blob: 671f44e16a65cc561b794741ddb1c6544e775bee [file] [log] [blame]
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
*
* Copyright (C) 2001-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*
******************************************************************************
* file name: utrie2.h
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2008aug16 (starting from a copy of utrie.h)
* created by: Markus W. Scherer
*/
#ifndef __UTRIE2_H__
#define __UTRIE2_H__
#include "unicode/utypes.h"
#include "unicode/utf8.h"
#include "putilimp.h"
U_CDECL_BEGIN
struct UTrie; /* forward declaration */
#ifndef __UTRIE_H__
typedef struct UTrie UTrie;
#endif
/**
* \file
*
* This is a common implementation of a Unicode trie.
* It is a kind of compressed, serializable table of 16- or 32-bit values associated with
* Unicode code points (0..0x10ffff). (A map from code points to integers.)
*
* This is the second common version of a Unicode trie (hence the name UTrie2).
* Compared with UTrie version 1:
* - Still splitting BMP code points 11:5 bits for index and data table lookups.
* - Still separate data for lead surrogate code _units_ vs. code _points_,
* but the lead surrogate code unit values are not required any more
* for data lookup for supplementary code points.
* - The "folding" mechanism is removed. In UTrie version 1, this somewhat
* hard-to-explain mechanism was meant to be used for optimized UTF-16
* processing, with application-specific encoding of indexing bits
* in the lead surrogate data for the associated supplementary code points.
* - For the last single-value code point range (ending with U+10ffff),
* the starting code point ("highStart") and the value are stored.
* - For supplementary code points U+10000..highStart-1 a three-table lookup
* (two index tables and one data table) is used. The first index
* is truncated, omitting both the BMP portion and the high range.
* - There is a special small index for 2-byte UTF-8, and the initial data
* entries are designed for fast 1/2-byte UTF-8 lookup.
* Starting with ICU 60, C0 and C1 are not recognized as UTF-8 lead bytes any more at all,
* and the associated 2-byte indexes are unused.
*/
/**
* Trie structure.
* Use only with public API macros and functions.
*/
struct UTrie2;
typedef struct UTrie2 UTrie2;
/* Public UTrie2 API functions: read-only access ---------------------------- */
/**
* Selectors for the width of a UTrie2 data value.
*/
enum UTrie2ValueBits {
/** 16 bits per UTrie2 data value. */
UTRIE2_16_VALUE_BITS,
/** 32 bits per UTrie2 data value. */
UTRIE2_32_VALUE_BITS,
/** Number of selectors for the width of UTrie2 data values. */
UTRIE2_COUNT_VALUE_BITS
};
typedef enum UTrie2ValueBits UTrie2ValueBits;
/**
* Open a frozen trie from its serialized from, stored in 32-bit-aligned memory.
* Inverse of utrie2_serialize().
* The memory must remain valid and unchanged as long as the trie is used.
* You must utrie2_close() the trie once you are done using it.
*
* @param valueBits selects the data entry size; results in an
* U_INVALID_FORMAT_ERROR if it does not match the serialized form
* @param data a pointer to 32-bit-aligned memory containing the serialized form of a UTrie2
* @param length the number of bytes available at data;
* can be more than necessary
* @param pActualLength receives the actual number of bytes at data taken up by the trie data;
* can be NULL
* @param pErrorCode an in/out ICU UErrorCode
* @return the unserialized trie
*
* @see utrie2_open
* @see utrie2_serialize
*/
U_CAPI UTrie2 * U_EXPORT2
utrie2_openFromSerialized(UTrie2ValueBits valueBits,
const void *data, int32_t length, int32_t *pActualLength,
UErrorCode *pErrorCode);
/**
* Open a frozen, empty "dummy" trie.
* A dummy trie is an empty trie, used when a real data trie cannot
* be loaded. Equivalent to calling utrie2_open() and utrie2_freeze(),
* but without internally creating and compacting/serializing the
* builder data structure.
*
* The trie always returns the initialValue,
* or the errorValue for out-of-range code points and illegal UTF-8.
*
* You must utrie2_close() the trie once you are done using it.
*
* @param valueBits selects the data entry size
* @param initialValue the initial value that is set for all code points
* @param errorValue the value for out-of-range code points and illegal UTF-8
* @param pErrorCode an in/out ICU UErrorCode
* @return the dummy trie
*
* @see utrie2_openFromSerialized
* @see utrie2_open
*/
U_CAPI UTrie2 * U_EXPORT2
utrie2_openDummy(UTrie2ValueBits valueBits,
uint32_t initialValue, uint32_t errorValue,
UErrorCode *pErrorCode);
/**
* Get a value from a code point as stored in the trie.
* Easier to use than UTRIE2_GET16() and UTRIE2_GET32() but slower.
* Easier to use because, unlike the macros, this function works on all UTrie2
* objects, frozen or not, holding 16-bit or 32-bit data values.
