blob: 9b65a1dfa12bae255bec0f4fe4c6499089207b6e [file] [log] [blame]
/*
*
* Copyright 2015-2016, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <grpc/census.h>
#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include <grpc/support/port_platform.h>
#include <grpc/support/useful.h>
#include <stdbool.h>
#include <string.h>
#include "src/core/support/string.h"
// Functions in this file support the public tag_set API, as well as
// encoding/decoding tag_sets as part of context propagation across
// RPC's. The overall requirements (in approximate priority order) for the
// tag_set representations:
// 1. Efficient conversion to/from wire format
// 2. Minimal bytes used on-wire
// 3. Efficient tag set creation
// 4. Efficient lookup of value for a key
// 5. Efficient lookup of value for an index (to support iteration)
// 6. Minimal memory footprint
//
// Notes on tradeoffs/decisions:
// * tag includes 1 byte length of key, as well as nil-terminating byte. These
// are to aid in efficient parsing and the ability to directly return key
// strings. This is more important than saving a single byte/tag on the wire.
// * The wire encoding uses only single byte values. This eliminates the need
// to handle endian-ness conversions. It also means there is a hard upper
// limit of 255 for both CENSUS_MAX_TAG_KV_LEN and CENSUS_MAX_PROPAGATED_TAGS.
// * Keep all tag information (keys/values/flags) in a single memory buffer,
// that can be directly copied to the wire.14
// * Binary tags share the same structure as, but are encoded separately from,
// non-binary tags. This is primarily because non-binary tags are far more
// likely to be repeated across multiple RPC calls, so are more efficiently
// cached and compressed in any metadata schemes.
// * all lengths etc. are restricted to one byte. This eliminates endian
// issues.
// Structure representing a set of tags. Essentially a count of number of tags
// present, and pointer to a chunk of memory that contains the per-tag details.
struct tag_set {
int ntags; // number of tags.
int ntags_alloc; // ntags + number of deleted tags (total number of tags
// in all of kvm). This will always be == ntags, except during the process
// of building a new tag set.
size_t kvm_size; // number of bytes allocated for key/value storage.
size_t kvm_used; // number of bytes of used key/value memory
char *kvm; // key/value memory. Consists of repeated entries of:
// Offset Size Description
// 0 1 Key length, including trailing 0. (K)
// 1 1 Value length. (V)
// 2 1 Flags
// 3 K Key bytes
// 3 + K V Value bytes
//
// We refer to the first 3 entries as the 'tag header'. If extra values are
// introduced in the header, you will need to modify the TAG_HEADER_SIZE
// constant, the raw_tag structure (and everything that uses it) and the
// encode/decode functions appropriately.
};
// Number of bytes in tag header.
#define TAG_HEADER_SIZE 3 // key length (1) + value length (1) + flags (1)
// Offsets to tag header entries.
#define KEY_LEN_OFFSET 0
#define VALUE_LEN_OFFSET 1
#define FLAG_OFFSET 2
// raw_tag represents the raw-storage form of a tag in the kvm of a tag_set.
struct raw_tag {
uint8_t key_len;
uint8_t value_len;
uint8_t flags;
char *key;
char *value;
};
// Use a reserved flag bit for indication of deleted tag.
#define CENSUS_TAG_DELETED CENSUS_TAG_RESERVED
#define CENSUS_TAG_IS_DELETED(flags) (flags & CENSUS_TAG_DELETED)
// Primary (external) representation of a tag set. Composed of 3 underlying
// tag_set structs, one for each of the binary/printable propagated tags, and
// one for everything else. This is to efficiently support tag
// encoding/decoding.
struct census_tag_set {
struct tag_set tags[3];
census_tag_set_create_status status;
};
// Indices into the tags member of census_tag_set
#define PROPAGATED_TAGS 0
#define PROPAGATED_BINARY_TAGS 1
#define LOCAL_TAGS 2
// Extract a raw tag given a pointer (raw) to the tag header. Allow for some
// extra bytes in the tag header (see encode/decode functions for usage: this
// allows for future expansion of the tag header).
