
| StartsWith(const std::wstring& prefix) { |
| return MakePolymorphicMatcher( |
| internal::StartsWithMatcher<std::wstring>(prefix)); |
| } |
| |
| // Matches a string that ends with 'suffix' (case-sensitive). |
| inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( |
| const std::wstring& suffix) { |
| return MakePolymorphicMatcher( |
| internal::EndsWithMatcher<std::wstring>(suffix)); |
| } |
| |
| #endif // GTEST_HAS_STD_WSTRING |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field == the second field. |
| inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field >= the second field. |
| inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field > the second field. |
| inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field <= the second field. |
| inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field < the second field. |
| inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field != the second field. |
| inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // FloatEq(first field) matches the second field. |
| inline internal::FloatingEq2Matcher<float> FloatEq() { |
| return internal::FloatingEq2Matcher<float>(); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // DoubleEq(first field) matches the second field. |
| inline internal::FloatingEq2Matcher<double> DoubleEq() { |
| return internal::FloatingEq2Matcher<double>(); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // FloatEq(first field) matches the second field with NaN equality. |
| inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
| return internal::FloatingEq2Matcher<float>(true); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // DoubleEq(first field) matches the second field with NaN equality. |
| inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
| return internal::FloatingEq2Matcher<double>(true); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // FloatNear(first field, max_abs_error) matches the second field. |
| inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
| return internal::FloatingEq2Matcher<float>(max_abs_error); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // DoubleNear(first field, max_abs_error) matches the second field. |
| inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
| return internal::FloatingEq2Matcher<double>(max_abs_error); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // FloatNear(first field, max_abs_error) matches the second field with NaN |
| // equality. |
| inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
| float max_abs_error) { |
| return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // DoubleNear(first field, max_abs_error) matches the second field with NaN |
| // equality. |
| inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
| double max_abs_error) { |
| return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
| } |
| |
| // Creates a matcher that matches any value of type T that m doesn't |
| // match. |
| template <typename InnerMatcher> |
| inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
| return internal::NotMatcher<InnerMatcher>(m); |
| } |
| |
| // Returns a matcher that matches anything that satisfies the given |
| // predicate. The predicate can be any unary function or functor |
| // whose return type can be implicitly converted to bool. |
| template <typename Predicate> |
| inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > |
| Truly(Predicate pred) { |
| return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
| } |
| |
| // Returns a matcher that matches the container size. The container must |
| // support both size() and size_type which all STL-like containers provide. |
| // Note that the parameter 'size' can be a value of type size_type as well as |
| // matcher. For instance: |
| // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
| // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
| template <typename SizeMatcher> |
| inline internal::SizeIsMatcher<SizeMatcher> |
| SizeIs(const SizeMatcher& size_matcher) { |
| return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
| } |
| |
| // Returns a matcher that matches the distance between the container's begin() |
| // iterator and its end() iterator, i.e. the size of the container. This matcher |
| // can be used instead of SizeIs with containers such as std::forward_list which |
| // do not implement size(). The container must provide const_iterator (with |
| // valid iterator_traits), begin() and end(). |
| template <typename DistanceMatcher> |
| inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> |
| BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { |
| return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
| } |
| |
| // Returns a matcher that matches an equal container. |
| // This matcher behaves like Eq(), but in the event of mismatch lists the |
| // values that are included in one container but not the other. (Duplicate |
| // values and order differences are not explained.) |
| template <typename Container> |
| inline PolymorphicMatcher<internal::ContainerEqMatcher< |
| typename std::remove_const<Container>::type>> |
| ContainerEq(const Container& rhs) { |