*
* @param trie the trie
* @param c the code point
* @return the value
*/
U_CAPI uint32_t U_EXPORT2
utrie2_get32(const UTrie2 *trie, UChar32 c);
/* enumeration callback types */
/**
* Callback from utrie2_enum(), extracts a uint32_t value from a
* trie value. This value will be passed on to the UTrie2EnumRange function.
*
* @param context an opaque pointer, as passed into utrie2_enum()
* @param value a value from the trie
* @return the value that is to be passed on to the UTrie2EnumRange function
*/
typedef uint32_t U_CALLCONV
UTrie2EnumValue(const void *context, uint32_t value);
/**
* Callback from utrie2_enum(), is called for each contiguous range
* of code points with the same value as retrieved from the trie and
* transformed by the UTrie2EnumValue function.
*
* The callback function can stop the enumeration by returning FALSE.
*
* @param context an opaque pointer, as passed into utrie2_enum()
* @param start the first code point in a contiguous range with value
* @param end the last code point in a contiguous range with value (inclusive)
* @param value the value that is set for all code points in [start..end]
* @return FALSE to stop the enumeration
*/
typedef UBool U_CALLCONV
UTrie2EnumRange(const void *context, UChar32 start, UChar32 end, uint32_t value);
/**
* Enumerate efficiently all values in a trie.
* Do not modify the trie during the enumeration.
*
* For each entry in the trie, the value to be delivered is passed through
* the UTrie2EnumValue function.
* The value is unchanged if that function pointer is NULL.
*
* For each contiguous range of code points with a given (transformed) value,
* the UTrie2EnumRange function is called.
*
* @param trie a pointer to the trie
* @param enumValue a pointer to a function that may transform the trie entry value,
* or NULL if the values from the trie are to be used directly
* @param enumRange a pointer to a function that is called for each contiguous range
* of code points with the same (transformed) value
* @param context an opaque pointer that is passed on to the callback functions
*/
U_CAPI void U_EXPORT2
utrie2_enum(const UTrie2 *trie,
UTrie2EnumValue *enumValue, UTrie2EnumRange *enumRange, const void *context);
/* Building a trie ---------------------------------------------------------- */
/**
* Open an empty, writable trie. At build time, 32-bit data values are used.
* utrie2_freeze() takes a valueBits parameter
* which determines the data value width in the serialized and frozen forms.
* You must utrie2_close() the trie once you are done using it.
*
* @param initialValue the initial value that is set for all code points
* @param errorValue the value for out-of-range code points and illegal UTF-8
* @param pErrorCode an in/out ICU UErrorCode
* @return a pointer to the allocated and initialized new trie
*/
U_CAPI UTrie2 * U_EXPORT2
utrie2_open(uint32_t initialValue, uint32_t errorValue, UErrorCode *pErrorCode);
/**
* Clone a trie.
* You must utrie2_close() the clone once you are done using it.
*
* @param other the trie to clone
* @param pErrorCode an in/out ICU UErrorCode
* @return a pointer to the new trie clone
*/
U_CAPI UTrie2 * U_EXPORT2
utrie2_clone(const UTrie2 *other, UErrorCode *pErrorCode);
/**
* Clone a trie. The clone will be mutable/writable even if the other trie
* is frozen. (See utrie2_freeze().)
* You must utrie2_close() the clone once you are done using it.
*
* @param other the trie to clone
* @param pErrorCode an in/out ICU UErrorCode
* @return a pointer to the new trie clone
*/
U_CAPI UTrie2 * U_EXPORT2
utrie2_cloneAsThawed(const UTrie2 *other, UErrorCode *pErrorCode);
/**
* Close a trie and release associated memory.
*
* @param trie the trie
*/
U_CAPI void U_EXPORT2
utrie2_close(UTrie2 *trie);
/**
* Set a value for a code point.
*
* @param trie the unfrozen trie
* @param c the code point
* @param value the value
* @param pErrorCode an in/out ICU UErrorCode; among other possible error codes:
* - U_NO_WRITE_PERMISSION if the trie is frozen
*/
U_CAPI void U_EXPORT2
utrie2_set32(UTrie2 *trie, UChar32 c, uint32_t value, UErrorCode *pErrorCode);
/**
* Set a value in a range of code points [start..end].
* All code points c with start<=c<=end will get the value if
* overwrite is TRUE or if the old value is the initial value.
*
* @param trie the unfrozen trie
* @param start the first code point to get the value
* @param end the last code point to get the value (inclusive)
* @param value the value
* @param overwrite flag for whether old non-initial values are to be overwritten
* @param pErrorCode an in/out ICU UErrorCode; among other possible error codes:
* - U_NO_WRITE_PERMISSION if the trie is frozen
*/
U_CAPI void U_EXPORT2
utrie2_setRange32(UTrie2 *trie,
UChar32 start, UChar32 end,
uint32_t value, UBool overwrite,
UErrorCode *pErrorCode);
/**
* Freeze a trie. Make it immutable (read-only) and compact it,
* ready for serialization and for use with fast macros.