static char *decode_tag(struct raw_tag *tag, char *header, int offset) {
tag->key_len = (uint8_t)(*header++);
tag->value_len = (uint8_t)(*header++);
tag->flags = (uint8_t)(*header++);
header += offset;
tag->key = header;
header += tag->key_len;
tag->value = header;
return header + tag->value_len;
}
// Make a copy (in 'to') of an existing tag_set.
static void tag_set_copy(struct tag_set *to, const struct tag_set *from) {
memcpy(to, from, sizeof(struct tag_set));
to->kvm = gpr_malloc(to->kvm_size);
memcpy(to->kvm, from->kvm, from->kvm_used);
}
// Delete a tag from a tag_set, if it exists (returns true if it did).
static bool tag_set_delete_tag(struct tag_set *tags, const char *key,
size_t key_len) {
char *kvp = tags->kvm;
for (int i = 0; i < tags->ntags_alloc; i++) {
uint8_t *flags = (uint8_t *)(kvp + FLAG_OFFSET);
struct raw_tag tag;
kvp = decode_tag(&tag, kvp, 0);
if (CENSUS_TAG_IS_DELETED(tag.flags)) continue;
if ((key_len == tag.key_len) && (memcmp(key, tag.key, key_len) == 0)) {
*flags |= CENSUS_TAG_DELETED;
tags->ntags--;
return true;
}
}
return false;
}
// Delete a tag from a census_tag_set, return true if it existed.
static bool cts_delete_tag(census_tag_set *tags, const census_tag *tag,
size_t key_len) {
return (tag_set_delete_tag(&tags->tags[LOCAL_TAGS], tag->key, key_len) ||
tag_set_delete_tag(&tags->tags[PROPAGATED_TAGS], tag->key, key_len) ||
tag_set_delete_tag(&tags->tags[PROPAGATED_BINARY_TAGS], tag->key,
key_len));
}
// Add a tag to a tag_set. Return true on sucess, false if the tag could
// not be added because of constraints on tag set size. This function should
// not be called if the tag may already exist (in a non-deleted state) in
// the tag_set, as that would result in two tags with the same key.
static bool tag_set_add_tag(struct tag_set *tags, const census_tag *tag,
size_t key_len) {
if (tags->ntags == CENSUS_MAX_PROPAGATED_TAGS) {
return false;
}
const size_t tag_size = key_len + tag->value_len + TAG_HEADER_SIZE;
if (tags->kvm_used + tag_size > tags->kvm_size) {
// allocate new memory if needed
tags->kvm_size += 2 * CENSUS_MAX_TAG_KV_LEN + TAG_HEADER_SIZE;
char *new_kvm = gpr_malloc(tags->kvm_size);
memcpy(new_kvm, tags->kvm, tags->kvm_used);
gpr_free(tags->kvm);
tags->kvm = new_kvm;
}
char *kvp = tags->kvm + tags->kvm_used;
*kvp++ = (char)key_len;
*kvp++ = (char)tag->value_len;
// ensure reserved flags are not used.
*kvp++ = (char)(tag->flags & (CENSUS_TAG_PROPAGATE | CENSUS_TAG_STATS |
CENSUS_TAG_BINARY));
memcpy(kvp, tag->key, key_len);
kvp += key_len;
memcpy(kvp, tag->value, tag->value_len);
tags->kvm_used += tag_size;
tags->ntags++;
tags->ntags_alloc++;
return true;
}
// Add/modify/delete a tag to/in a census_tag_set. Caller must validate that
// tag key etc. are valid.
static void cts_modify_tag(census_tag_set *tags, const census_tag *tag,
size_t key_len) {
// First delete the tag if it is already present.
bool deleted = cts_delete_tag(tags, tag, key_len);
// Determine if we need to add it back.
bool call_add = tag->value != NULL && tag->value_len != 0;
bool added = false;
if (call_add) {
if (CENSUS_TAG_IS_PROPAGATED(tag->flags)) {
if (CENSUS_TAG_IS_BINARY(tag->flags)) {
added =
tag_set_add_tag(&tags->tags[PROPAGATED_BINARY_TAGS], tag, key_len);
} else {
added = tag_set_add_tag(&tags->tags[PROPAGATED_TAGS], tag, key_len);
}
} else {
added = tag_set_add_tag(&tags->tags[LOCAL_TAGS], tag, key_len);
}
}
if (deleted) {
if (call_add) {
tags->status.n_modified_tags++;
} else {
tags->status.n_deleted_tags++;
}
} else {
if (added) {
tags->status.n_added_tags++;
} else {
tags->status.n_ignored_tags++;
}
}
}
// Remove memory used for deleted tags from the tag set. Basic algorithm:
// 1) Walk through tag set to find first deleted tag. Record where it is.