| return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); |
| } |
| |
| // Returns a matcher that matches a container that, when sorted using |
| // the given comparator, matches container_matcher. |
| template <typename Comparator, typename ContainerMatcher> |
| inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> |
| WhenSortedBy(const Comparator& comparator, |
| const ContainerMatcher& container_matcher) { |
| return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
| comparator, container_matcher); |
| } |
| |
| // Returns a matcher that matches a container that, when sorted using |
| // the < operator, matches container_matcher. |
| template <typename ContainerMatcher> |
| inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
| WhenSorted(const ContainerMatcher& container_matcher) { |
| return |
| internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( |
| internal::LessComparator(), container_matcher); |
| } |
| |
| // Matches an STL-style container or a native array that contains the |
| // same number of elements as in rhs, where its i-th element and rhs's |
| // i-th element (as a pair) satisfy the given pair matcher, for all i. |
| // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
| // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
| // LHS container and the RHS container respectively. |
| template <typename TupleMatcher, typename Container> |
| inline internal::PointwiseMatcher<TupleMatcher, |
| typename std::remove_const<Container>::type> |
| Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
| return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, |
| rhs); |
| } |
| |
| |
| // Supports the Pointwise(m, {a, b, c}) syntax. |
| template <typename TupleMatcher, typename T> |
| inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( |
| const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
| return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
| } |
| |
| |
| // UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
| // container or a native array that contains the same number of |
| // elements as in rhs, where in some permutation of the container, its |
| // i-th element and rhs's i-th element (as a pair) satisfy the given |
| // pair matcher, for all i. Tuple2Matcher must be able to be safely |
| // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
| // the types of elements in the LHS container and the RHS container |
| // respectively. |
| // |
| // This is like Pointwise(pair_matcher, rhs), except that the element |
| // order doesn't matter. |
| template <typename Tuple2Matcher, typename RhsContainer> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename internal::BoundSecondMatcher< |
| Tuple2Matcher, |
| typename internal::StlContainerView< |
| typename std::remove_const<RhsContainer>::type>::type::value_type>> |
| UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
| const RhsContainer& rhs_container) { |
| // RhsView allows the same code to handle RhsContainer being a |
| // STL-style container and it being a native C-style array. |
| typedef typename internal::StlContainerView<RhsContainer> RhsView; |
| typedef typename RhsView::type RhsStlContainer; |
| typedef typename RhsStlContainer::value_type Second; |
| const RhsStlContainer& rhs_stl_container = |
| RhsView::ConstReference(rhs_container); |
| |
| // Create a matcher for each element in rhs_container. |
| ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; |
| for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); |
| it != rhs_stl_container.end(); ++it) { |
| matchers.push_back( |
| internal::MatcherBindSecond(tuple2_matcher, *it)); |
| } |
| |
| // Delegate the work to UnorderedElementsAreArray(). |
| return UnorderedElementsAreArray(matchers); |
| } |
| |
| |
| // Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
| template <typename Tuple2Matcher, typename T> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename internal::BoundSecondMatcher<Tuple2Matcher, T> > |
| UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
| std::initializer_list<T> rhs) { |
| return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
| } |
| |
| |
| // Matches an STL-style container or a native array that contains at |
| // least one element matching the given value or matcher. |
| // |
| // Examples: |
| // ::std::set<int> page_ids; |
| // page_ids.insert(3); |
| // page_ids.insert(1); |
| // EXPECT_THAT(page_ids, Contains(1)); |
| // EXPECT_THAT(page_ids, Contains(Gt(2))); |
| // EXPECT_THAT(page_ids, Not(Contains(4))); |
| // |
| // ::std::map<int, size_t> page_lengths; |
| // page_lengths[1] = 100; |
| // EXPECT_THAT(page_lengths, |
| // Contains(::std::pair<const int, size_t>(1, 100))); |
| // |
| // const char* user_ids[] = { "joe", "mike", "tom" }; |
| // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
| template <typename M> |
| inline internal::ContainsMatcher<M> Contains(M matcher) { |
| return internal::ContainsMatcher<M>(matcher); |
| } |
| |
| // IsSupersetOf(iterator_first, iterator_last) |
| // IsSupersetOf(pointer, count) |
| // IsSupersetOf(array) |
| // IsSupersetOf(container) |
| // IsSupersetOf({e1, e2, ..., en}) |
| // |
