blob: e8d1b38653eb9d2b9edc8818ec0dc0e2f913c9f5 [file] [log] [blame]
Victor Chang73229502020-09-17 13:39:19 +01001// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/* ------------------------------------------------------------------ */
4/* decNumber package local type, tuning, and macro definitions */
5/* ------------------------------------------------------------------ */
6/* Copyright (c) IBM Corporation, 2000-2016. All rights reserved. */
7/* */
8/* This software is made available under the terms of the */
9/* ICU License -- ICU 1.8.1 and later. */
10/* */
11/* The description and User's Guide ("The decNumber C Library") for */
12/* this software is called decNumber.pdf. This document is */
13/* available, together with arithmetic and format specifications, */
14/* testcases, and Web links, on the General Decimal Arithmetic page. */
15/* */
16/* Please send comments, suggestions, and corrections to the author: */
17/* mfc@uk.ibm.com */
18/* Mike Cowlishaw, IBM Fellow */
19/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
20/* ------------------------------------------------------------------ */
21/* This header file is included by all modules in the decNumber */
22/* library, and contains local type definitions, tuning parameters, */
23/* etc. It should not need to be used by application programs. */
24/* decNumber.h or one of decDouble (etc.) must be included first. */
25/* ------------------------------------------------------------------ */
26
27#if !defined(DECNUMBERLOC)
28 #define DECNUMBERLOC
29 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */
30 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
31
32 #include <stdlib.h> /* for abs */
33 #include <string.h> /* for memset, strcpy */
34 #include "decContext.h"
35
36 /* Conditional code flag -- set this to match hardware platform */
37 #if !defined(DECLITEND)
38 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */
39 #endif
40
41 /* Conditional code flag -- set this to 1 for best performance */
42 #if !defined(DECUSE64)
43 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
44 #endif
45
46 /* Conditional check flags -- set these to 0 for best performance */
47 #if !defined(DECCHECK)
48 #define DECCHECK 0 /* 1 to enable robust checking */
49 #endif
50 #if !defined(DECALLOC)
51 #define DECALLOC 0 /* 1 to enable memory accounting */
52 #endif
53 #if !defined(DECTRACE)
54 #define DECTRACE 0 /* 1 to trace certain internals, etc. */
55 #endif
56
57 /* Tuning parameter for decNumber (arbitrary precision) module */
58 #if !defined(DECBUFFER)
59 #define DECBUFFER 36 /* Size basis for local buffers. This */
60 /* should be a common maximum precision */
61 /* rounded up to a multiple of 4; must */
62 /* be zero or positive. */
63 #endif
64
65 /* ---------------------------------------------------------------- */
66 /* Definitions for all modules (general-purpose) */
67 /* ---------------------------------------------------------------- */
68
69 /* Local names for common types -- for safety, decNumber modules do */
70 /* not use int or long directly. */
71 #define Flag uint8_t
72 #define Byte int8_t
73 #define uByte uint8_t
74 #define Short int16_t
75 #define uShort uint16_t
76 #define Int int32_t
77 #define uInt uint32_t
78 #define Unit decNumberUnit
79 #if DECUSE64
80 #define Long int64_t
81 #define uLong uint64_t
82 #endif
83
84 /* Development-use definitions */
85 typedef long int LI; /* for printf arguments only */
86 #define DECNOINT 0 /* 1 to check no internal use of 'int' */
87 /* or stdint types */
88 #if DECNOINT
89 /* if these interfere with your C includes, do not set DECNOINT */
90 #define int ? /* enable to ensure that plain C 'int' */
91 #define long ?? /* .. or 'long' types are not used */
92 #endif
93
94 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
95 /* (that is, sets w to be the high-order word of the 64-bit result; */
96 /* the low-order word is simply u*v.) */
97 /* This version is derived from Knuth via Hacker's Delight; */
98 /* it seems to optimize better than some others tried */
99 #define LONGMUL32HI(w, u, v) { \
100 uInt u0, u1, v0, v1, w0, w1, w2, t; \
101 u0=u & 0xffff; u1=u>>16; \
102 v0=v & 0xffff; v1=v>>16; \
103 w0=u0*v0; \
104 t=u1*v0 + (w0>>16); \
105 w1=t & 0xffff; w2=t>>16; \
106 w1=u0*v1 + w1; \
107 (w)=u1*v1 + w2 + (w1>>16);}
108
109 /* ROUNDUP -- round an integer up to a multiple of n */
110 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
111 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
112
113 /* ROUNDDOWN -- round an integer down to a multiple of n */
114 #define ROUNDDOWN(i, n) (((i)/n)*n)
115 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
116
117 /* References to multi-byte sequences under different sizes; these */
118 /* require locally declared variables, but do not violate strict */
119 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */
120 /* Variables needed are uswork, uiwork, etc. [so do not use at same */
121 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
122
123 /* Return a uInt, etc., from bytes starting at a char* or uByte* */
124 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
125 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
126