* Functions to set values will fail after serializing.
*
* A trie can be frozen only once. If this function is called again with different
* valueBits then it will set a U_ILLEGAL_ARGUMENT_ERROR.
*
* @param trie the trie
* @param valueBits selects the data entry size; if smaller than 32 bits, then
* the values stored in the trie will be truncated
* @param pErrorCode an in/out ICU UErrorCode; among other possible error codes:
* - U_INDEX_OUTOFBOUNDS_ERROR if the compacted index or data arrays are too long
* for serialization
* (the trie will be immutable and usable,
* but not frozen and not usable with the fast macros)
*
* @see utrie2_cloneAsThawed
*/
U_CAPI void U_EXPORT2
utrie2_freeze(UTrie2 *trie, UTrie2ValueBits valueBits, UErrorCode *pErrorCode);
/**
* Test if the trie is frozen. (See utrie2_freeze().)
*
* @param trie the trie
* @return TRUE if the trie is frozen, that is, immutable, ready for serialization
* and for use with fast macros
*/
U_CAPI UBool U_EXPORT2
utrie2_isFrozen(const UTrie2 *trie);
/**
* Serialize a frozen trie into 32-bit aligned memory.
* If the trie is not frozen, then the function returns with a U_ILLEGAL_ARGUMENT_ERROR.
* A trie can be serialized multiple times.
*
* @param trie the frozen trie
* @param data a pointer to 32-bit-aligned memory to be filled with the trie data,
* can be NULL if capacity==0
* @param capacity the number of bytes available at data,
* or 0 for preflighting
* @param pErrorCode an in/out ICU UErrorCode; among other possible error codes:
* - U_BUFFER_OVERFLOW_ERROR if the data storage block is too small for serialization
* - U_ILLEGAL_ARGUMENT_ERROR if the trie is not frozen or the data and capacity
* parameters are bad
* @return the number of bytes written or needed for the trie
*
* @see utrie2_openFromSerialized()
*/
U_CAPI int32_t U_EXPORT2
utrie2_serialize(const UTrie2 *trie,
void *data, int32_t capacity,
UErrorCode *pErrorCode);
/* Public UTrie2 API: miscellaneous functions ------------------------------- */
/**
* Build a UTrie2 (version 2) from a UTrie (version 1).
* Enumerates all values in the UTrie and builds a UTrie2 with the same values.
* The resulting UTrie2 will be frozen.
*
* @param trie1 the runtime UTrie structure to be enumerated
* @param errorValue the value for out-of-range code points and illegal UTF-8
* @param pErrorCode an in/out ICU UErrorCode
* @return The frozen UTrie2 with the same values as the UTrie.
*/
U_CAPI UTrie2 * U_EXPORT2
utrie2_fromUTrie(const UTrie *trie1, uint32_t errorValue, UErrorCode *pErrorCode);
/* Public UTrie2 API macros ------------------------------------------------- */
/*
* These macros provide fast data lookup from a frozen trie.
* They will crash when used on an unfrozen trie.
*/
/**
* Return a 16-bit trie value from a code point, with range checking.
* Returns trie->errorValue if c is not in the range 0..U+10ffff.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param c (UChar32, in) the input code point
* @return (uint16_t) The code point's trie value.
*/
#define UTRIE2_GET16(trie, c) _UTRIE2_GET((trie), index, (trie)->indexLength, (c))
/**
* Return a 32-bit trie value from a code point, with range checking.
* Returns trie->errorValue if c is not in the range 0..U+10ffff.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param c (UChar32, in) the input code point
* @return (uint32_t) The code point's trie value.