| // IsSupersetOf() verifies that a surjective partial mapping onto a collection |
| // of matchers exists. In other words, a container matches |
| // IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
| // {y1, ..., yn} of some of the container's elements where y1 matches e1, |
| // ..., and yn matches en. Obviously, the size of the container must be >= n |
| // in order to have a match. Examples: |
| // |
| // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
| // 1 matches Ne(0). |
| // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
| // both Eq(1) and Lt(2). The reason is that different matchers must be used |
| // for elements in different slots of the container. |
| // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
| // Eq(1) and (the second) 1 matches Lt(2). |
| // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
| // Gt(1) and 3 matches (the second) Gt(1). |
| // |
| // The matchers can be specified as an array, a pointer and count, a container, |
| // an initializer list, or an STL iterator range. In each of these cases, the |
| // underlying matchers can be either values or matchers. |
| |
| template <typename Iter> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| IsSupersetOf(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::UnorderedElementsAreArrayMatcher<T>( |
| internal::UnorderedMatcherRequire::Superset, first, last); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| const T* pointer, size_t count) { |
| return IsSupersetOf(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| const T (&array)[N]) { |
| return IsSupersetOf(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename Container::value_type> |
| IsSupersetOf(const Container& container) { |
| return IsSupersetOf(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| ::std::initializer_list<T> xs) { |
| return IsSupersetOf(xs.begin(), xs.end()); |
| } |
| |
| // IsSubsetOf(iterator_first, iterator_last) |
| // IsSubsetOf(pointer, count) |
| // IsSubsetOf(array) |
| // IsSubsetOf(container) |
| // IsSubsetOf({e1, e2, ..., en}) |
| // |
| // IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
| // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
| // only if there is a subset of matchers {m1, ..., mk} which would match the |
| // container using UnorderedElementsAre. Obviously, the size of the container |
| // must be <= n in order to have a match. Examples: |
| // |
| // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
| // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
| // matches Lt(0). |
| // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
| // match Gt(0). The reason is that different matchers must be used for |
| // elements in different slots of the container. |
| // |
| // The matchers can be specified as an array, a pointer and count, a container, |
| // an initializer list, or an STL iterator range. In each of these cases, the |
| // underlying matchers can be either values or matchers. |
| |
| template <typename Iter> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| IsSubsetOf(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::UnorderedElementsAreArrayMatcher<T>( |
| internal::UnorderedMatcherRequire::Subset, first, last); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| const T* pointer, size_t count) { |
| return IsSubsetOf(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| const T (&array)[N]) { |
| return IsSubsetOf(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename Container::value_type> |
| IsSubsetOf(const Container& container) { |
| return IsSubsetOf(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| ::std::initializer_list<T> xs) { |
| return IsSubsetOf(xs.begin(), xs.end()); |
| } |
| |
| // Matches an STL-style container or a native array that contains only |
| // elements matching the given value or matcher. |
| // |
| // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only |
| // the messages are different. |
| // |
| // Examples: |
| // ::std::set<int> page_ids; |
| // // Each(m) matches an empty container, regardless of what m is. |
| // EXPECT_THAT(page_ids, Each(Eq(1))); |
| // EXPECT_THAT(page_ids, Each(Eq(77))); |
| // |
| // page_ids.insert(3); |
| // EXPECT_THAT(page_ids, Each(Gt(0))); |
| // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
| // page_ids.insert(1); |
| // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
| // |
| // ::std::map<int, size_t> page_lengths; |
| // page_lengths[1] = 100; |
| // page_lengths[2] = 200; |
| // page_lengths[3] = 300; |
| // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
| // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
| // |
| // const char* user_ids[] = { "joe", "mike", "tom" }; |
| // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
| template <typename M> |
| inline internal::EachMatcher<M> Each(M matcher) { |
| return internal::EachMatcher<M>(matcher); |
| } |
| |
| // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| // std::map that contains at least one element whose key is >= 5. |
| template <typename M> |
| inline internal::KeyMatcher<M> Key(M inner_matcher) { |
| return internal::KeyMatcher<M>(inner_matcher); |
