blob: cb622d352cbc2c16caf976cfceb49f10df9e29c0 [file] [log] [blame]
//
// C++ Implementation: gptpart
//
// Description: Class to implement a SINGLE GPT partition
//
//
// Author: Rod Smith <rodsmith@rodsbooks.com>, (C) 2009
//
// Copyright: See COPYING file that comes with this distribution
//
//
/* This program is copyright (c) 2009 by Roderick W. Smith. It is distributed
under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
#define __STDC_LIMIT_MACROS
#define __STDC_CONSTANT_MACROS
#include <stdio.h>
#include <string.h>
#include "gptpart.h"
#include "attributes.h"
using namespace std;
PartTypes GPTPart::typeHelper;
GPTPart::GPTPart(void) {
} // Default constructor
GPTPart::~GPTPart(void) {
} // destructor
// Return partition's name field
unsigned char* GPTPart::GetName(unsigned char* ref) {
if (ref == NULL)
ref = (unsigned char*) malloc(NAME_SIZE * sizeof (unsigned char));
strcpy((char*) ref, (char*) name);
return ref;
} // GPTPart::GetName()
// Return the gdisk-specific two-byte hex code for the partition
uint16_t GPTPart::GetHexType(void) {
return typeHelper.GUIDToID(partitionType);
} // GPTPart::GetHexType()
// Return a plain-text description of the partition type (e.g., "Linux/Windows
// data" or "Linux swap").
char* GPTPart::GetNameType(char* theName) {
return typeHelper.GUIDToName(partitionType, theName);
} // GPTPart::GetNameType()
// Compute and return the partition's length (or 0 if the end is incorrectly
// set before the beginning).
uint64_t GPTPart::GetLengthLBA(void) {
uint64_t length = 0;
if (firstLBA <= lastLBA)
length = lastLBA - firstLBA + UINT64_C(1);
return length;
} // GPTPart::GetLengthLBA()
GPTPart & GPTPart::operator=(const GPTPart & orig) {
int i;
partitionType = orig.partitionType;
uniqueGUID = orig.uniqueGUID;
firstLBA = orig.firstLBA;
lastLBA = orig.lastLBA;
attributes = orig.attributes;
for (i = 0; i < NAME_SIZE; i++)
name[i] = orig.name[i];
} // assignment operator
// Sets the unique GUID to a value of 0 or a random value,
// depending on the parameter: 0 = 0, anything else = random
void GPTPart::SetUniqueGUID(int zeroOrRandom) {
if (zeroOrRandom == 0) {
uniqueGUID.data1 = 0;
uniqueGUID.data2 = 0;
} else {
// rand() is only 32 bits on 32-bit systems, so multiply together to
// fill a 64-bit value.
uniqueGUID.data1 = (uint64_t) rand() * (uint64_t) rand();
uniqueGUID.data2 = (uint64_t) rand() * (uint64_t) rand();
}
} // GPTPart::SetUniqueGUID()
// Blank (delete) a single partition
void GPTPart::BlankPartition(void) {
int j;
GUIDData zeroGUID;
zeroGUID.data1 = 0;
zeroGUID.data2 = 0;
uniqueGUID = zeroGUID;
partitionType = zeroGUID;
firstLBA = 0;
lastLBA = 0;
attributes = 0;
for (j = 0; j < NAME_SIZE; j++)
name[j] = '\0';
} // GPTPart::BlankPartition
// Returns 1 if the two partitions overlap, 0 if they don't
int GPTPart::DoTheyOverlap(GPTPart* other) {
int theyDo = 0;
// Don't bother checking unless these are defined (both start and end points
// are 0 for undefined partitions, so just check the start points)
if ((firstLBA != 0) && (other->firstLBA != 0)) {
if ((firstLBA < other->lastLBA) && (lastLBA >= other->firstLBA))
theyDo = 1;
if ((other->firstLBA < lastLBA) && (other->lastLBA >= firstLBA))
theyDo = 1;
} // if
return (theyDo);
} // GPTPart::DoTheyOverlap()
// Reverse the bytes of integral data types; used on big-endian systems.
void GPTPart::ReversePartBytes(void) {
ReverseBytes(&partitionType.data1, 8);
ReverseBytes(&partitionType.data2, 8);
ReverseBytes(&uniqueGUID.data1, 8);
ReverseBytes(&uniqueGUID.data2, 8);
ReverseBytes(&firstLBA, 8);
ReverseBytes(&lastLBA, 8);
ReverseBytes(&attributes, 8);
} // GPTPart::ReverseBytes()
// Display summary information; does nothing if the partition is empty.