*/
#define UTRIE2_GET32(trie, c) _UTRIE2_GET((trie), data32, 0, (c))
/**
* UTF-16: Get the next code point (UChar32 c, out), post-increment src,
* and get a 16-bit value from the trie.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param src (const UChar *, in/out) the source text pointer
* @param limit (const UChar *, in) the limit pointer for the text, or NULL if NUL-terminated
* @param c (UChar32, out) variable for the code point
* @param result (uint16_t, out) uint16_t variable for the trie lookup result
*/
#define UTRIE2_U16_NEXT16(trie, src, limit, c, result) _UTRIE2_U16_NEXT(trie, index, src, limit, c, result)
/**
* UTF-16: Get the next code point (UChar32 c, out), post-increment src,
* and get a 32-bit value from the trie.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param src (const UChar *, in/out) the source text pointer
* @param limit (const UChar *, in) the limit pointer for the text, or NULL if NUL-terminated
* @param c (UChar32, out) variable for the code point
* @param result (uint32_t, out) uint32_t variable for the trie lookup result
*/
#define UTRIE2_U16_NEXT32(trie, src, limit, c, result) _UTRIE2_U16_NEXT(trie, data32, src, limit, c, result)
/**
* UTF-16: Get the previous code point (UChar32 c, out), pre-decrement src,
* and get a 16-bit value from the trie.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param start (const UChar *, in) the start pointer for the text
* @param src (const UChar *, in/out) the source text pointer
* @param c (UChar32, out) variable for the code point
* @param result (uint16_t, out) uint16_t variable for the trie lookup result
*/
#define UTRIE2_U16_PREV16(trie, start, src, c, result) _UTRIE2_U16_PREV(trie, index, start, src, c, result)
/**
* UTF-16: Get the previous code point (UChar32 c, out), pre-decrement src,
* and get a 32-bit value from the trie.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param start (const UChar *, in) the start pointer for the text
* @param src (const UChar *, in/out) the source text pointer
* @param c (UChar32, out) variable for the code point
* @param result (uint32_t, out) uint32_t variable for the trie lookup result
*/
#define UTRIE2_U16_PREV32(trie, start, src, c, result) _UTRIE2_U16_PREV(trie, data32, start, src, c, result)
/**
* UTF-8: Post-increment src and get a 16-bit value from the trie.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param src (const char *, in/out) the source text pointer
* @param limit (const char *, in) the limit pointer for the text (must not be NULL)
* @param result (uint16_t, out) uint16_t variable for the trie lookup result
*/
#define UTRIE2_U8_NEXT16(trie, src, limit, result)\
_UTRIE2_U8_NEXT(trie, data16, index, src, limit, result)
/**
* UTF-8: Post-increment src and get a 32-bit value from the trie.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param src (const char *, in/out) the source text pointer
* @param limit (const char *, in) the limit pointer for the text (must not be NULL)
* @param result (uint16_t, out) uint32_t variable for the trie lookup result
*/
#define UTRIE2_U8_NEXT32(trie, src, limit, result) \
_UTRIE2_U8_NEXT(trie, data32, data32, src, limit, result)
/**
* UTF-8: Pre-decrement src and get a 16-bit value from the trie.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param start (const char *, in) the start pointer for the text
* @param src (const char *, in/out) the source text pointer
* @param result (uint16_t, out) uint16_t variable for the trie lookup result
*/
#define UTRIE2_U8_PREV16(trie, start, src, result) \
_UTRIE2_U8_PREV(trie, data16, index, start, src, result)
/**
* UTF-8: Pre-decrement src and get a 32-bit value from the trie.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param start (const char *, in) the start pointer for the text
* @param src (const char *, in/out) the source text pointer
* @param result (uint16_t, out) uint32_t variable for the trie lookup result
*/
#define UTRIE2_U8_PREV32(trie, start, src, result) \
_UTRIE2_U8_PREV(trie, data32, data32, start, src, result)
/* Public UTrie2 API: optimized UTF-16 access ------------------------------- */
/*
* The following functions and macros are used for highly optimized UTF-16
* text processing. The UTRIE2_U16_NEXTxy() macros do not depend on these.
*
* A UTrie2 stores separate values for lead surrogate code _units_ vs. code _points_.
* UTF-16 text processing can be optimized by detecting surrogate pairs and
* assembling supplementary code points only when there is non-trivial data
* available.
*
* At build-time, use utrie2_enumForLeadSurrogate() to see if there
* is non-trivial (non-initialValue) data for any of the supplementary
* code points associated with a lead surrogate.
* If so, then set a special (application-specific) value for the
* lead surrogate code _unit_, with utrie2_set32ForLeadSurrogateCodeUnit().
*
* At runtime, use UTRIE2_GET16_FROM_U16_SINGLE_LEAD() or
* UTRIE2_GET32_FROM_U16_SINGLE_LEAD() per code unit. If there is non-trivial
* data and the code unit is a lead surrogate, then check if a trail surrogate
* follows. If so, assemble the supplementary code point with
* U16_GET_SUPPLEMENTARY() and look up its value with UTRIE2_GET16_FROM_SUPP()
* or UTRIE2_GET32_FROM_SUPP(); otherwise reset the lead
* surrogate's value or do a code point lookup for it.
*
* If there is only trivial data for lead and trail surrogates, then processing
* can often skip them. For example, in normalization or case mapping
* all characters that do not have any mappings are simply copied as is.
*/
/**
* Get a value from a lead surrogate code unit as stored in the trie.
*
* @param trie the trie
* @param c the code unit (U+D800..U+DBFF)
* @return the value
*/
U_CAPI uint32_t U_EXPORT2
utrie2_get32FromLeadSurrogateCodeUnit(const UTrie2 *trie, UChar32 c);
/**
* Enumerate the trie values for the 1024=0x400 code points
* corresponding to a given lead surrogate.
* For example, for the lead surrogate U+D87E it will enumerate the values
* for [U+2F800..U+2FC00[.
* Used by data builder code that sets special lead surrogate code unit values
* for optimized UTF-16 string processing.
*
* Do not modify the trie during the enumeration.
*
* Except for the limited code point range, this functions just like utrie2_enum():
* For each entry in the trie, the value to be delivered is passed through
* the UTrie2EnumValue function.
* The value is unchanged if that function pointer is NULL.
*
* For each contiguous range of code points with a given (transformed) value,
* the UTrie2EnumRange function is called.
*
* @param trie a pointer to the trie
* @param enumValue a pointer to a function that may transform the trie entry value,
* or NULL if the values from the trie are to be used directly
* @param enumRange a pointer to a function that is called for each contiguous range
* of code points with the same (transformed) value
* @param context an opaque pointer that is passed on to the callback functions
*/
U_CAPI void U_EXPORT2
utrie2_enumForLeadSurrogate(const UTrie2 *trie, UChar32 lead,
UTrie2EnumValue *enumValue, UTrie2EnumRange *enumRange,
const void *context);
/**
* Set a value for a lead surrogate code unit.
*
* @param trie the unfrozen trie
* @param lead the lead surrogate code unit (U+D800..U+DBFF)
* @param value the value
* @param pErrorCode an in/out ICU UErrorCode; among other possible error codes:
* - U_NO_WRITE_PERMISSION if the trie is frozen
*/
U_CAPI void U_EXPORT2
utrie2_set32ForLeadSurrogateCodeUnit(UTrie2 *trie,
UChar32 lead, uint32_t value,
UErrorCode *pErrorCode);
/**
* Return a 16-bit trie value from a UTF-16 single/lead code unit (<=U+ffff).
* Same as UTRIE2_GET16() if c is a BMP code point except for lead surrogates,
* but smaller and faster.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param c (UChar32, in) the input code unit, must be 0<=c<=U+ffff
* @return (uint16_t) The code unit's trie value.
*/
#define UTRIE2_GET16_FROM_U16_SINGLE_LEAD(trie, c) _UTRIE2_GET_FROM_U16_SINGLE_LEAD((trie), index, c)
/**
* Return a 32-bit trie value from a UTF-16 single/lead code unit (<=U+ffff).
* Same as UTRIE2_GET32() if c is a BMP code point except for lead surrogates,
* but smaller and faster.
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param c (UChar32, in) the input code unit, must be 0<=c<=U+ffff
* @return (uint32_t) The code unit's trie value.
*/
#define UTRIE2_GET32_FROM_U16_SINGLE_LEAD(trie, c) _UTRIE2_GET_FROM_U16_SINGLE_LEAD((trie), data32, c)
/**
* Return a 16-bit trie value from a supplementary code point (U+10000..U+10ffff).
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param c (UChar32, in) the input code point, must be U+10000<=c<=U+10ffff
* @return (uint16_t) The code point's trie value.
*/
#define UTRIE2_GET16_FROM_SUPP(trie, c) _UTRIE2_GET_FROM_SUPP((trie), index, c)
/**
* Return a 32-bit trie value from a supplementary code point (U+10000..U+10ffff).
*
* @param trie (const UTrie2 *, in) a frozen trie
* @param c (UChar32, in) the input code point, must be U+10000<=c<=U+10ffff
* @return (uint32_t) The code point's trie value.
*/
#define UTRIE2_GET32_FROM_SUPP(trie, c) _UTRIE2_GET_FROM_SUPP((trie), data32, c)
U_CDECL_END
/* C++ convenience wrappers ------------------------------------------------- */
#ifdef __cplusplus
#include "unicode/utf.h"
#include "mutex.h"
U_NAMESPACE_BEGIN
// Use the Forward/Backward subclasses below.
class UTrie2StringIterator : public UMemory {
public:
UTrie2StringIterator(const UTrie2 *t, const UChar *p) :
trie(t), codePointStart(p), codePointLimit(p), codePoint(U_SENTINEL) {}
const UTrie2 *trie;
const UChar *codePointStart, *codePointLimit;
UChar32 codePoint;
};
class BackwardUTrie2StringIterator : public UTrie2StringIterator {
public:
BackwardUTrie2StringIterator(const UTrie2 *t, const UChar *s, const UChar *p) :
UTrie2StringIterator(t, p), start(s) {}
uint16_t previous16();
const UChar *start;
};
class ForwardUTrie2StringIterator : public UTrie2StringIterator {
public:
// Iteration limit l can be NULL.
// In that case, the caller must detect c==0 and stop.
ForwardUTrie2StringIterator(const UTrie2 *t, const UChar *p, const UChar *l) :
UTrie2StringIterator(t, p), limit(l) {}
uint16_t next16();
const UChar *limit;
};
U_NAMESPACE_END
#endif
/* Internal definitions ----------------------------------------------------- */
U_CDECL_BEGIN
/** Build-time trie structure. */
struct UNewTrie2;
typedef struct UNewTrie2 UNewTrie2;
/*
* Trie structure definition.
*
* Either the data table is 16 bits wide and accessed via the index
* pointer, with each index item increased by indexLength;
* in this case, data32==NULL, and data16 is used for direct ASCII access.