| } |
| |
| // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
| // matches first_matcher and whose 'second' field matches second_matcher. For |
| // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
| // to match a std::map<int, string> that contains exactly one element whose key |
| // is >= 5 and whose value equals "foo". |
| template <typename FirstMatcher, typename SecondMatcher> |
| inline internal::PairMatcher<FirstMatcher, SecondMatcher> |
| Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { |
| return internal::PairMatcher<FirstMatcher, SecondMatcher>( |
| first_matcher, second_matcher); |
| } |
| |
| namespace no_adl { |
| // FieldsAre(matchers...) matches piecewise the fields of compatible structs. |
| // These include those that support `get<I>(obj)`, and when structured bindings |
| // are enabled any class that supports them. |
| // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. |
| template <typename... M> |
| internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( |
| M&&... matchers) { |
| return internal::FieldsAreMatcher<typename std::decay<M>::type...>( |
| std::forward<M>(matchers)...); |
| } |
| } // namespace no_adl |
| |
| // Returns a predicate that is satisfied by anything that matches the |
| // given matcher. |
| template <typename M> |
| inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
| return internal::MatcherAsPredicate<M>(matcher); |
| } |
| |
| // Returns true if and only if the value matches the matcher. |
| template <typename T, typename M> |
| inline bool Value(const T& value, M matcher) { |
| return testing::Matches(matcher)(value); |
| } |
| |
| // Matches the value against the given matcher and explains the match |
| // result to listener. |
| template <typename T, typename M> |
| inline bool ExplainMatchResult( |
| M matcher, const T& value, MatchResultListener* listener) { |
| return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
| } |
| |
| // Returns a string representation of the given matcher. Useful for description |
| // strings of matchers defined using MATCHER_P* macros that accept matchers as |
| // their arguments. For example: |
| // |
| // MATCHER_P(XAndYThat, matcher, |
| // "X that " + DescribeMatcher<int>(matcher, negation) + |
| // " and Y that " + DescribeMatcher<double>(matcher, negation)) { |
| // return ExplainMatchResult(matcher, arg.x(), result_listener) && |
| // ExplainMatchResult(matcher, arg.y(), result_listener); |
| // } |
| template <typename T, typename M> |
| std::string DescribeMatcher(const M& matcher, bool negation = false) { |
| ::std::stringstream ss; |
| Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
| if (negation) { |
| monomorphic_matcher.DescribeNegationTo(&ss); |
| } else { |
| monomorphic_matcher.DescribeTo(&ss); |
| } |
| return ss.str(); |
| } |
| |
| template <typename... Args> |
| internal::ElementsAreMatcher< |
| std::tuple<typename std::decay<const Args&>::type...>> |
| ElementsAre(const Args&... matchers) { |
| return internal::ElementsAreMatcher< |
| std::tuple<typename std::decay<const Args&>::type...>>( |
| std::make_tuple(matchers...)); |
| } |
| |
| template <typename... Args> |
| internal::UnorderedElementsAreMatcher< |
| std::tuple<typename std::decay<const Args&>::type...>> |
| UnorderedElementsAre(const Args&... matchers) { |
| return internal::UnorderedElementsAreMatcher< |
| std::tuple<typename std::decay<const Args&>::type...>>( |
| std::make_tuple(matchers...)); |
| } |
| |
| // Define variadic matcher versions. |
| template <typename... Args> |
| internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
| const Args&... matchers) { |
| return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
| matchers...); |
| } |
| |
| template <typename... Args> |
| internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
| const Args&... matchers) { |
| return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
| matchers...); |
| } |
| |
| // AnyOfArray(array) |
| // AnyOfArray(pointer, count) |
| // AnyOfArray(container) |
| // AnyOfArray({ e1, e2, ..., en }) |
| // AnyOfArray(iterator_first, iterator_last) |
| // |
| // AnyOfArray() verifies whether a given value matches any member of a |
| // collection of matchers. |
| // |
| // AllOfArray(array) |
| // AllOfArray(pointer, count) |
| // AllOfArray(container) |
| // AllOfArray({ e1, e2, ..., en }) |
| // AllOfArray(iterator_first, iterator_last) |
| // |
| // AllOfArray() verifies whether a given value matches all members of a |
| // collection of matchers. |
| // |
| // The matchers can be specified as an array, a pointer and count, a container, |
| // an initializer list, or an STL iterator range. In each of these cases, the |
| // underlying matchers can be either values or matchers. |
| |
| template <typename Iter> |
| inline internal::AnyOfArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| AnyOfArray(Iter first, Iter last) { |
| return internal::AnyOfArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type>(first, last); |
| } |
| |
| template <typename Iter> |
| inline internal::AllOfArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| AllOfArray(Iter first, Iter last) { |