127 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */
128 /* Returns i, evaluated, for convenience; has to use uiwork because */
129 /* i may be an expression. */
130 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
131 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
132
133 /* X10 and X100 -- multiply integer i by 10 or 100 */
134 /* [shifts are usually faster than multiply; could be conditional] */
135 #define X10(i) (((i)<<1)+((i)<<3))
136 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
137
138 /* MAXI and MINI -- general max & min (not in ANSI) for integers */
139 #define MAXI(x,y) ((x)<(y)?(y):(x))
140 #define MINI(x,y) ((x)>(y)?(y):(x))
141
142 /* Useful constants */
143 #define BILLION 1000000000 /* 10**9 */
144 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
145 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
146
147
148 /* ---------------------------------------------------------------- */
149 /* Definitions for arbitary-precision modules (only valid after */
150 /* decNumber.h has been included) */
151 /* ---------------------------------------------------------------- */
152
153 /* Limits and constants */
154 #define DECNUMMAXP 999999999 /* maximum precision code can handle */
155 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
156 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
157 #if (DECNUMMAXP != DEC_MAX_DIGITS)
158 #error Maximum digits mismatch
159 #endif
160 #if (DECNUMMAXE != DEC_MAX_EMAX)
161 #error Maximum exponent mismatch
162 #endif
163 #if (DECNUMMINE != DEC_MIN_EMIN)
164 #error Minimum exponent mismatch
165 #endif
166
167 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
168 /* digits, and D2UTABLE -- the initializer for the D2U table */
169 #ifndef DECDPUN
170 // no-op
171 #elif DECDPUN==1
172 #define DECDPUNMAX 9
173 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
174 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
175 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
176 48,49}
177 #elif DECDPUN==2
178 #define DECDPUNMAX 99
179 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
180 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
181 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
182 #elif DECDPUN==3
183 #define DECDPUNMAX 999
184 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
185 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
186 13,14,14,14,15,15,15,16,16,16,17}
187 #elif DECDPUN==4
188 #define DECDPUNMAX 9999
189 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
190 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
191 11,11,11,12,12,12,12,13}
192 #elif DECDPUN==5
193 #define DECDPUNMAX 99999
194 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
195 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
196 9,9,10,10,10,10}
197 #elif DECDPUN==6
198 #define DECDPUNMAX 999999
199 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
200 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
201 8,8,8,8,8,9}
202 #elif DECDPUN==7
203 #define DECDPUNMAX 9999999
204 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
205 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
206 7,7,7,7,7,7}
207 #elif DECDPUN==8
208 #define DECDPUNMAX 99999999
209 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
210 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
211 6,6,6,6,6,7}
212 #elif DECDPUN==9
213 #define DECDPUNMAX 999999999
214 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
215 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
216 5,5,6,6,6,6}
217 #else
218 #error DECDPUN must be in the range 1-9
219 #endif
220
221 /* ----- Shared data (in decNumber.c) ----- */
222 /* Public lookup table used by the D2U macro (see below) */
223 #define DECMAXD2U 49
224 /*extern const uByte d2utable[DECMAXD2U+1];*/
225
226 /* ----- Macros ----- */
227 /* ISZERO -- return true if decNumber dn is a zero */
228 /* [performance-critical in some situations] */
229 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
230
231 /* D2U -- return the number of Units needed to hold d digits */
232 /* (runtime version, with table lookaside for small d) */
233 #if defined(DECDPUN) && DECDPUN==8
234 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
235 #elif defined(DECDPUN) && DECDPUN==4
236 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
237 #else
238 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
239 #endif
240 /* SD2U -- static D2U macro (for compile-time calculation) */
241 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
242
243 /* MSUDIGITS -- returns digits in msu, from digits, calculated */
244 /* using D2U */
245 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
246
247 /* D2N -- return the number of decNumber structs that would be */
248 /* needed to contain that number of digits (and the initial */
249 /* decNumber struct) safely. Note that one Unit is included in the */
250 /* initial structure. Used for allocating space that is aligned on */
251 /* a decNumber struct boundary. */
252 #define D2N(d) \
253 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
254
255 /* TODIGIT -- macro to remove the leading digit from the unsigned */
256 /* integer u at column cut (counting from the right, LSD=0) and */