*
* Or the data table is 32 bits wide and accessed via the data32 pointer.
*/
struct UTrie2 {
/* protected: used by macros and functions for reading values */
const uint16_t *index;
const uint16_t *data16; /* for fast UTF-8 ASCII access, if 16b data */
const uint32_t *data32; /* NULL if 16b data is used via index */
int32_t indexLength, dataLength;
uint16_t index2NullOffset; /* 0xffff if there is no dedicated index-2 null block */
uint16_t dataNullOffset;
uint32_t initialValue;
/** Value returned for out-of-range code points and illegal UTF-8. */
uint32_t errorValue;
/* Start of the last range which ends at U+10ffff, and its value. */
UChar32 highStart;
int32_t highValueIndex;
/* private: used by builder and unserialization functions */
void *memory; /* serialized bytes; NULL if not frozen yet */
int32_t length; /* number of serialized bytes at memory; 0 if not frozen yet */
UBool isMemoryOwned; /* TRUE if the trie owns the memory */
UBool padding1;
int16_t padding2;
UNewTrie2 *newTrie; /* builder object; NULL when frozen */
#ifdef UTRIE2_DEBUG
const char *name;
#endif
};
/**
* Trie constants, defining shift widths, index array lengths, etc.
*
* These are needed for the runtime macros but users can treat these as
* implementation details and skip to the actual public API further below.
*/
enum {
/** Shift size for getting the index-1 table offset. */
UTRIE2_SHIFT_1=6+5,
/** Shift size for getting the index-2 table offset. */
UTRIE2_SHIFT_2=5,
/**
* Difference between the two shift sizes,
* for getting an index-1 offset from an index-2 offset. 6=11-5
*/
UTRIE2_SHIFT_1_2=UTRIE2_SHIFT_1-UTRIE2_SHIFT_2,
/**
* Number of index-1 entries for the BMP. 32=0x20
* This part of the index-1 table is omitted from the serialized form.
*/
UTRIE2_OMITTED_BMP_INDEX_1_LENGTH=0x10000>>UTRIE2_SHIFT_1,
/** Number of code points per index-1 table entry. 2048=0x800 */
UTRIE2_CP_PER_INDEX_1_ENTRY=1<<UTRIE2_SHIFT_1,
/** Number of entries in an index-2 block. 64=0x40 */
UTRIE2_INDEX_2_BLOCK_LENGTH=1<<UTRIE2_SHIFT_1_2,
/** Mask for getting the lower bits for the in-index-2-block offset. */
UTRIE2_INDEX_2_MASK=UTRIE2_INDEX_2_BLOCK_LENGTH-1,
/** Number of entries in a data block. 32=0x20 */
UTRIE2_DATA_BLOCK_LENGTH=1<<UTRIE2_SHIFT_2,
/** Mask for getting the lower bits for the in-data-block offset. */
UTRIE2_DATA_MASK=UTRIE2_DATA_BLOCK_LENGTH-1,
/**
* Shift size for shifting left the index array values.
* Increases possible data size with 16-bit index values at the cost
* of compactability.
* This requires data blocks to be aligned by UTRIE2_DATA_GRANULARITY.
*/
UTRIE2_INDEX_SHIFT=2,
/** The alignment size of a data block. Also the granularity for compaction. */
UTRIE2_DATA_GRANULARITY=1<<UTRIE2_INDEX_SHIFT,
/* Fixed layout of the first part of the index array. ------------------- */
/**
* The BMP part of the index-2 table is fixed and linear and starts at offset 0.
* Length=2048=0x800=0x10000>>UTRIE2_SHIFT_2.
*/
UTRIE2_INDEX_2_OFFSET=0,
/**
* The part of the index-2 table for U+D800..U+DBFF stores values for
* lead surrogate code _units_ not code _points_.
* Values for lead surrogate code _points_ are indexed with this portion of the table.
* Length=32=0x20=0x400>>UTRIE2_SHIFT_2. (There are 1024=0x400 lead surrogates.)
*/
UTRIE2_LSCP_INDEX_2_OFFSET=0x10000>>UTRIE2_SHIFT_2,
UTRIE2_LSCP_INDEX_2_LENGTH=0x400>>UTRIE2_SHIFT_2,
/** Count the lengths of both BMP pieces. 2080=0x820 */
UTRIE2_INDEX_2_BMP_LENGTH=UTRIE2_LSCP_INDEX_2_OFFSET+UTRIE2_LSCP_INDEX_2_LENGTH,
/**
* The 2-byte UTF-8 version of the index-2 table follows at offset 2080=0x820.
* Length 32=0x20 for lead bytes C0..DF, regardless of UTRIE2_SHIFT_2.
*/
UTRIE2_UTF8_2B_INDEX_2_OFFSET=UTRIE2_INDEX_2_BMP_LENGTH,
UTRIE2_UTF8_2B_INDEX_2_LENGTH=0x800>>6, /* U+0800 is the first code point after 2-byte UTF-8 */
/**
* The index-1 table, only used for supplementary code points, at offset 2112=0x840.