| return internal::AllOfArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type>(first, last); |
| } |
| |
| template <typename T> |
| inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
| return AnyOfArray(ptr, ptr + count); |
| } |
| |
| template <typename T> |
| inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
| return AllOfArray(ptr, ptr + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
| return AnyOfArray(array, N); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
| return AllOfArray(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
| const Container& container) { |
| return AnyOfArray(container.begin(), container.end()); |
| } |
| |
| template <typename Container> |
| inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
| const Container& container) { |
| return AllOfArray(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
| ::std::initializer_list<T> xs) { |
| return AnyOfArray(xs.begin(), xs.end()); |
| } |
| |
| template <typename T> |
| inline internal::AllOfArrayMatcher<T> AllOfArray( |
| ::std::initializer_list<T> xs) { |
| return AllOfArray(xs.begin(), xs.end()); |
| } |
| |
| // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
| // fields of it matches a_matcher. C++ doesn't support default |
| // arguments for function templates, so we have to overload it. |
| template <size_t... k, typename InnerMatcher> |
| internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
| InnerMatcher&& matcher) { |
| return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
| std::forward<InnerMatcher>(matcher)); |
| } |
| |
| // AllArgs(m) is a synonym of m. This is useful in |
| // |
| // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
| // |
| // which is easier to read than |
| // |
| // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
| template <typename InnerMatcher> |
| inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } |
| |
| // Returns a matcher that matches the value of an optional<> type variable. |
| // The matcher implementation only uses '!arg' and requires that the optional<> |
| // type has a 'value_type' member type and that '*arg' is of type 'value_type' |
| // and is printable using 'PrintToString'. It is compatible with |
| // std::optional/std::experimental::optional. |
| // Note that to compare an optional type variable against nullopt you should |
| // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the |
| // optional value contains an optional itself. |
| template <typename ValueMatcher> |
| inline internal::OptionalMatcher<ValueMatcher> Optional( |
| const ValueMatcher& value_matcher) { |
| return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
| } |
| |
| // Returns a matcher that matches the value of a absl::any type variable. |
| template <typename T> |
| PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( |
| const Matcher<const T&>& matcher) { |
| return MakePolymorphicMatcher( |
| internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
| } |
| |
| // Returns a matcher that matches the value of a variant<> type variable. |
| // The matcher implementation uses ADL to find the holds_alternative and get |
| // functions. |
| // It is compatible with std::variant. |
| template <typename T> |
| PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( |
| const Matcher<const T&>& matcher) { |
| return MakePolymorphicMatcher( |
| internal::variant_matcher::VariantMatcher<T>(matcher)); |
| } |
| |
| #if GTEST_HAS_EXCEPTIONS |
| |
| // Anything inside the `internal` namespace is internal to the implementation |
| // and must not be used in user code! |
| namespace internal { |
| |
| class WithWhatMatcherImpl { |
| public: |
| WithWhatMatcherImpl(Matcher<std::string> matcher) |
| : matcher_(std::move(matcher)) {} |
| |
| void DescribeTo(std::ostream* os) const { |
| *os << "contains .what() that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(std::ostream* os) const { |
| *os << "contains .what() that does not "; |
| matcher_.DescribeTo(os); |
| } |
| |
| template <typename Err> |
| bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { |
| *listener << "which contains .what() that "; |
| return matcher_.MatchAndExplain(err.what(), listener); |
| } |
| |
| private: |
| const Matcher<std::string> matcher_; |
| }; |
| |
| inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( |
| Matcher<std::string> m) { |
| return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); |
| } |
| |
| template <typename Err> |
| class ExceptionMatcherImpl { |
| class NeverThrown { |
| public: |
| const char* what() const noexcept { |
| return "this exception should never be thrown"; |
| } |
| }; |
| |
| // If the matchee raises an exception of a wrong type, we'd like to |
| // catch it and print its message and type. To do that, we add an additional |
| // catch clause: |
| // |
| // try { ... } |
| // catch (const Err&) { /* an expected exception */ } |
| // catch (const std::exception&) { /* exception of a wrong type */ } |
| // |
| // However, if the `Err` itself is `std::exception`, we'd end up with two |
| // identical `catch` clauses: |
| // |
| // try { ... } |
