blob: a78f84e5e6496b3aa450f5e36b30f0363da2057d [file] [log] [blame]
#!/usr/bin/env python
# Copyright 2015, Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
Read GRPC basic profiles, analyze the data.
Usage:
bins/basicprof/qps_smoke_test > log
cat log | tools/profile_analyzer/profile_analyzer.py
"""
import collections
import itertools
import math
import re
# Create a regex to parse output of the C core basic profiler,
# as defined in src/core/profiling/basic_timers.c.
_RE_LINE = re.compile(r'GRPC_LAT_PROF ' +
r'([0-9]+\.[0-9]+) 0x([0-9a-f]+) ([{}.!]) ([0-9]+) ' +
r'([^ ]+) ([^ ]+) ([0-9]+)')
Entry = collections.namedtuple(
'Entry',
['time', 'thread', 'type', 'tag', 'id', 'file', 'line'])
class ImportantMark(object):
def __init__(self, entry, stack):
self._entry = entry
self._pre_stack = stack
self._post_stack = list()
self._n = len(stack) # we'll also compute times to that many closing }s
@property
def entry(self):
return self._entry
@property
def max_depth(self):
return self._n
def append_post_entry(self, post_entry):
if self._n > 0 and post_entry.thread == self._entry.thread:
self._post_stack.append(post_entry)
self._n -= 1
def get_deltas(self):
pre_and_post_stacks = itertools.chain(self._pre_stack, self._post_stack)
return collections.OrderedDict((stack_entry,
abs(self._entry.time - stack_entry.time))
for stack_entry in pre_and_post_stacks)
def print_block_statistics(block_times):
print '{:<12s} {:>12s} {:>12s} {:>12s} {:>12s}'.format(
'Block tag', '50th p.', '90th p.', '95th p.', '99th p.')
for tag, tag_times in sorted(block_times.iteritems()):
times = sorted(tag_times)
print '{:<12d}: {:>12.3f} {:>12.3f} {:>12.3f} {:>12.3f}'.format(
tag, percentile(times, 50), percentile(times, 90),
percentile(times, 95), percentile(times, 99))
print
def print_grouped_imark_statistics(group_key, imarks_group):
values = collections.OrderedDict()
for imark in imarks_group:
deltas = imark.get_deltas()
for relative_entry, time_delta_us in deltas.iteritems():
key = '{tag} {type} ({file}:{line})'.format(**relative_entry._asdict())
l = values.setdefault(key, list())
l.append(time_delta_us)
print group_key
print '{:<50s} {:>12s} {:>12s} {:>12s} {:>12s}'.format(
'Relative mark', '50th p.', '90th p.', '95th p.', '99th p.')
for key, time_values in values.iteritems():
time_values = sorted(time_values)
print '{:<50s}: {:>12.3f} {:>12.3f} {:>12.3f} {:>12.3f}'.format(
key, percentile(time_values, 50), percentile(time_values, 90),
percentile(time_values, 95), percentile(time_values, 99))
print
def percentile(vals, percent):
""" Calculates the interpolated percentile given a sorted sequence and a
percent (in the usual 0-100 range)."""
assert vals, "Empty input sequence."
percent /= 100.0
k = (len(vals)-1) * percent
f = math.floor(k)
c = math.ceil(k)
if f == c:
return vals[int(k)]
# else, interpolate
d0 = vals[int(f)] * (c-k)
d1 = vals[int(c)] * (k-f)
return d0 + d1
def entries(f):
for line in f:
m = _RE_LINE.match(line)
if not m: continue
yield Entry(time=float(m.group(1)),
thread=m.group(2),
type=m.group(3),
tag=int(m.group(4)),
id=m.group(5),
file=m.group(6),
line=m.group(7))
def main(f):
percentiles = (50, 90, 95, 99)
threads = collections.defaultdict(lambda: collections.defaultdict(list))
times = collections.defaultdict(list)
important_marks = collections.defaultdict(list)
stack_depth = collections.defaultdict(int)
for entry in entries(f):
thread = threads[entry.thread]
if entry.type == '{':
thread[entry.tag].append(entry)
stack_depth[entry.thread] += 1
if entry.type == '!':
# Save a snapshot of the current stack inside a new ImportantMark instance.
# Get all entries _for any tag in the thread_.
stack = [e for entries_for_tag in thread.itervalues()
for e in entries_for_tag]
imark_group_key = '{tag}/{thread}@{file}:{line}'.format(**entry._asdict())
important_marks[imark_group_key].append(ImportantMark(entry, stack))
elif entry.type == '}':
last = thread[entry.tag].pop()
times[entry.tag].append(entry.time - last.time)
# only access the last "depth" imarks for the tag.
depth = stack_depth[entry.thread]
for imarks_group in important_marks.itervalues():
for imark in imarks_group[-depth:]:
# if at a '}' deeper than where the current "imark" was found, ignore.
if depth > imark.max_depth: continue
imark.append_post_entry(entry)
stack_depth[entry.thread] -= 1
print
print 'Block marks:'
print '============'
print_block_statistics(times)
print
print 'Important marks:'
print '================'
for group_key, imarks_group in important_marks.iteritems():
print_grouped_imark_statistics(group_key, imarks_group)
if __name__ == '__main__':
# If invoked without arguments, read off sys.stdin. If one argument is given,
# take it as a file name and open it for reading.
import sys
f = sys.stdin
if len(sys.argv) == 2:
f = open(sys.argv[1], 'r')
main(f)