* Variable length, for code points up to highStart, where the last single-value range starts.
* Maximum length 512=0x200=0x100000>>UTRIE2_SHIFT_1.
* (For 0x100000 supplementary code points U+10000..U+10ffff.)
*
* The part of the index-2 table for supplementary code points starts
* after this index-1 table.
*
* Both the index-1 table and the following part of the index-2 table
* are omitted completely if there is only BMP data.
*/
UTRIE2_INDEX_1_OFFSET=UTRIE2_UTF8_2B_INDEX_2_OFFSET+UTRIE2_UTF8_2B_INDEX_2_LENGTH,
UTRIE2_MAX_INDEX_1_LENGTH=0x100000>>UTRIE2_SHIFT_1,
/*
* Fixed layout of the first part of the data array. -----------------------
* Starts with 4 blocks (128=0x80 entries) for ASCII.
*/
/**
* The illegal-UTF-8 data block follows the ASCII block, at offset 128=0x80.
* Used with linear access for single bytes 0..0xbf for simple error handling.
* Length 64=0x40, not UTRIE2_DATA_BLOCK_LENGTH.
*/
UTRIE2_BAD_UTF8_DATA_OFFSET=0x80,
/** The start of non-linear-ASCII data blocks, at offset 192=0xc0. */
UTRIE2_DATA_START_OFFSET=0xc0
};
/* Internal functions and macros -------------------------------------------- */
/**
* Internal function for part of the UTRIE2_U8_NEXTxx() macro implementations.
* Do not call directly.
* @internal
*/
U_INTERNAL int32_t U_EXPORT2
utrie2_internalU8NextIndex(const UTrie2 *trie, UChar32 c,
const uint8_t *src, const uint8_t *limit);
/**
* Internal function for part of the UTRIE2_U8_PREVxx() macro implementations.
* Do not call directly.
* @internal
*/
U_INTERNAL int32_t U_EXPORT2
utrie2_internalU8PrevIndex(const UTrie2 *trie, UChar32 c,
const uint8_t *start, const uint8_t *src);
/** Internal low-level trie getter. Returns a data index. */
#define _UTRIE2_INDEX_RAW(offset, trieIndex, c) \
(((int32_t)((trieIndex)[(offset)+((c)>>UTRIE2_SHIFT_2)]) \
<<UTRIE2_INDEX_SHIFT)+ \
((c)&UTRIE2_DATA_MASK))
/** Internal trie getter from a UTF-16 single/lead code unit. Returns the data index. */
#define _UTRIE2_INDEX_FROM_U16_SINGLE_LEAD(trieIndex, c) _UTRIE2_INDEX_RAW(0, trieIndex, c)
/** Internal trie getter from a lead surrogate code point (D800..DBFF). Returns the data index. */
#define _UTRIE2_INDEX_FROM_LSCP(trieIndex, c) \
_UTRIE2_INDEX_RAW(UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2), trieIndex, c)
/** Internal trie getter from a BMP code point. Returns the data index. */
#define _UTRIE2_INDEX_FROM_BMP(trieIndex, c) \
_UTRIE2_INDEX_RAW(U_IS_LEAD(c) ? UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2) : 0, \
trieIndex, c)
/** Internal trie getter from a supplementary code point below highStart. Returns the data index. */
#define _UTRIE2_INDEX_FROM_SUPP(trieIndex, c) \
(((int32_t)((trieIndex)[ \
(trieIndex)[(UTRIE2_INDEX_1_OFFSET-UTRIE2_OMITTED_BMP_INDEX_1_LENGTH)+ \
((c)>>UTRIE2_SHIFT_1)]+ \
(((c)>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK)]) \
<<UTRIE2_INDEX_SHIFT)+ \
((c)&UTRIE2_DATA_MASK))
/**
* Internal trie getter from a code point, with checking that c is in 0..10FFFF.
* Returns the data index.
*/
#define _UTRIE2_INDEX_FROM_CP(trie, asciiOffset, c) \
((uint32_t)(c)<0xd800 ? \
_UTRIE2_INDEX_RAW(0, (trie)->index, c) : \
(uint32_t)(c)<=0xffff ? \
_UTRIE2_INDEX_RAW( \
(c)<=0xdbff ? UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2) : 0, \
(trie)->index, c) : \
(uint32_t)(c)>0x10ffff ? \
(asciiOffset)+UTRIE2_BAD_UTF8_DATA_OFFSET : \
(c)>=(trie)->highStart ? \
(trie)->highValueIndex : \
_UTRIE2_INDEX_FROM_SUPP((trie)->index, c))
/** Internal trie getter from a UTF-16 single/lead code unit. Returns the data. */
#define _UTRIE2_GET_FROM_U16_SINGLE_LEAD(trie, data, c) \
(trie)->data[_UTRIE2_INDEX_FROM_U16_SINGLE_LEAD((trie)->index, c)]
/** Internal trie getter from a supplementary code point. Returns the data. */
#define _UTRIE2_GET_FROM_SUPP(trie, data, c) \
(trie)->data[(c)>=(trie)->highStart ? (trie)->highValueIndex : \
_UTRIE2_INDEX_FROM_SUPP((trie)->index, c)]
/**
* Internal trie getter from a code point, with checking that c is in 0..10FFFF.
* Returns the data.
*/
#define _UTRIE2_GET(trie, data, asciiOffset, c) \
(trie)->data[_UTRIE2_INDEX_FROM_CP(trie, asciiOffset, c)]
/** Internal next-post-increment: get the next code point (c) and its data. */
#define _UTRIE2_U16_NEXT(trie, data, src, limit, c, result) UPRV_BLOCK_MACRO_BEGIN { \
{ \
uint16_t __c2; \
(c)=*(src)++; \
if(!U16_IS_LEAD(c)) { \
(result)=_UTRIE2_GET_FROM_U16_SINGLE_LEAD(trie, data, c); \
} else if((src)==(limit) || !U16_IS_TRAIL(__c2=*(src))) { \
(result)=(trie)->data[_UTRIE2_INDEX_FROM_LSCP((trie)->index, c)]; \
} else { \
++(src); \
(c)=U16_GET_SUPPLEMENTARY((c), __c2); \
(result)=_UTRIE2_GET_FROM_SUPP((trie), data, (c)); \
} \
} \
} UPRV_BLOCK_MACRO_END
/** Internal pre-decrement-previous: get the previous code point (c) and its data */
#define _UTRIE2_U16_PREV(trie, data, start, src, c, result) UPRV_BLOCK_MACRO_BEGIN { \
{ \
uint16_t __c2; \
(c)=*--(src); \
if(!U16_IS_TRAIL(c) || (src)==(start) || !U16_IS_LEAD(__c2=*((src)-1))) { \
(result)=(trie)->data[_UTRIE2_INDEX_FROM_BMP((trie)->index, c)]; \
} else { \
--(src); \
(c)=U16_GET_SUPPLEMENTARY(__c2, (c)); \
(result)=_UTRIE2_GET_FROM_SUPP((trie), data, (c)); \
} \
} \
} UPRV_BLOCK_MACRO_END
/** Internal UTF-8 next-post-increment: get the next code point's data. */
#define _UTRIE2_U8_NEXT(trie, ascii, data, src, limit, result) UPRV_BLOCK_MACRO_BEGIN { \
uint8_t __lead=(uint8_t)*(src)++; \
if(U8_IS_SINGLE(__lead)) { \
(result)=(trie)->ascii[__lead]; \
} else { \
uint8_t __t1, __t2; \
if( /* handle U+0800..U+FFFF inline */ \
0xe0<=__lead && __lead<0xf0 && ((src)+1)<(limit) && \
U8_IS_VALID_LEAD3_AND_T1(__lead, __t1=(uint8_t)*(src)) && \
(__t2=(uint8_t)(*((src)+1)-0x80))<= 0x3f \
) { \
(src)+=2; \
(result)=(trie)->data[ \
((int32_t)((trie)->index[((__lead-0xe0)<<(12-UTRIE2_SHIFT_2))+ \
((__t1&0x3f)<<(6-UTRIE2_SHIFT_2))+(__t2>>UTRIE2_SHIFT_2)]) \
<<UTRIE2_INDEX_SHIFT)+ \
(__t2&UTRIE2_DATA_MASK)]; \
} else if( /* handle U+0080..U+07FF inline */ \
__lead<0xe0 && __lead>=0xc2 && (src)<(limit) && \
(__t1=(uint8_t)(*(src)-0x80))<=0x3f \
) { \
++(src); \
(result)=(trie)->data[ \
(trie)->index[(UTRIE2_UTF8_2B_INDEX_2_OFFSET-0xc0)+__lead]+ \
__t1]; \
} else { \
int32_t __index=utrie2_internalU8NextIndex((trie), __lead, (const uint8_t *)(src), \
(const uint8_t *)(limit)); \
(src)+=__index&7; \
(result)=(trie)->data[__index>>3]; \
} \
} \
} UPRV_BLOCK_MACRO_END
/** Internal UTF-8 pre-decrement-previous: get the previous code point's data. */
#define _UTRIE2_U8_PREV(trie, ascii, data, start, src, result) UPRV_BLOCK_MACRO_BEGIN { \
uint8_t __b=(uint8_t)*--(src); \
if(U8_IS_SINGLE(__b)) { \
(result)=(trie)->ascii[__b]; \
} else { \
int32_t __index=utrie2_internalU8PrevIndex((trie), __b, (const uint8_t *)(start), \
(const uint8_t *)(src)); \
(src)-=__index&7; \
(result)=(trie)->data[__index>>3]; \
} \
} UPRV_BLOCK_MACRO_END
U_CDECL_END
#endif