| // catch (const std::exception&) { /* an expected exception */ } |
| // catch (const std::exception&) { /* exception of a wrong type */ } |
| // |
| // This can cause a warning or an error in some compilers. To resolve |
| // the issue, we use a fake error type whenever `Err` is `std::exception`: |
| // |
| // try { ... } |
| // catch (const std::exception&) { /* an expected exception */ } |
| // catch (const NeverThrown&) { /* exception of a wrong type */ } |
| using DefaultExceptionType = typename std::conditional< |
| std::is_same<typename std::remove_cv< |
| typename std::remove_reference<Err>::type>::type, |
| std::exception>::value, |
| const NeverThrown&, const std::exception&>::type; |
| |
| public: |
| ExceptionMatcherImpl(Matcher<const Err&> matcher) |
| : matcher_(std::move(matcher)) {} |
| |
| void DescribeTo(std::ostream* os) const { |
| *os << "throws an exception which is a " << GetTypeName<Err>(); |
| *os << " which "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(std::ostream* os) const { |
| *os << "throws an exception which is not a " << GetTypeName<Err>(); |
| *os << " which "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| template <typename T> |
| bool MatchAndExplain(T&& x, MatchResultListener* listener) const { |
| try { |
| (void)(std::forward<T>(x)()); |
| } catch (const Err& err) { |
| *listener << "throws an exception which is a " << GetTypeName<Err>(); |
| *listener << " "; |
| return matcher_.MatchAndExplain(err, listener); |
| } catch (DefaultExceptionType err) { |
| #if GTEST_HAS_RTTI |
| *listener << "throws an exception of type " << GetTypeName(typeid(err)); |
| *listener << " "; |
| #else |
| *listener << "throws an std::exception-derived type "; |
| #endif |
| *listener << "with description \"" << err.what() << "\""; |
| return false; |
| } catch (...) { |
| *listener << "throws an exception of an unknown type"; |
| return false; |
| } |
| |
| *listener << "does not throw any exception"; |
| return false; |
| } |
| |
| private: |
| const Matcher<const Err&> matcher_; |
| }; |
| |
| } // namespace internal |
| |
| // Throws() |
| // Throws(exceptionMatcher) |
| // ThrowsMessage(messageMatcher) |
| // |
| // This matcher accepts a callable and verifies that when invoked, it throws |
| // an exception with the given type and properties. |
| // |
| // Examples: |
| // |
| // EXPECT_THAT( |
| // []() { throw std::runtime_error("message"); }, |
| // Throws<std::runtime_error>()); |
| // |
| // EXPECT_THAT( |
| // []() { throw std::runtime_error("message"); }, |
| // ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
| // |
| // EXPECT_THAT( |
| // []() { throw std::runtime_error("message"); }, |
| // Throws<std::runtime_error>( |
| // Property(&std::runtime_error::what, HasSubstr("message")))); |
| |
| template <typename Err> |
| PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { |
| return MakePolymorphicMatcher( |
| internal::ExceptionMatcherImpl<Err>(A<const Err&>())); |
| } |
| |
| template <typename Err, typename ExceptionMatcher> |
| PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( |
| const ExceptionMatcher& exception_matcher) { |
| // Using matcher cast allows users to pass a matcher of a more broad type. |
| // For example user may want to pass Matcher<std::exception> |
| // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. |
| return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( |
| SafeMatcherCast<const Err&>(exception_matcher))); |
| } |
| |
| template <typename Err, typename MessageMatcher> |
| PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( |
| MessageMatcher&& message_matcher) { |
| static_assert(std::is_base_of<std::exception, Err>::value, |
| "expected an std::exception-derived type"); |
| return Throws<Err>(internal::WithWhat( |
| MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); |
| } |
| |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| // These macros allow using matchers to check values in Google Test |
| // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
| // succeed if and only if the value matches the matcher. If the assertion |
| // fails, the value and the description of the matcher will be printed. |
| #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ |
| ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ |
| ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| |
| // MATCHER* macroses itself are listed below. |
| #define MATCHER(name, description) \ |
| class name##Matcher \ |
| : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ |
| public: \ |
| template <typename arg_type> \ |
| class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
| public: \ |
| gmock_Impl() {} \ |
| bool MatchAndExplain( \ |
| const arg_type& arg, \ |
| ::testing::MatchResultListener* result_listener) const override; \ |
| void DescribeTo(::std::ostream* gmock_os) const override { \ |
| *gmock_os << FormatDescription(false); \ |
| } \ |
| void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
| *gmock_os << FormatDescription(true); \ |
| } \ |
| \ |
| private: \ |
| ::std::string FormatDescription(bool negation) const { \ |
| ::std::string gmock_description = (description); \ |
| if (!gmock_description.empty()) { \ |
