blob: c8483bd891cbe73aac0a1faa9e0fe6fe04413b51 [file] [log] [blame]
/*
*
* Copyright 2015, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <grpc/support/port_platform.h>
#ifdef GPR_WINSOCK_SOCKET
#include "src/core/iomgr/sockaddr_win32.h"
#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include <grpc/support/log_win32.h>
#include <grpc/support/slice_buffer.h>
#include <grpc/support/useful.h>
#include "src/core/iomgr/alarm.h"
#include "src/core/iomgr/iocp_windows.h"
#include "src/core/iomgr/sockaddr.h"
#include "src/core/iomgr/sockaddr_utils.h"
#include "src/core/iomgr/socket_windows.h"
#include "src/core/iomgr/tcp_client.h"
static int set_non_block(SOCKET sock) {
int status;
unsigned long param = 1;
DWORD ret;
status = WSAIoctl(sock, FIONBIO, &param, sizeof(param), NULL, 0, &ret,
NULL, NULL);
return status == 0;
}
static int set_dualstack(SOCKET sock) {
int status;
unsigned long param = 0;
status = setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY,
(const char *) &param, sizeof(param));
return status == 0;
}
int grpc_tcp_prepare_socket(SOCKET sock) {
if (!set_non_block(sock))
return 0;
if (!set_dualstack(sock))
return 0;
return 1;
}
typedef struct grpc_tcp {
/* This is our C++ class derivation emulation. */
grpc_endpoint base;
/* The one socket this endpoint is using. */
grpc_winsocket *socket;
/* Refcounting how many operations are in progress. */
gpr_refcount refcount;
grpc_endpoint_read_cb read_cb;
void *read_user_data;
gpr_slice read_slice;
int outstanding_read;
grpc_endpoint_write_cb write_cb;
void *write_user_data;
gpr_slice_buffer write_slices;
int outstanding_write;
/* The IO Completion Port runs from another thread. We need some mechanism
to protect ourselves when requesting a shutdown. */
gpr_mu mu;
int shutting_down;
} grpc_tcp;
static void tcp_ref(grpc_tcp *tcp) {
gpr_ref(&tcp->refcount);
}
static void tcp_unref(grpc_tcp *tcp) {
if (gpr_unref(&tcp->refcount)) {
gpr_slice_buffer_destroy(&tcp->write_slices);
grpc_winsocket_orphan(tcp->socket);
gpr_mu_destroy(&tcp->mu);
gpr_free(tcp);
}
}
/* Asynchronous callback from the IOCP, or the background thread. */
static void on_read(void *tcpp, int from_iocp) {
grpc_tcp *tcp = (grpc_tcp *) tcpp;
grpc_winsocket *socket = tcp->socket;
gpr_slice sub;
gpr_slice *slice = NULL;
size_t nslices = 0;
grpc_endpoint_cb_status status;
grpc_endpoint_read_cb cb = tcp->read_cb;
grpc_winsocket_callback_info *info = &socket->read_info;
void *opaque = tcp->read_user_data;
int do_abort = 0;
gpr_mu_lock(&tcp->mu);
if (!from_iocp || tcp->shutting_down) {
/* If we are here with from_iocp set to true, it means we got raced to
shutting down the endpoint. No actual abort callback will happen
though, so we're going to do it from here. */
do_abort = 1;
}
gpr_mu_unlock(&tcp->mu);
if (do_abort) {
if (from_iocp) gpr_slice_unref(tcp->read_slice);
tcp_unref(tcp);
cb(opaque, NULL, 0, GRPC_ENDPOINT_CB_SHUTDOWN);
return;
}
GPR_ASSERT(tcp->outstanding_read);
if (socket->read_info.wsa_error != 0) {
char *utf8_message = gpr_format_message(info->wsa_error);
gpr_log(GPR_ERROR, "ReadFile overlapped error: %s", utf8_message);
gpr_free(utf8_message);
status = GRPC_ENDPOINT_CB_ERROR;
socket->closed_early = 1;
} else {
if (info->bytes_transfered != 0) {
sub = gpr_slice_sub(tcp->read_slice, 0, info->bytes_transfered);
status = GRPC_ENDPOINT_CB_OK;
slice = &sub;
nslices = 1;
} else {
gpr_slice_unref(tcp->read_slice);
status = GRPC_ENDPOINT_CB_EOF;
}
}
tcp->outstanding_read = 0;
tcp_unref(tcp);
cb(opaque, slice, nslices, status);
}
static void win_notify_on_read(grpc_endpoint *ep,
grpc_endpoint_read_cb cb, void *arg) {
grpc_tcp *tcp = (grpc_tcp *) ep;
grpc_winsocket *handle = tcp->socket;
grpc_winsocket_callback_info *info = &handle->read_info;
int status;
DWORD bytes_read = 0;
DWORD flags = 0;
int error;
WSABUF buffer;
GPR_ASSERT(!tcp->outstanding_read);
GPR_ASSERT(!tcp->shutting_down);
tcp_ref(tcp);
tcp->outstanding_read = 1;
tcp->read_cb = cb;
tcp->read_user_data = arg;
tcp->read_slice = gpr_slice_malloc(8192);
buffer.len = GPR_SLICE_LENGTH(tcp->read_slice);
buffer.buf = (char *)GPR_SLICE_START_PTR(tcp->read_slice);
/* First let's try a synchronous, non-blocking read. */
status = WSARecv(tcp->socket->socket, &buffer, 1, &bytes_read, &flags,
NULL, NULL);
info->wsa_error = status == 0 ? 0 : WSAGetLastError();
/* Did we get data immediately ? Yay. */
if (info->wsa_error != WSAEWOULDBLOCK) {
info->bytes_transfered = bytes_read;
/* This might heavily recurse. */
on_read(tcp, 1);
return;
}
/* Otherwise, let's retry, by queuing a read. */
memset(&tcp->socket->read_info.overlapped, 0, sizeof(OVERLAPPED));
status = WSARecv(tcp->socket->socket, &buffer, 1, &bytes_read, &flags,
&info->overlapped, NULL);
if (status == 0) {
grpc_socket_notify_on_read(tcp->socket, on_read, tcp);
return;
}
error = WSAGetLastError();
if (error != WSA_IO_PENDING) {
char *utf8_message = gpr_format_message(WSAGetLastError());
gpr_log(GPR_ERROR, "WSARecv error: %s - this means we're going to leak.",
utf8_message);
gpr_free(utf8_message);
/* I'm pretty sure this is a very bad situation there. Hence the log.
What will happen now is that the socket will neither wait for read
or write, unless the caller retry, which is unlikely, but I am not
sure if that's guaranteed. And there might also be a write pending.
This means that the future orphanage of that socket will be in limbo,
and we're going to leak it. I have no idea what could cause this
specific case however, aside from a parameter error from our call.
Normal read errors would actually happen during the overlapped
operation, which is the supported way to go for that. */
tcp->outstanding_read = 0;
tcp_unref(tcp);
cb(arg, NULL, 0, GRPC_ENDPOINT_CB_ERROR);
/* Per the comment above, I'm going to treat that case as a hard failure
for now, and leave the option to catch that and debug. */
__debugbreak();
return;
}
grpc_socket_notify_on_read(tcp->socket, on_read, tcp);
}
/* Asynchronous callback from the IOCP, or the background thread. */
static void on_write(void *tcpp, int from_iocp) {
grpc_tcp *tcp = (grpc_tcp *) tcpp;
grpc_winsocket *handle = tcp->socket;
grpc_winsocket_callback_info *info = &handle->write_info;
grpc_endpoint_cb_status status = GRPC_ENDPOINT_CB_OK;
grpc_endpoint_write_cb cb = tcp->write_cb;
void *opaque = tcp->write_user_data;
int do_abort = 0;
gpr_mu_lock(&tcp->mu);
if (!from_iocp || tcp->shutting_down) {
/* If we are here with from_iocp set to true, it means we got raced to
shutting down the endpoint. No actual abort callback will happen
though, so we're going to do it from here. */
do_abort = 1;
}
gpr_mu_unlock(&tcp->mu);
GPR_ASSERT(tcp->outstanding_write);
if (do_abort) {
if (from_iocp) gpr_slice_buffer_reset_and_unref(&tcp->write_slices);
tcp_unref(tcp);
cb(opaque, GRPC_ENDPOINT_CB_SHUTDOWN);
return;
}
if (info->wsa_error != 0) {
char *utf8_message = gpr_format_message(info->wsa_error);
gpr_log(GPR_ERROR, "WSASend overlapped error: %s", utf8_message);
gpr_free(utf8_message);
status = GRPC_ENDPOINT_CB_ERROR;
tcp->socket->closed_early = 1;
} else {
GPR_ASSERT(info->bytes_transfered == tcp->write_slices.length);
}
gpr_slice_buffer_reset_and_unref(&tcp->write_slices);
tcp->outstanding_write = 0;
tcp_unref(tcp);
cb(opaque, status);
}
/* Initiates a write. */
static grpc_endpoint_write_status win_write(grpc_endpoint *ep,
gpr_slice *slices, size_t nslices,
grpc_endpoint_write_cb cb,
void *arg) {
grpc_tcp *tcp = (grpc_tcp *) ep;
grpc_winsocket *socket = tcp->socket;
grpc_winsocket_callback_info *info = &socket->write_info;
unsigned i;
DWORD bytes_sent;
int status;
WSABUF local_buffers[16];
WSABUF *allocated = NULL;
WSABUF *buffers = local_buffers;
GPR_ASSERT(!tcp->outstanding_write);
GPR_ASSERT(!tcp->shutting_down);
tcp_ref(tcp);
tcp->outstanding_write = 1;
tcp->write_cb = cb;
tcp->write_user_data = arg;
gpr_slice_buffer_addn(&tcp->write_slices, slices, nslices);
if (tcp->write_slices.count > GPR_ARRAY_SIZE(local_buffers)) {
buffers = (WSABUF *) gpr_malloc(sizeof(WSABUF) * tcp->write_slices.count);
allocated = buffers;
}
for (i = 0; i < tcp->write_slices.count; i++) {
buffers[i].len = GPR_SLICE_LENGTH(tcp->write_slices.slices[i]);
buffers[i].buf = (char *)GPR_SLICE_START_PTR(tcp->write_slices.slices[i]);
}
/* First, let's try a synchronous, non-blocking write. */
status = WSASend(socket->socket, buffers, tcp->write_slices.count,
&bytes_sent, 0, NULL, NULL);
info->wsa_error = status == 0 ? 0 : WSAGetLastError();
/* We would kind of expect to get a WSAEWOULDBLOCK here, especially on a busy
connection that has its send queue filled up. But if we don't, then we can
avoid doing an async write operation at all. */
if (info->wsa_error != WSAEWOULDBLOCK) {
grpc_endpoint_write_status ret = GRPC_ENDPOINT_WRITE_ERROR;
if (status == 0) {
ret = GRPC_ENDPOINT_WRITE_DONE;
GPR_ASSERT(bytes_sent == tcp->write_slices.length);
} else {
char *utf8_message = gpr_format_message(info->wsa_error);
gpr_log(GPR_ERROR, "WSASend error: %s", utf8_message);
gpr_free(utf8_message);
}
if (allocated) gpr_free(allocated);
gpr_slice_buffer_reset_and_unref(&tcp->write_slices);
tcp->outstanding_write = 0;
tcp_unref(tcp);
return ret;
}
/* If we got a WSAEWOULDBLOCK earlier, then we need to re-do the same
operation, this time asynchronously. */
memset(&socket->write_info.overlapped, 0, sizeof(OVERLAPPED));
status = WSASend(socket->socket, buffers, tcp->write_slices.count,
&bytes_sent, 0, &socket->write_info.overlapped, NULL);
if (allocated) gpr_free(allocated);
/* It is possible the operation completed then. But we'd still get an IOCP
notification. So let's ignore it and wait for the IOCP. */
if (status != 0) {
int error = WSAGetLastError();
if (error != WSA_IO_PENDING) {
char *utf8_message = gpr_format_message(WSAGetLastError());
gpr_log(GPR_ERROR, "WSASend error: %s - this means we're going to leak.",
utf8_message);
gpr_free(utf8_message);
/* I'm pretty sure this is a very bad situation there. Hence the log.
What will happen now is that the socket will neither wait for read
or write, unless the caller retry, which is unlikely, but I am not
sure if that's guaranteed. And there might also be a read pending.
This means that the future orphanage of that socket will be in limbo,
and we're going to leak it. I have no idea what could cause this
specific case however, aside from a parameter error from our call.
Normal read errors would actually happen during the overlapped
operation, which is the supported way to go for that. */
tcp->outstanding_write = 0;
tcp_unref(tcp);
/* Per the comment above, I'm going to treat that case as a hard failure
for now, and leave the option to catch that and debug. */
__debugbreak();
return GRPC_ENDPOINT_WRITE_ERROR;
}
}
/* As all is now setup, we can now ask for the IOCP notification. It may
trigger the callback immediately however, but no matter. */
grpc_socket_notify_on_write(socket, on_write, tcp);
return GRPC_ENDPOINT_WRITE_PENDING;
}
static void win_add_to_pollset(grpc_endpoint *ep, grpc_pollset *pollset) {
grpc_tcp *tcp = (grpc_tcp *) ep;
grpc_iocp_add_socket(tcp->socket);
}
/* Initiates a shutdown of the TCP endpoint. This will queue abort callbacks
for the potential read and write operations. It is up to the caller to
guarantee this isn't called in parallel to a read or write request, so
we're not going to protect against these. However the IO Completion Port
callback will happen from another thread, so we need to protect against
concurrent access of the data structure in that regard. */
static void win_shutdown(grpc_endpoint *ep) {
grpc_tcp *tcp = (grpc_tcp *) ep;
gpr_mu_lock(&tcp->mu);
/* At that point, what may happen is that we're already inside the IOCP
callback. See the comments in on_read and on_write. */
tcp->shutting_down = 1;
grpc_winsocket_shutdown(tcp->socket);
gpr_mu_unlock(&tcp->mu);
}
static void win_destroy(grpc_endpoint *ep) {
grpc_tcp *tcp = (grpc_tcp *) ep;
tcp_unref(tcp);
}
static grpc_endpoint_vtable vtable = {
win_notify_on_read, win_write, win_add_to_pollset, win_shutdown, win_destroy
};
grpc_endpoint *grpc_tcp_create(grpc_winsocket *socket) {
grpc_tcp *tcp = (grpc_tcp *) gpr_malloc(sizeof(grpc_tcp));
memset(tcp, 0, sizeof(grpc_tcp));
tcp->base.vtable = &vtable;
tcp->socket = socket;
gpr_mu_init(&tcp->mu);
gpr_slice_buffer_init(&tcp->write_slices);
gpr_ref_init(&tcp->refcount, 1);
return &tcp->base;
}
#endif /* GPR_WINSOCK_SOCKET */