| // Copyright (C) 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ******************************************************************************* |
| * |
| * Copyright (C) 2008-2011, International Business Machines |
| * Corporation, Google and others. All Rights Reserved. |
| * |
| ******************************************************************************* |
| */ |
| // Author : eldawy@google.com (Mohamed Eldawy) |
| // ucnvsel.cpp |
| // |
| // Purpose: To generate a list of encodings capable of handling |
| // a given Unicode text |
| // |
| // Started 09-April-2008 |
| |
| /** |
| * \file |
| * |
| * This is an implementation of an encoding selector. |
| * The goal is, given a unicode string, find the encodings |
| * this string can be mapped to. To make processing faster |
| * a trie is built when you call ucnvsel_open() that |
| * stores all encodings a codepoint can map to |
| */ |
| |
| #include "unicode/ucnvsel.h" |
| |
| #if !UCONFIG_NO_CONVERSION |
| |
| #include <string.h> |
| |
| #include "unicode/uchar.h" |
| #include "unicode/uniset.h" |
| #include "unicode/ucnv.h" |
| #include "unicode/ustring.h" |
| #include "unicode/uchriter.h" |
| #include "utrie2.h" |
| #include "propsvec.h" |
| #include "uassert.h" |
| #include "ucmndata.h" |
| #include "uenumimp.h" |
| #include "cmemory.h" |
| #include "cstring.h" |
| |
| U_NAMESPACE_USE |
| |
| struct UConverterSelector { |
| UTrie2 *trie; // 16 bit trie containing offsets into pv |
| uint32_t* pv; // table of bits! |
| int32_t pvCount; |
| char** encodings; // which encodings did user ask to use? |
| int32_t encodingsCount; |
| int32_t encodingStrLength; |
| uint8_t* swapped; |
| UBool ownPv, ownEncodingStrings; |
| }; |
| |
| static void generateSelectorData(UConverterSelector* result, |
| UPropsVectors *upvec, |
| const USet* excludedCodePoints, |
| const UConverterUnicodeSet whichSet, |
| UErrorCode* status) { |
| if (U_FAILURE(*status)) { |
| return; |
| } |
| |
| int32_t columns = (result->encodingsCount+31)/32; |
| |
| // set errorValue to all-ones |
| for (int32_t col = 0; col < columns; col++) { |
| upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP, |
| col, ~0, ~0, status); |
| } |
| |
| for (int32_t i = 0; i < result->encodingsCount; ++i) { |
| uint32_t mask; |
| uint32_t column; |
| int32_t item_count; |
| int32_t j; |
| UConverter* test_converter = ucnv_open(result->encodings[i], status); |
| if (U_FAILURE(*status)) { |
| return; |
| } |
| USet* unicode_point_set; |
| unicode_point_set = uset_open(1, 0); // empty set |
| |
| ucnv_getUnicodeSet(test_converter, unicode_point_set, |
| whichSet, status); |
| if (U_FAILURE(*status)) { |
| ucnv_close(test_converter); |
| return; |
| } |
| |
| column = i / 32; |
| mask = 1 << (i%32); |
| // now iterate over intervals on set i! |
| item_count = uset_getItemCount(unicode_point_set); |
| |
| for (j = 0; j < item_count; ++j) { |
| UChar32 start_char; |
| UChar32 end_char; |
| UErrorCode smallStatus = U_ZERO_ERROR; |
| uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0, |
| &smallStatus); |
| if (U_FAILURE(smallStatus)) { |
| // this will be reached for the converters that fill the set with |
| // strings. Those should be ignored by our system |
| } else { |
| upvec_setValue(upvec, start_char, end_char, column, ~0, mask, |
| status); |
| } |
| } |
| ucnv_close(test_converter); |
| uset_close(unicode_point_set); |
| if (U_FAILURE(*status)) { |
| return; |
| } |
| } |
| |
| // handle excluded encodings! Simply set their values to all 1's in the upvec |
| if (excludedCodePoints) { |
| int32_t item_count = uset_getItemCount(excludedCodePoints); |
| for (int32_t j = 0; j < item_count; ++j) { |
| UChar32 start_char; |
| UChar32 end_char; |
| |
| uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0, |
| status); |
| for (int32_t col = 0; col < columns; col++) { |
| upvec_setValue(upvec, start_char, end_char, col, ~0, ~0, |
| status); |
| } |
| } |
| } |
| |
| // alright. Now, let's put things in the same exact form you'd get when you |
| // unserialize things. |