// 2) Find the next not-deleted tag. Copy all of kvm from there to the end
// "over" the deleted tags
// 3) repeat #1 and #2 until we have seen all tags
// 4) if we are still looking for a not-deleted tag, then all the end portion
// of the kvm is deleted. Just reduce the used amount of memory by the
// appropriate amount.
static void tag_set_flatten(struct tag_set *tags) {
if (tags->ntags == tags->ntags_alloc) return;
bool found_deleted = false; // found a deleted tag.
char *kvp = tags->kvm;
char *dbase = NULL; // record location of deleted tag
for (int i = 0; i < tags->ntags_alloc; i++) {
struct raw_tag tag;
char *next_kvp = decode_tag(&tag, kvp, 0);
if (found_deleted) {
if (!CENSUS_TAG_IS_DELETED(tag.flags)) {
ptrdiff_t reduce = kvp - dbase; // #bytes in deleted tags
GPR_ASSERT(reduce > 0);
ptrdiff_t copy_size = tags->kvm + tags->kvm_used - kvp;
GPR_ASSERT(copy_size > 0);
memmove(dbase, kvp, (size_t)copy_size);
tags->kvm_used -= (size_t)reduce;
next_kvp -= reduce;
found_deleted = false;
}
} else {
if (CENSUS_TAG_IS_DELETED(tag.flags)) {
dbase = kvp;
found_deleted = true;
}
}
kvp = next_kvp;
}
if (found_deleted) {
GPR_ASSERT(dbase > tags->kvm);
tags->kvm_used = (size_t)(dbase - tags->kvm);
}
tags->ntags_alloc = tags->ntags;
}
census_tag_set *census_tag_set_create(
const census_tag_set *base, const census_tag *tags, int ntags,
census_tag_set_create_status const **status) {
census_tag_set *new_ts = gpr_malloc(sizeof(census_tag_set));
// If we are given a base, copy it into our new tag set. Otherwise set it
// to zero/NULL everything.
if (base == NULL) {
memset(new_ts, 0, sizeof(census_tag_set));
} else {
tag_set_copy(&new_ts->tags[PROPAGATED_TAGS], &base->tags[PROPAGATED_TAGS]);
tag_set_copy(&new_ts->tags[PROPAGATED_BINARY_TAGS],
&base->tags[PROPAGATED_BINARY_TAGS]);
tag_set_copy(&new_ts->tags[LOCAL_TAGS], &base->tags[LOCAL_TAGS]);
memset(&new_ts->status, 0, sizeof(new_ts->status));
}
// Walk over the additional tags and, for those that aren't invalid, modify
// the tag set to add/replace/delete as required.
for (int i = 0; i < ntags; i++) {
const census_tag *tag = &tags[i];
size_t key_len = strlen(tag->key) + 1;
// ignore the tag if it is too long/short.
if (key_len != 1 && key_len <= CENSUS_MAX_TAG_KV_LEN &&
tag->value_len <= CENSUS_MAX_TAG_KV_LEN) {
cts_modify_tag(new_ts, tag, key_len);
} else {
new_ts->status.n_invalid_tags++;
}
}
// Remove any deleted tags, update status if needed, and return.
tag_set_flatten(&new_ts->tags[PROPAGATED_TAGS]);
tag_set_flatten(&new_ts->tags[PROPAGATED_BINARY_TAGS]);
tag_set_flatten(&new_ts->tags[LOCAL_TAGS]);
new_ts->status.n_propagated_tags = new_ts->tags[PROPAGATED_TAGS].ntags;
new_ts->status.n_propagated_binary_tags =
new_ts->tags[PROPAGATED_BINARY_TAGS].ntags;
new_ts->status.n_local_tags = new_ts->tags[LOCAL_TAGS].ntags;
if (status) {
*status = &new_ts->status;
}
return new_ts;
}
const census_tag_set_create_status *census_tag_set_get_create_status(
const census_tag_set *tags) {
return &tags->status;
}
void census_tag_set_destroy(census_tag_set *tags) {
gpr_free(tags->tags[PROPAGATED_TAGS].kvm);
gpr_free(tags->tags[PROPAGATED_BINARY_TAGS].kvm);
gpr_free(tags->tags[LOCAL_TAGS].kvm);
gpr_free(tags);
}
// Initialize a tag set iterator. Must be called before first use of the
// iterator.
void census_tag_set_initialize_iterator(const census_tag_set *tags,
census_tag_set_iterator *iterator) {
iterator->tags = tags;
iterator->index = 0;
if (tags->tags[PROPAGATED_TAGS].ntags != 0) {
iterator->base = PROPAGATED_TAGS;
iterator->kvm = tags->tags[PROPAGATED_TAGS].kvm;
} else if (tags->tags[PROPAGATED_BINARY_TAGS].ntags != 0) {
iterator->base = PROPAGATED_BINARY_TAGS;
iterator->kvm = tags->tags[PROPAGATED_BINARY_TAGS].kvm;
} else if (tags->tags[LOCAL_TAGS].ntags != 0) {
iterator->base = LOCAL_TAGS;
iterator->kvm = tags->tags[LOCAL_TAGS].kvm;
} else {
iterator->base = -1;
}
}
// Get the contents of the "next" tag in the tag set. If there are no more
// tags in the tag set, returns 0 (and 'tag' contents will be unchanged),
// otherwise returns 1. */
int census_tag_set_next_tag(census_tag_set_iterator *iterator,
census_tag *tag) {
if (iterator->base < 0) {
return 0;
}
struct raw_tag raw;
iterator->kvm = decode_tag(&raw, iterator->kvm, 0);
tag->key = raw.key;
tag->value = raw.value;
tag->value_len = raw.value_len;
tag->flags = raw.flags;
if (++iterator->index == iterator->tags->tags[iterator->base].ntags) {
do {
if (iterator->base == LOCAL_TAGS) {
iterator->base = -1;
return 1;
}
} while (iterator->tags->tags[++iterator->base].ntags == 0);
iterator->index = 0;
iterator->kvm = iterator->tags->tags[iterator->base].kvm;
}
return 1;
}
// Find a tag in a tag_set by key. Return true if found, false otherwise.
static bool tag_set_get_tag_by_key(const struct tag_set *tags, const char *key,
size_t key_len, census_tag *tag) {
char *kvp = tags->kvm;
for (int i = 0; i < tags->ntags; i++) {
struct raw_tag raw;
kvp = decode_tag(&raw, kvp, 0);
if (key_len == raw.key_len && memcmp(raw.key, key, key_len) == 0) {
tag->key = raw.key;
tag->value = raw.value;
tag->value_len = raw.value_len;
tag->flags = raw.flags;
return true;
}
}
return false;
}
int census_tag_set_get_tag_by_key(const census_tag_set *tags, const char *key,
census_tag *tag) {
size_t key_len = strlen(key) + 1;
if (key_len == 1) {
return 0;
}
if (tag_set_get_tag_by_key(&tags->tags[PROPAGATED_TAGS], key, key_len, tag) ||
tag_set_get_tag_by_key(&tags->tags[PROPAGATED_BINARY_TAGS], key, key_len,
tag) ||
tag_set_get_tag_by_key(&tags->tags[LOCAL_TAGS], key, key_len, tag)) {
return 1;
}
return 0;
}
// tag_set encoding and decoding functions.
//
// Wire format for tag sets on the wire:
//
// First, a tag set header:
//
// offset bytes description
// 0 1 version number
// 1 1 number of bytes in this header. This allows for future
// expansion.
// 2 1 number of bytes in each tag header.
// 3 1 ntags value from tag set.
//
// This is followed by the key/value memory from struct tag_set.