| return gmock_description; \ |
| } \ |
| return ::testing::internal::FormatMatcherDescription(negation, #name, \ |
| {}); \ |
| } \ |
| }; \ |
| }; \ |
| GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \ |
| template <typename arg_type> \ |
| bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ |
| const arg_type& arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
| const |
| |
| #define MATCHER_P(name, p0, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0)) |
| #define MATCHER_P2(name, p0, p1, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1)) |
| #define MATCHER_P3(name, p0, p1, p2, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2)) |
| #define MATCHER_P4(name, p0, p1, p2, p3, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3)) |
| #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ |
| (p0, p1, p2, p3, p4)) |
| #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ |
| (p0, p1, p2, p3, p4, p5)) |
| #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ |
| (p0, p1, p2, p3, p4, p5, p6)) |
| #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ |
| (p0, p1, p2, p3, p4, p5, p6, p7)) |
| #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ |
| (p0, p1, p2, p3, p4, p5, p6, p7, p8)) |
| #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ |
| (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) |
| |
| #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \ |
| template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
| class full_name : public ::testing::internal::MatcherBaseImpl< \ |
| full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ |
| public: \ |
| using full_name::MatcherBaseImpl::MatcherBaseImpl; \ |
| template <typename arg_type> \ |
| class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
| public: \ |
| explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ |
| : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ |
| bool MatchAndExplain( \ |
| const arg_type& arg, \ |
| ::testing::MatchResultListener* result_listener) const override; \ |
| void DescribeTo(::std::ostream* gmock_os) const override { \ |
| *gmock_os << FormatDescription(false); \ |
| } \ |
| void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
| *gmock_os << FormatDescription(true); \ |
| } \ |
| GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
| \ |
| private: \ |
| ::std::string FormatDescription(bool negation) const { \ |
| ::std::string gmock_description = (description); \ |
| if (!gmock_description.empty()) { \ |
| return gmock_description; \ |
| } \ |
| return ::testing::internal::FormatMatcherDescription( \ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ |
| ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
| GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ |
| } \ |
| }; \ |
| }; \ |
| template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
| inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ |
| GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ |
| return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
| GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ |
| } \ |
| template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
| template <typename arg_type> \ |
| bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ |
| arg_type>::MatchAndExplain(const arg_type& arg, \ |
| ::testing::MatchResultListener* \ |
| result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
| const |
| |
| #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ |
| GMOCK_PP_TAIL( \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) |
| #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ |
| , typename arg##_type |
| |
| #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) |
| #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ |
| , arg##_type |
| |
| #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ |
| GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ |
| GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) |
| #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ |
| , arg##_type gmock_p##i |
| |
| #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) |
| #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ |
| , arg(::std::forward<arg##_type>(gmock_p##i)) |
| |
| #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) |
| #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ |
| const arg##_type arg; |
| |
| #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) |
| #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg |
| |
| #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) |
| #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ |
| , gmock_p##i |
| |
| // To prevent ADL on certain functions we put them on a separate namespace. |
| using namespace no_adl; // NOLINT |
| |
| } // namespace testing |
| |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
| |
| // Include any custom callback matchers added by the local installation. |
| // We must include this header at the end to make sure it can use the |
| // declarations from this file. |
| #include "gmock/internal/custom/gmock-matchers.h" |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |