| // © 2017 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_FORMATTING |
| |
| #include "charstr.h" |
| #include "uassert.h" |
| #include "unicode/numberformatter.h" |
| #include "number_types.h" |
| #include "number_decimalquantity.h" |
| #include "double-conversion.h" |
| #include "number_roundingutils.h" |
| #include "number_skeletons.h" |
| #include "putilimp.h" |
| #include "string_segment.h" |
| |
| using namespace icu; |
| using namespace icu::number; |
| using namespace icu::number::impl; |
| |
| |
| using double_conversion::DoubleToStringConverter; |
| using icu::StringSegment; |
| |
| void number::impl::parseIncrementOption(const StringSegment &segment, |
| Precision &outPrecision, |
| UErrorCode &status) { |
| // Need to do char <-> UChar conversion... |
| U_ASSERT(U_SUCCESS(status)); |
| CharString buffer; |
| SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status); |
| |
| // Utilize DecimalQuantity/decNumber to parse this for us. |
| DecimalQuantity dq; |
| UErrorCode localStatus = U_ZERO_ERROR; |
| dq.setToDecNumber({buffer.data(), buffer.length()}, localStatus); |
| if (U_FAILURE(localStatus)) { |
| // throw new SkeletonSyntaxException("Invalid rounding increment", segment, e); |
| status = U_NUMBER_SKELETON_SYNTAX_ERROR; |
| return; |
| } |
| double increment = dq.toDouble(); |
| |
| // We also need to figure out how many digits. Do a brute force string operation. |
| int decimalOffset = 0; |
| while (decimalOffset < segment.length() && segment.charAt(decimalOffset) != '.') { |
| decimalOffset++; |
| } |
| if (decimalOffset == segment.length()) { |
| outPrecision = Precision::increment(increment); |
| } else { |
| int32_t fractionLength = segment.length() - decimalOffset - 1; |
| outPrecision = Precision::increment(increment).withMinFraction(fractionLength); |
| } |
| } |
| |
| namespace { |
| |
| int32_t getRoundingMagnitudeFraction(int maxFrac) { |
| if (maxFrac == -1) { |
| return INT32_MIN; |
| } |
| return -maxFrac; |
| } |
| |
| int32_t getRoundingMagnitudeSignificant(const DecimalQuantity &value, int maxSig) { |
| if (maxSig == -1) { |
| return INT32_MIN; |
| } |
| int magnitude = value.isZeroish() ? 0 : value.getMagnitude(); |
| return magnitude - maxSig + 1; |
| } |
| |
| int32_t getDisplayMagnitudeFraction(int minFrac) { |
| if (minFrac == 0) { |
| return INT32_MAX; |
| } |
| return -minFrac; |
| } |
| |
| int32_t getDisplayMagnitudeSignificant(const DecimalQuantity &value, int minSig) { |
| int magnitude = value.isZeroish() ? 0 : value.getMagnitude(); |
| return magnitude - minSig + 1; |
| } |
| |
| } |
| |
| |
| MultiplierProducer::~MultiplierProducer() = default; |
| |
| |
| digits_t roundingutils::doubleFractionLength(double input, int8_t* singleDigit) { |
| char buffer[DoubleToStringConverter::kBase10MaximalLength + 1]; |
| bool sign; // unused; always positive |
| int32_t length; |
| int32_t point; |
| DoubleToStringConverter::DoubleToAscii( |
| input, |
| DoubleToStringConverter::DtoaMode::SHORTEST, |
| 0, |
| buffer, |
| sizeof(buffer), |
| &sign, |
| &length, |
| &point |
| ); |
| |
| if (singleDigit == nullptr) { |
| // no-op |
| } else if (length == 1) { |
| *singleDigit = buffer[0] - '0'; |
| } else { |
| *singleDigit = -1; |
| } |
| |
| return static_cast<digits_t>(length - point); |
| } |
| |
| |
| Precision Precision::unlimited() { |
| return Precision(RND_NONE, {}); |
| } |
| |
| FractionPrecision Precision::integer() { |
| return constructFraction(0, 0); |
| } |
| |
| FractionPrecision Precision::fixedFraction(int32_t minMaxFractionPlaces) { |
| if (minMaxFractionPlaces >= 0 && minMaxFractionPlaces <= kMaxIntFracSig) { |
| return constructFraction(minMaxFractionPlaces, minMaxFractionPlaces); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| FractionPrecision Precision::minFraction(int32_t minFractionPlaces) { |
| if (minFractionPlaces >= 0 && minFractionPlaces <= kMaxIntFracSig) { |
| return constructFraction(minFractionPlaces, -1); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| FractionPrecision Precision::maxFraction(int32_t maxFractionPlaces) { |
| if (maxFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig) { |
| return constructFraction(0, maxFractionPlaces); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| FractionPrecision Precision::minMaxFraction(int32_t minFractionPlaces, int32_t maxFractionPlaces) { |
| if (minFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig && |
| minFractionPlaces <= maxFractionPlaces) { |
| return constructFraction(minFractionPlaces, maxFractionPlaces); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| Precision Precision::fixedSignificantDigits(int32_t minMaxSignificantDigits) { |
| if (minMaxSignificantDigits >= 1 && minMaxSignificantDigits <= kMaxIntFracSig) { |
| return constructSignificant(minMaxSignificantDigits, minMaxSignificantDigits); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| Precision Precision::minSignificantDigits(int32_t minSignificantDigits) { |
| if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) { |
| return constructSignificant(minSignificantDigits, -1); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| Precision Precision::maxSignificantDigits(int32_t maxSignificantDigits) { |
| if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) { |
| return constructSignificant(1, maxSignificantDigits); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| Precision Precision::minMaxSignificantDigits(int32_t minSignificantDigits, int32_t maxSignificantDigits) { |
| if (minSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig && |
| minSignificantDigits <= maxSignificantDigits) { |
| return constructSignificant(minSignificantDigits, maxSignificantDigits); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| IncrementPrecision Precision::increment(double roundingIncrement) { |
| if (roundingIncrement > 0.0) { |
| return constructIncrement(roundingIncrement, 0); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| CurrencyPrecision Precision::currency(UCurrencyUsage currencyUsage) { |
| return constructCurrency(currencyUsage); |
| } |
| |
| Precision FractionPrecision::withMinDigits(int32_t minSignificantDigits) const { |
| if (fType == RND_ERROR) { return *this; } // no-op in error state |
| if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) { |
| return constructFractionSignificant(*this, minSignificantDigits, -1); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| Precision FractionPrecision::withMaxDigits(int32_t maxSignificantDigits) const { |
| if (fType == RND_ERROR) { return *this; } // no-op in error state |
| if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) { |
| return constructFractionSignificant(*this, -1, maxSignificantDigits); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| // Private method on base class |
| Precision Precision::withCurrency(const CurrencyUnit ¤cy, UErrorCode &status) const { |
| if (fType == RND_ERROR) { return *this; } // no-op in error state |
| U_ASSERT(fType == RND_CURRENCY); |
| const char16_t *isoCode = currency.getISOCurrency(); |
| double increment = ucurr_getRoundingIncrementForUsage(isoCode, fUnion.currencyUsage, &status); |
| int32_t minMaxFrac = ucurr_getDefaultFractionDigitsForUsage( |
| isoCode, fUnion.currencyUsage, &status); |
| if (increment != 0.0) { |
| return constructIncrement(increment, minMaxFrac); |
| } else { |
| return constructFraction(minMaxFrac, minMaxFrac); |
| } |
| } |
| |
| // Public method on CurrencyPrecision subclass |
| Precision CurrencyPrecision::withCurrency(const CurrencyUnit ¤cy) const { |
| UErrorCode localStatus = U_ZERO_ERROR; |
| Precision result = Precision::withCurrency(currency, localStatus); |
| if (U_FAILURE(localStatus)) { |
| return {localStatus}; |
| } |
| return result; |
| } |
| |
| Precision IncrementPrecision::withMinFraction(int32_t minFrac) const { |
| if (fType == RND_ERROR) { return *this; } // no-op in error state |
| if (minFrac >= 0 && minFrac <= kMaxIntFracSig) { |
| return constructIncrement(fUnion.increment.fIncrement, minFrac); |
| } else { |
| return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
| } |
| } |
| |
| FractionPrecision Precision::constructFraction(int32_t minFrac, int32_t maxFrac) { |
| FractionSignificantSettings settings; |
| settings.fMinFrac = static_cast<digits_t>(minFrac); |
| settings.fMaxFrac = static_cast<digits_t>(maxFrac); |
| settings.fMinSig = -1; |
| settings.fMaxSig = -1; |
| PrecisionUnion union_; |
| union_.fracSig = settings; |
| return {RND_FRACTION, union_}; |
| } |
| |
| Precision Precision::constructSignificant(int32_t minSig, int32_t maxSig) { |
| FractionSignificantSettings settings; |
| settings.fMinFrac = -1; |
| settings.fMaxFrac = -1; |
| settings.fMinSig = static_cast<digits_t>(minSig); |
| settings.fMaxSig = static_cast<digits_t>(maxSig); |
| PrecisionUnion union_; |
| union_.fracSig = settings; |
| return {RND_SIGNIFICANT, union_}; |
| } |
| |
| Precision |
| Precision::constructFractionSignificant(const FractionPrecision &base, int32_t minSig, int32_t maxSig) { |
| FractionSignificantSettings settings = base.fUnion.fracSig; |
| settings.fMinSig = static_cast<digits_t>(minSig); |
| settings.fMaxSig = static_cast<digits_t>(maxSig); |
| PrecisionUnion union_; |
| union_.fracSig = settings; |
| return {RND_FRACTION_SIGNIFICANT, union_}; |
| } |
| |
| IncrementPrecision Precision::constructIncrement(double increment, int32_t minFrac) { |
| IncrementSettings settings; |
| // Note: For number formatting, fIncrement is used for RND_INCREMENT but not |
| // RND_INCREMENT_ONE or RND_INCREMENT_FIVE. However, fIncrement is used in all |
| // three when constructing a skeleton. |
| settings.fIncrement = increment; |
| settings.fMinFrac = static_cast<digits_t>(minFrac); |
| // One of the few pre-computed quantities: |
| // Note: it is possible for minFrac to be more than maxFrac... (misleading) |
| int8_t singleDigit; |
| settings.fMaxFrac = roundingutils::doubleFractionLength(increment, &singleDigit); |
| PrecisionUnion union_; |
| union_.increment = settings; |
| if (singleDigit == 1) { |
| // NOTE: In C++, we must return the correct value type with the correct union. |
| // It would be invalid to return a RND_FRACTION here because the methods on the |
| // IncrementPrecision type assume that the union is backed by increment data. |
| return {RND_INCREMENT_ONE, union_}; |
| } else if (singleDigit == 5) { |
| return {RND_INCREMENT_FIVE, union_}; |
| } else { |
| return {RND_INCREMENT, union_}; |
| } |
| } |
| |
| CurrencyPrecision Precision::constructCurrency(UCurrencyUsage usage) { |
| PrecisionUnion union_; |
| union_.currencyUsage = usage; |
| return {RND_CURRENCY, union_}; |
| } |
| |
| |
| RoundingImpl::RoundingImpl(const Precision& precision, UNumberFormatRoundingMode roundingMode, |
| const CurrencyUnit& currency, UErrorCode& status) |
| : fPrecision(precision), fRoundingMode(roundingMode), fPassThrough(false) { |
| if (precision.fType == Precision::RND_CURRENCY) { |
| fPrecision = precision.withCurrency(currency, status); |
| } |
| } |
| |
| RoundingImpl RoundingImpl::passThrough() { |
| return {}; |
| } |
| |
| bool RoundingImpl::isSignificantDigits() const { |
| return fPrecision.fType == Precision::RND_SIGNIFICANT; |
| } |
| |
| int32_t |
| RoundingImpl::chooseMultiplierAndApply(impl::DecimalQuantity &input, const impl::MultiplierProducer &producer, |
| UErrorCode &status) { |
| // Do not call this method with zero, NaN, or infinity. |
| U_ASSERT(!input.isZeroish()); |
| |
| // Perform the first attempt at rounding. |
| int magnitude = input.getMagnitude(); |
| int multiplier = producer.getMultiplier(magnitude); |
| input.adjustMagnitude(multiplier); |
| apply(input, status); |
| |
| // If the number rounded to zero, exit. |
| if (input.isZeroish() || U_FAILURE(status)) { |
| return multiplier; |
| } |
| |
| // If the new magnitude after rounding is the same as it was before rounding, then we are done. |
| // This case applies to most numbers. |
| if (input.getMagnitude() == magnitude + multiplier) { |
| return multiplier; |
| } |
| |
| // If the above case DIDN'T apply, then we have a case like 99.9 -> 100 or 999.9 -> 1000: |
| // The number rounded up to the next magnitude. Check if the multiplier changes; if it doesn't, |
| // we do not need to make any more adjustments. |
| int _multiplier = producer.getMultiplier(magnitude + 1); |
| if (multiplier == _multiplier) { |
| return multiplier; |
| } |
| |
| // We have a case like 999.9 -> 1000, where the correct output is "1K", not "1000". |
| // Fix the magnitude and re-apply the rounding strategy. |
| input.adjustMagnitude(_multiplier - multiplier); |
| apply(input, status); |
| return _multiplier; |
| } |
| |
| /** This is the method that contains the actual rounding logic. */ |
| void RoundingImpl::apply(impl::DecimalQuantity &value, UErrorCode& status) const { |
| if (U_FAILURE(status)) { |
| return; |
| } |
| if (fPassThrough) { |
| return; |
| } |
| switch (fPrecision.fType) { |
| case Precision::RND_BOGUS: |
| case Precision::RND_ERROR: |
| // Errors should be caught before the apply() method is called |
| status = U_INTERNAL_PROGRAM_ERROR; |
| break; |
| |
| case Precision::RND_NONE: |
| value.roundToInfinity(); |
| break; |
| |
| case Precision::RND_FRACTION: |
| value.roundToMagnitude( |
| getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac), |
| fRoundingMode, |
| status); |
| value.setMinFraction( |
| uprv_max(0, -getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac))); |
| break; |
| |
| case Precision::RND_SIGNIFICANT: |
| value.roundToMagnitude( |
| getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig), |
| fRoundingMode, |
| status); |
| value.setMinFraction( |
| uprv_max(0, -getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig))); |
| // Make sure that digits are displayed on zero. |
| if (value.isZeroish() && fPrecision.fUnion.fracSig.fMinSig > 0) { |
| value.setMinInteger(1); |
| } |
| break; |
| |
| case Precision::RND_FRACTION_SIGNIFICANT: { |
| int32_t displayMag = getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac); |
| int32_t roundingMag = getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac); |
| if (fPrecision.fUnion.fracSig.fMinSig == -1) { |
| // Max Sig override |
| int32_t candidate = getRoundingMagnitudeSignificant( |
| value, |
| fPrecision.fUnion.fracSig.fMaxSig); |
| roundingMag = uprv_max(roundingMag, candidate); |
| } else { |
| // Min Sig override |
| int32_t candidate = getDisplayMagnitudeSignificant( |
| value, |
| fPrecision.fUnion.fracSig.fMinSig); |
| roundingMag = uprv_min(roundingMag, candidate); |
| } |
| value.roundToMagnitude(roundingMag, fRoundingMode, status); |
| value.setMinFraction(uprv_max(0, -displayMag)); |
| break; |
| } |
| |
| case Precision::RND_INCREMENT: |
| value.roundToIncrement( |
| fPrecision.fUnion.increment.fIncrement, |
| fRoundingMode, |
| status); |
| value.setMinFraction(fPrecision.fUnion.increment.fMinFrac); |
| break; |
| |
| case Precision::RND_INCREMENT_ONE: |
| value.roundToMagnitude( |
| -fPrecision.fUnion.increment.fMaxFrac, |
| fRoundingMode, |
| status); |
| value.setMinFraction(fPrecision.fUnion.increment.fMinFrac); |
| break; |
| |
| case Precision::RND_INCREMENT_FIVE: |
| value.roundToNickel( |
| -fPrecision.fUnion.increment.fMaxFrac, |
| fRoundingMode, |
| status); |
| value.setMinFraction(fPrecision.fUnion.increment.fMinFrac); |
| break; |
| |
| case Precision::RND_CURRENCY: |
| // Call .withCurrency() before .apply()! |
| UPRV_UNREACHABLE; |
| |
| default: |
| UPRV_UNREACHABLE; |
| } |
| } |
| |
| void RoundingImpl::apply(impl::DecimalQuantity &value, int32_t minInt, UErrorCode /*status*/) { |
| // This method is intended for the one specific purpose of helping print "00.000E0". |
| U_ASSERT(isSignificantDigits()); |
| U_ASSERT(value.isZeroish()); |
| value.setMinFraction(fPrecision.fUnion.fracSig.fMinSig - minInt); |
| } |
| |
| #endif /* #if !UCONFIG_NO_FORMATTING */ |