void GPTPart::ShowSummary(int i, uint32_t blockSize, char* sizeInSI) {
int j;
if (firstLBA != 0) {
BytesToSI(blockSize * (lastLBA - firstLBA + 1), sizeInSI);
printf("%4d %14lu %14lu", i + 1, (unsigned long) firstLBA,
(unsigned long) lastLBA);
printf(" %-10s %04X ", sizeInSI,
typeHelper.GUIDToID(partitionType));
j = 0;
while ((name[j] != '\0') && (j < 44)) {
printf("%c", name[j]);
j += 2;
} // while
printf("\n");
} // if
} // GPTPart::ShowSummary()
// Show detailed partition information. Does nothing if the partition is
// empty (as determined by firstLBA being 0).
void GPTPart::ShowDetails(uint32_t blockSize) {
char temp[255];
int i;
uint64_t size;
if (firstLBA != 0) {
printf("Partition GUID code: %s ", GUIDToStr(partitionType, temp));
printf("(%s)\n", typeHelper.GUIDToName(partitionType, temp));
printf("Partition unique GUID: %s\n", GUIDToStr(uniqueGUID, temp));
printf("First sector: %llu (at %s)\n", (unsigned long long) firstLBA,
BytesToSI(firstLBA * blockSize, temp));
printf("Last sector: %llu (at %s)\n", (unsigned long long) lastLBA,
BytesToSI(lastLBA * blockSize, temp));
size = (lastLBA - firstLBA + 1);
printf("Partition size: %llu sectors (%s)\n", (unsigned long long)
size, BytesToSI(size * ((uint64_t) blockSize), temp));
printf("Attribute flags: %016llx\n", (unsigned long long) attributes);
printf("Partition name: ");
i = 0;
while ((name[i] != '\0') && (i < NAME_SIZE)) {
printf("%c", name[i]);
i += 2;
} // while
printf("\n");
} // if
} // GPTPart::ShowDetails()
/****************************************
* Functions requiring user interaction *
****************************************/
// Change the type code on the partition.
void GPTPart::ChangeType(void) {
char typeName[255], line[255];
int typeNum = 0xFFFF;
// uint16_t typeNum = 0xFFFF;
GUIDData newType;
printf("Current type is '%s'\n", GetNameType(line));
// printf("Current type is '%s'\n", typeHelper.GUIDToName(partitionType, typeName));
while ((!typeHelper.Valid(typeNum)) && (typeNum != 0)) {
printf("Hex code (L to show codes, 0 to enter raw code): ");
fgets(line, 255, stdin);
sscanf(line, "%X", &typeNum);
if ((line[0] == 'L') || (line[0] == 'l'))
typeHelper.ShowTypes();
} // while
if (typeNum != 0) // user entered a code, so convert it
newType = typeHelper.IDToGUID((uint16_t) typeNum);
else // user wants to enter the GUID directly, so do that
newType = GetGUID();
partitionType = newType;
printf("Changed system type of partition to '%s'\n",
typeHelper.GUIDToName(partitionType, typeName));
} // GPTPart::ChangeType()
// Set the name for a partition to theName, or prompt for a name if
// theName is a NULL pointer. Note that theName is a standard C-style
// string, although the GUID partition definition requires a UTF-16LE
// string. This function creates a simple-minded copy for this.
void GPTPart::SetName(unsigned char* theName) {
char newName[NAME_SIZE]; // New name
int i;
// Blank out new name string, just to be on the safe side....
for (i = 0; i < NAME_SIZE; i++)
newName[i] = '\0';
if (theName == NULL) { // No name specified, so get one from the user
printf("Enter name: ");
fgets(newName, NAME_SIZE / 2, stdin);
// Input is likely to include a newline, so remove it....
i = strlen(newName);
if (newName[i - 1] == '\n')
newName[i - 1] = '\0';
} else {
strcpy(newName, (char*) theName);
} // if
// Copy the C-style ASCII string from newName into a form that the GPT
// table will accept....
for (i = 0; i < NAME_SIZE; i++) {
if ((i % 2) == 0) {
name[i] = newName[(i / 2)];
} else {
name[i] = '\0';
} // if/else
} // for
} // GPTPart::SetName()
/***********************************
* Non-class but related functions *
***********************************/
// Recursive quick sort algorithm for GPT partitions. Note that if there
// are any empties in the specified range, they'll be sorted to the
// start, resulting in a sorted set of partitions that begins with
// partition 2, 3, or higher.
void QuickSortGPT(GPTPart* partitions, int start, int finish) {
uint64_t starterValue; // starting location of median partition
int left, right;
GPTPart temp;
left = start;
right = finish;
starterValue = partitions[(start + finish) / 2].GetFirstLBA();
do {
while (partitions[left].GetFirstLBA() < starterValue)
left++;
while (partitions[right].GetFirstLBA() > starterValue)
right--;
if (left <= right) {
temp = partitions[left];
partitions[left] = partitions[right];
partitions[right] = temp;
left++;
right--;
} // if
} while (left <= right);
if (start < right) QuickSortGPT(partitions, start, right);
if (finish > left) QuickSortGPT(partitions, left, finish);
} // QuickSortGPT()