#define ENCODED_VERSION 0 // Version number
#define ENCODED_HEADER_SIZE 4 // size of tag set header
// Encode a tag set. Returns 0 if buffer is too small.
static size_t tag_set_encode(const struct tag_set *tags, char *buffer,
size_t buf_size) {
if (buf_size < ENCODED_HEADER_SIZE + tags->kvm_used) {
return 0;
}
buf_size -= ENCODED_HEADER_SIZE;
*buffer++ = (char)ENCODED_VERSION;
*buffer++ = (char)ENCODED_HEADER_SIZE;
*buffer++ = (char)TAG_HEADER_SIZE;
*buffer++ = (char)tags->ntags;
if (tags->ntags == 0) {
return ENCODED_HEADER_SIZE;
}
memcpy(buffer, tags->kvm, tags->kvm_used);
return ENCODED_HEADER_SIZE + tags->kvm_used;
}
char *census_tag_set_encode(const census_tag_set *tags, char *buffer,
size_t buf_size, size_t *print_buf_size,
size_t *bin_buf_size) {
*print_buf_size =
tag_set_encode(&tags->tags[PROPAGATED_TAGS], buffer, buf_size);
if (*print_buf_size == 0) {
return NULL;
}
char *b_buffer = buffer + *print_buf_size;
*bin_buf_size = tag_set_encode(&tags->tags[PROPAGATED_BINARY_TAGS], b_buffer,
buf_size - *print_buf_size);
if (*bin_buf_size == 0) {
return NULL;
}
return b_buffer;
}
// Decode a tag set.
static void tag_set_decode(struct tag_set *tags, const char *buffer,
size_t size) {
uint8_t version = (uint8_t)(*buffer++);
uint8_t header_size = (uint8_t)(*buffer++);
uint8_t tag_header_size = (uint8_t)(*buffer++);
tags->ntags = tags->ntags_alloc = (int)(*buffer++);
if (tags->ntags == 0) {
tags->ntags_alloc = 0;
tags->kvm_size = 0;
tags->kvm_used = 0;
tags->kvm = NULL;
return;
}
if (header_size != ENCODED_HEADER_SIZE) {
GPR_ASSERT(version != ENCODED_VERSION);
GPR_ASSERT(ENCODED_HEADER_SIZE < header_size);
buffer += (header_size - ENCODED_HEADER_SIZE);
}
tags->kvm_used = size - header_size;
tags->kvm_size = tags->kvm_used + CENSUS_MAX_TAG_KV_LEN;
tags->kvm = gpr_malloc(tags->kvm_size);
if (tag_header_size != TAG_HEADER_SIZE) {
// something new in the tag information. I don't understand it, so
// don't copy it over.
GPR_ASSERT(version != ENCODED_VERSION);
GPR_ASSERT(tag_header_size > TAG_HEADER_SIZE);
char *kvp = tags->kvm;
for (int i = 0; i < tags->ntags; i++) {
memcpy(kvp, buffer, TAG_HEADER_SIZE);
kvp += header_size;
struct raw_tag raw;
buffer =
decode_tag(&raw, (char *)buffer, tag_header_size - TAG_HEADER_SIZE);
memcpy(kvp, raw.key, (size_t)raw.key_len + raw.value_len);
kvp += raw.key_len + raw.value_len;
}
} else {
memcpy(tags->kvm, buffer, tags->kvm_used);
}
}
census_tag_set *census_tag_set_decode(const char *buffer, size_t size,
const char *bin_buffer, size_t bin_size) {
census_tag_set *new_ts = gpr_malloc(sizeof(census_tag_set));
memset(&new_ts->tags[LOCAL_TAGS], 0, sizeof(struct tag_set));
if (buffer == NULL) {
memset(&new_ts->tags[PROPAGATED_TAGS], 0, sizeof(struct tag_set));
} else {
tag_set_decode(&new_ts->tags[PROPAGATED_TAGS], buffer, size);
}
if (bin_buffer == NULL) {
memset(&new_ts->tags[PROPAGATED_BINARY_TAGS], 0, sizeof(struct tag_set));
} else {
tag_set_decode(&new_ts->tags[PROPAGATED_BINARY_TAGS], bin_buffer, bin_size);
}
memset(&new_ts->status, 0, sizeof(new_ts->status));
new_ts->status.n_propagated_tags = new_ts->tags[PROPAGATED_TAGS].ntags;
new_ts->status.n_propagated_binary_tags =
new_ts->tags[PROPAGATED_BINARY_TAGS].ntags;
// TODO(aveitch): check that BINARY flag is correct for each type.
return new_ts;
}