| result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status); |
| result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status); |
| result->pvCount *= columns; // number of uint32_t = rows * columns |
| result->ownPv = TRUE; |
| } |
| |
| /* open a selector. If converterListSize is 0, build for all converters. |
| If excludedCodePoints is NULL, don't exclude any codepoints */ |
| U_CAPI UConverterSelector* U_EXPORT2 |
| ucnvsel_open(const char* const* converterList, int32_t converterListSize, |
| const USet* excludedCodePoints, |
| const UConverterUnicodeSet whichSet, UErrorCode* status) { |
| // check if already failed |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| // ensure args make sense! |
| if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| |
| // allocate a new converter |
| LocalUConverterSelectorPointer newSelector( |
| (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector))); |
| if (newSelector.isNull()) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector)); |
| |
| if (converterListSize == 0) { |
| converterList = NULL; |
| converterListSize = ucnv_countAvailable(); |
| } |
| newSelector->encodings = |
| (char**)uprv_malloc(converterListSize * sizeof(char*)); |
| if (!newSelector->encodings) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| newSelector->encodings[0] = NULL; // now we can call ucnvsel_close() |
| |
| // make a backup copy of the list of converters |
| int32_t totalSize = 0; |
| int32_t i; |
| for (i = 0; i < converterListSize; i++) { |
| totalSize += |
| (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1; |
| } |
| // 4-align the totalSize to 4-align the size of the serialized form |
| int32_t encodingStrPadding = totalSize & 3; |
| if (encodingStrPadding != 0) { |
| encodingStrPadding = 4 - encodingStrPadding; |
| } |
| newSelector->encodingStrLength = totalSize += encodingStrPadding; |
| char* allStrings = (char*) uprv_malloc(totalSize); |
| if (!allStrings) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| |
| for (i = 0; i < converterListSize; i++) { |
| newSelector->encodings[i] = allStrings; |
| uprv_strcpy(newSelector->encodings[i], |
| converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)); |
| allStrings += uprv_strlen(newSelector->encodings[i]) + 1; |
| } |
| while (encodingStrPadding > 0) { |
| *allStrings++ = 0; |
| --encodingStrPadding; |
| } |
| |
| newSelector->ownEncodingStrings = TRUE; |
| newSelector->encodingsCount = converterListSize; |
| UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status); |
| generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status); |
| upvec_close(upvec); |
| |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| |
| return newSelector.orphan(); |
| } |
| |
| /* close opened selector */ |
| U_CAPI void U_EXPORT2 |
| ucnvsel_close(UConverterSelector *sel) { |
| if (!sel) { |
| return; |
| } |
| if (sel->ownEncodingStrings) { |
| uprv_free(sel->encodings[0]); |
| } |
| uprv_free(sel->encodings); |
| if (sel->ownPv) { |
| uprv_free(sel->pv); |
| } |
| utrie2_close(sel->trie); |
| uprv_free(sel->swapped); |
| uprv_free(sel); |
| } |
| |
| static const UDataInfo dataInfo = { |
| sizeof(UDataInfo), |
| 0, |
| |
| U_IS_BIG_ENDIAN, |
| U_CHARSET_FAMILY, |
| U_SIZEOF_UCHAR, |
| 0, |
| |
| { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */ |
| { 1, 0, 0, 0 }, /* formatVersion */ |
| { 0, 0, 0, 0 } /* dataVersion */ |
| }; |
| |
| enum { |
| UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes |
| UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors |
| UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names |
| UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding |
| UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader |
| UCNVSEL_INDEX_COUNT = 16 |
| }; |
| |
| /* |
| * Serialized form of a UConverterSelector, formatVersion 1: |
| * |
| * The serialized form begins with a standard ICU DataHeader with a UDataInfo |
| * as the template above. |
| * This is followed by: |
| * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above |
| * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes |
| * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors |
| * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding |
| */ |
| |
| /* serialize a selector */ |
| U_CAPI int32_t U_EXPORT2 |
| ucnvsel_serialize(const UConverterSelector* sel, |
| void* buffer, int32_t bufferCapacity, UErrorCode* status) { |
| // check if already failed |
| if (U_FAILURE(*status)) { |
| return 0; |
| } |
| // ensure args make sense! |
| uint8_t *p = (uint8_t *)buffer; |
| if (bufferCapacity < 0 || |
| (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) |
| ) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| // add up the size of the serialized form |
| int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status); |
| if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { |
| return 0; |
| } |
| *status = U_ZERO_ERROR; |
| |
| DataHeader header; |
| uprv_memset(&header, 0, sizeof(header)); |
| header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15); |
| header.dataHeader.magic1 = 0xda; |
| header.dataHeader.magic2 = 0x27; |
| uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo)); |
| |
| int32_t indexes[UCNVSEL_INDEX_COUNT] = { |
| serializedTrieSize, |
| sel->pvCount, |
| sel->encodingsCount, |
| sel->encodingStrLength |
| }; |
| |
| int32_t totalSize = |
| header.dataHeader.headerSize + |
| (int32_t)sizeof(indexes) + |
| serializedTrieSize + |
| sel->pvCount * 4 + |
| sel->encodingStrLength; |
| indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize; |
| if (totalSize > bufferCapacity) { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| return totalSize; |
| } |
| // ok, save! |
| int32_t length = header.dataHeader.headerSize; |
| uprv_memcpy(p, &header, sizeof(header)); |
| uprv_memset(p + sizeof(header), 0, length - sizeof(header)); |
| p += length; |
| |
| length = (int32_t)sizeof(indexes); |
| uprv_memcpy(p, indexes, length); |
| p += length; |
| |
| utrie2_serialize(sel->trie, p, serializedTrieSize, status); |
| p += serializedTrieSize; |
| |
| length = sel->pvCount * 4; |
| uprv_memcpy(p, sel->pv, length); |
| p += length; |
| |
| uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength); |
| p += sel->encodingStrLength; |
| |
| return totalSize; |
| } |
| |
| /** |
| * swap a selector into the desired Endianness and Asciiness of |
| * the system. Just as FYI, selectors are always saved in the format |
| * of the system that created them. They are only converted if used |
| * on another system. In other words, selectors created on different |
| * system can be different even if the params are identical (endianness |
| * and Asciiness differences only) |
| * |
| * @param ds pointer to data swapper containing swapping info |
| * @param inData pointer to incoming data |
| * @param length length of inData in bytes |
| * @param outData pointer to output data. Capacity should |
| * be at least equal to capacity of inData |
| * @param status an in/out ICU UErrorCode |
| * @return 0 on failure, number of bytes swapped on success |
| * number of bytes swapped can be smaller than length |
| */ |
| static int32_t |
| ucnvsel_swap(const UDataSwapper *ds, |
| const void *inData, int32_t length, |
| void *outData, UErrorCode *status) { |
| /* udata_swapDataHeader checks the arguments */ |
| int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status); |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| |
| /* check data format and format version */ |
| const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4); |
| if(!( |
| pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */ |
| pInfo->dataFormat[1] == 0x53 && |
| pInfo->dataFormat[2] == 0x65 && |
| pInfo->dataFormat[3] == 0x6c |
| )) { |
| udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n", |
| pInfo->dataFormat[0], pInfo->dataFormat[1], |
| pInfo->dataFormat[2], pInfo->dataFormat[3]); |
| *status = U_INVALID_FORMAT_ERROR; |
| return 0; |
| } |
| if(pInfo->formatVersion[0] != 1) { |
| udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n", |
| pInfo->formatVersion[0]); |
| *status = U_UNSUPPORTED_ERROR; |
| return 0; |
| } |
| |
| if(length >= 0) { |
| length -= headerSize; |
| if(length < 16*4) { |
| udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n", |
| length); |
| *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| } |
| |
| const uint8_t *inBytes = (const uint8_t *)inData + headerSize; |
| uint8_t *outBytes = (uint8_t *)outData + headerSize; |
| |
| /* read the indexes */ |
| const int32_t *inIndexes = (const int32_t *)inBytes; |
| int32_t indexes[16]; |
| int32_t i; |
| for(i = 0; i < 16; ++i) { |
| indexes[i] = udata_readInt32(ds, inIndexes[i]); |
| } |
| |
| /* get the total length of the data */ |
| int32_t size = indexes[UCNVSEL_INDEX_SIZE]; |
| if(length >= 0) { |
| if(length < size) { |
| udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n", |
| length); |
| *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| |
| /* copy the data for inaccessible bytes */ |
| if(inBytes != outBytes) { |
| uprv_memcpy(outBytes, inBytes, size); |
| } |
| |
| int32_t offset = 0, count; |
| |
| /* swap the int32_t indexes[] */ |
| count = UCNVSEL_INDEX_COUNT*4; |
| ds->swapArray32(ds, inBytes, count, outBytes, status); |
| offset += count; |
| |
| /* swap the UTrie2 */ |
| count = indexes[UCNVSEL_INDEX_TRIE_SIZE]; |
| utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status); |
| offset += count; |
| |
| /* swap the uint32_t pv[] */ |
| count = indexes[UCNVSEL_INDEX_PV_COUNT]*4; |
| ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status); |
| offset += count; |
| |
| /* swap the encoding names */ |
| count = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; |
| ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status); |
| offset += count; |
| |
| U_ASSERT(offset == size); |
| } |
| |
| return headerSize + size; |
| } |
| |
| /* unserialize a selector */ |
| U_CAPI UConverterSelector* U_EXPORT2 |
| ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) { |
| // check if already failed |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| // ensure args make sense! |
| const uint8_t *p = (const uint8_t *)buffer; |
| if (length <= 0 || |
| (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) |
| ) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| // header |
| if (length < 32) { |
| // not even enough space for a minimal header |
| *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| return NULL; |
| } |
| const DataHeader *pHeader = (const DataHeader *)p; |
| if (!( |
| pHeader->dataHeader.magic1==0xda && |
| pHeader->dataHeader.magic2==0x27 && |
| pHeader->info.dataFormat[0] == 0x43 && |
| pHeader->info.dataFormat[1] == 0x53 && |
| pHeader->info.dataFormat[2] == 0x65 && |
| pHeader->info.dataFormat[3] == 0x6c |
| )) { |
| /* header not valid or dataFormat not recognized */ |
| *status = U_INVALID_FORMAT_ERROR; |
| return NULL; |
| } |
| if (pHeader->info.formatVersion[0] != 1) { |
| *status = U_UNSUPPORTED_ERROR; |
| return NULL; |
| } |
| uint8_t* swapped = NULL; |
| if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN || |
| pHeader->info.charsetFamily != U_CHARSET_FAMILY |
| ) { |
| // swap the data |
| UDataSwapper *ds = |
| udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status); |
| int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status); |
| if (U_FAILURE(*status)) { |
| udata_closeSwapper(ds); |
| return NULL; |
| } |
| if (length < totalSize) { |
| udata_closeSwapper(ds); |
| *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| return NULL; |
| } |
| swapped = (uint8_t*)uprv_malloc(totalSize); |
| if (swapped == NULL) { |
| udata_closeSwapper(ds); |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| ucnvsel_swap(ds, p, length, swapped, status); |
| udata_closeSwapper(ds); |
| if (U_FAILURE(*status)) { |
| uprv_free(swapped); |
| return NULL; |
| } |
| p = swapped; |
| pHeader = (const DataHeader *)p; |
| } |
| if (length < (pHeader->dataHeader.headerSize + 16 * 4)) { |
| // not even enough space for the header and the indexes |
| uprv_free(swapped); |
| *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| return NULL; |
| } |
| p += pHeader->dataHeader.headerSize; |
| length -= pHeader->dataHeader.headerSize; |
| // indexes |
| const int32_t *indexes = (const int32_t *)p; |
| if (length < indexes[UCNVSEL_INDEX_SIZE]) { |
| uprv_free(swapped); |
| *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| return NULL; |
| } |
| p += UCNVSEL_INDEX_COUNT * 4; |
| // create and populate the selector object |
| UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)); |
| char **encodings = |
| (char **)uprv_malloc( |
| indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *)); |
| if (sel == NULL || encodings == NULL) { |
| uprv_free(swapped); |
| uprv_free(sel); |
| uprv_free(encodings); |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| uprv_memset(sel, 0, sizeof(UConverterSelector)); |
| sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT]; |
| sel->encodings = encodings; |
| sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT]; |
| sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; |
| sel->swapped = swapped; |
| // trie |
| sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, |
| p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL, |
| status); |
| p += indexes[UCNVSEL_INDEX_TRIE_SIZE]; |
| if (U_FAILURE(*status)) { |
| ucnvsel_close(sel); |
| return NULL; |
| } |
| // bit vectors |
| sel->pv = (uint32_t *)p; |
| p += sel->pvCount * 4; |
| // encoding names |
| char* s = (char*)p; |
| for (int32_t i = 0; i < sel->encodingsCount; ++i) { |
| sel->encodings[i] = s; |
| s += uprv_strlen(s) + 1; |
| } |
| p += sel->encodingStrLength; |
| |
| return sel; |
| } |
| |
| // a bunch of functions for the enumeration thingie! Nothing fancy here. Just |
| // iterate over the selected encodings |
| struct Enumerator { |
| int16_t* index; |
| int16_t length; |
| int16_t cur; |
| const UConverterSelector* sel; |
| }; |
| |
| U_CDECL_BEGIN |
| |
| static void U_CALLCONV |
| ucnvsel_close_selector_iterator(UEnumeration *enumerator) { |
| uprv_free(((Enumerator*)(enumerator->context))->index); |
| uprv_free(enumerator->context); |
| uprv_free(enumerator); |
| } |
| |
| |
| static int32_t U_CALLCONV |
| ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) { |
| // check if already failed |
| if (U_FAILURE(*status)) { |
| return 0; |
| } |
| return ((Enumerator*)(enumerator->context))->length; |
| } |
| |
| |
| static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator, |
| int32_t* resultLength, |
| UErrorCode* status) { |
| // check if already failed |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| |
| int16_t cur = ((Enumerator*)(enumerator->context))->cur; |
| const UConverterSelector* sel; |
| const char* result; |
| if (cur >= ((Enumerator*)(enumerator->context))->length) { |
| return NULL; |
| } |
| sel = ((Enumerator*)(enumerator->context))->sel; |
| result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ]; |
| ((Enumerator*)(enumerator->context))->cur++; |
| if (resultLength) { |
| *resultLength = (int32_t)uprv_strlen(result); |
| } |
| return result; |
| } |
| |
| static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator, |
| UErrorCode* status) { |
| // check if already failed |
| if (U_FAILURE(*status)) { |
| return ; |
| } |
| ((Enumerator*)(enumerator->context))->cur = 0; |
| } |
| |
| U_CDECL_END |
| |
| |
| static const UEnumeration defaultEncodings = { |
| NULL, |
| NULL, |
| ucnvsel_close_selector_iterator, |
| ucnvsel_count_encodings, |
| uenum_unextDefault, |
| ucnvsel_next_encoding, |
| ucnvsel_reset_iterator |
| }; |
| |
| |
| // internal fn to intersect two sets of masks |
| // returns whether the mask has reduced to all zeros |
| static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) { |
| int32_t i; |
| uint32_t oredDest = 0; |
| for (i = 0 ; i < len ; ++i) { |
| oredDest |= (dest[i] &= source1[i]); |
| } |
| return oredDest == 0; |
| } |
| |
| // internal fn to count how many 1's are there in a mask |
| // algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html |
| static int16_t countOnes(uint32_t* mask, int32_t len) { |
| int32_t i, totalOnes = 0; |
| for (i = 0 ; i < len ; ++i) { |
| uint32_t ent = mask[i]; |
| for (; ent; totalOnes++) |
| { |
| ent &= ent - 1; // clear the least significant bit set |
| } |
| } |
| return totalOnes; |
| } |
| |
| |
| /* internal function! */ |
| static UEnumeration *selectForMask(const UConverterSelector* sel, |
| uint32_t *mask, UErrorCode *status) { |
| // this is the context we will use. Store a table of indices to which |
| // encodings are legit. |
| struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator)); |
| if (result == NULL) { |
| uprv_free(mask); |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| result->index = NULL; // this will be allocated later! |
| result->length = result->cur = 0; |
| result->sel = sel; |
| |
| UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration)); |
| if (en == NULL) { |
| // TODO(markus): Combine Enumerator and UEnumeration into one struct. |
| uprv_free(mask); |
| uprv_free(result); |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| memcpy(en, &defaultEncodings, sizeof(UEnumeration)); |
| en->context = result; |
| |
| int32_t columns = (sel->encodingsCount+31)/32; |
| int16_t numOnes = countOnes(mask, columns); |
| // now, we know the exact space we need for index |
| if (numOnes > 0) { |
| result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t)); |
| |
| int32_t i, j; |
| int16_t k = 0; |
| for (j = 0 ; j < columns; j++) { |
| uint32_t v = mask[j]; |
| for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) { |
| if ((v & 1) != 0) { |
| result->index[result->length++] = k; |
| } |
| v >>= 1; |
| } |
| } |
| } //otherwise, index will remain NULL (and will never be touched by |
| //the enumerator code anyway) |
| uprv_free(mask); |
| return en; |
| } |
| |
| /* check a string against the selector - UTF16 version */ |
| U_CAPI UEnumeration * U_EXPORT2 |
| ucnvsel_selectForString(const UConverterSelector* sel, |
| const UChar *s, int32_t length, UErrorCode *status) { |
| // check if already failed |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| // ensure args make sense! |
| if (sel == NULL || (s == NULL && length != 0)) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| |
| int32_t columns = (sel->encodingsCount+31)/32; |
| uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); |
| if (mask == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| uprv_memset(mask, ~0, columns *4); |
| |
| if(s!=NULL) { |
| const UChar *limit; |
| if (length >= 0) { |
| limit = s + length; |
| } else { |
| limit = NULL; |
| } |
| |
| while (limit == NULL ? *s != 0 : s != limit) { |
| UChar32 c; |
| uint16_t pvIndex; |
| UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex); |
| if (intersectMasks(mask, sel->pv+pvIndex, columns)) { |
| break; |
| } |
| } |
| } |
| return selectForMask(sel, mask, status); |
| } |
| |
| /* check a string against the selector - UTF8 version */ |
| U_CAPI UEnumeration * U_EXPORT2 |
| ucnvsel_selectForUTF8(const UConverterSelector* sel, |
| const char *s, int32_t length, UErrorCode *status) { |
| // check if already failed |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| // ensure args make sense! |
| if (sel == NULL || (s == NULL && length != 0)) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| |
| int32_t columns = (sel->encodingsCount+31)/32; |
| uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); |
| if (mask == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| uprv_memset(mask, ~0, columns *4); |
| |
| if (length < 0) { |
| length = (int32_t)uprv_strlen(s); |
| } |
| |
| if(s!=NULL) { |
| const char *limit = s + length; |
| |
| while (s != limit) { |
| uint16_t pvIndex; |
| UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex); |
| if (intersectMasks(mask, sel->pv+pvIndex, columns)) { |
| break; |
| } |
| } |
| } |
| return selectForMask(sel, mask, status); |
| } |
| |
| #endif // !UCONFIG_NO_CONVERSION |