257 /* place it as an ASCII character into the character pointed to by */
258 /* c. Note that cut must be <= 9, and the maximum value for u is */
259 /* 2,000,000,000 (as is needed for negative exponents of */
260 /* subnormals). The unsigned integer pow is used as a temporary */
261 /* variable. */
262 #define TODIGIT(u, cut, c, pow) UPRV_BLOCK_MACRO_BEGIN { \
263 *(c)='0'; \
264 pow=DECPOWERS[cut]*2; \
265 if ((u)>pow) { \
266 pow*=4; \
267 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
268 pow/=2; \
269 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
270 pow/=2; \
271 } \
272 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
273 pow/=2; \
274 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
275 } UPRV_BLOCK_MACRO_END
276
277 /* ---------------------------------------------------------------- */
278 /* Definitions for fixed-precision modules (only valid after */
279 /* decSingle.h, decDouble.h, or decQuad.h has been included) */
280 /* ---------------------------------------------------------------- */
281
282 /* bcdnum -- a structure describing a format-independent finite */
283 /* number, whose coefficient is a string of bcd8 uBytes */
284 typedef struct {
285 uByte *msd; /* -> most significant digit */
286 uByte *lsd; /* -> least ditto */
287 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
288 Int exponent; /* Unadjusted signed exponent (q), or */
289 /* DECFLOAT_NaN etc. for a special */
290 } bcdnum;
291
292 /* Test if exponent or bcdnum exponent must be a special, etc. */
293 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
294 #define EXPISINF(exp) (exp==DECFLOAT_Inf)
295 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
296 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
297
298 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
299 /* (array) notation (the 0 word or byte contains the sign bit), */
300 /* automatically adjusting for endianness; similarly address a word */
301 /* in the next-wider format (decFloatWider, or dfw) */
302 #define DECWORDS (DECBYTES/4)
303 #define DECWWORDS (DECWBYTES/4)
304 #if DECLITEND
305 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
306 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
307 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
308 #else
309 #define DFBYTE(df, off) ((df)->bytes[off])
310 #define DFWORD(df, off) ((df)->words[off])
311 #define DFWWORD(dfw, off) ((dfw)->words[off])
312 #endif
313
314 /* Tests for sign or specials, directly on DECFLOATs */
315 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
316 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
317 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
318 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
319 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
320 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
321
322 /* Shared lookup tables */
323 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
324 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
325
326 /* Private generic (utility) routine */
327 #if DECCHECK || DECTRACE
328 extern void decShowNum(const bcdnum *, const char *);
329 #endif
330
331 /* Format-dependent macros and constants */
332 #if defined(DECPMAX)
333
334 /* Useful constants */
335 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
336 /* Top words for a zero */
337 #define SINGLEZERO 0x22500000
338 #define DOUBLEZERO 0x22380000
339 #define QUADZERO 0x22080000
340 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
341
342 /* Format-dependent common tests: */
343 /* DFISZERO -- test for (any) zero */
344 /* DFISCCZERO -- test for coefficient continuation being zero */
345 /* DFISCC01 -- test for coefficient contains only 0s and 1s */
346 /* DFISINT -- test for finite and exponent q=0 */
347 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
348 /* MSD=0 or 1 */
349 /* ZEROWORD is also defined here. */
350 /* In DFISZERO the first test checks the least-significant word */
351 /* (most likely to be non-zero); the penultimate tests MSD and */
352 /* DPDs in the signword, and the final test excludes specials and */
353 /* MSD>7. DFISINT similarly has to allow for the two forms of */
354 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
355 /* code. */
356 #if DECPMAX==7
357 #define ZEROWORD SINGLEZERO
358 /* [test macros not needed except for Zero] */
359 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
360 && (DFWORD(df, 0)&0x60000000)!=0x60000000)
361 #elif DECPMAX==16
362 #define ZEROWORD DOUBLEZERO
363 #define DFISZERO(df) ((DFWORD(df, 1)==0 \
364 && (DFWORD(df, 0)&0x1c03ffff)==0 \
365 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
366 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
367 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
368 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
369 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
370 && (DFWORD(df, 0)&0x0003ffff)==0)
371 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
372 && (DFWORD(df, 1)&~0x49124491)==0)
373 #elif DECPMAX==34
374 #define ZEROWORD QUADZERO
375 #define DFISZERO(df) ((DFWORD(df, 3)==0 \
376 && DFWORD(df, 2)==0 \
377 && DFWORD(df, 1)==0 \
378 && (DFWORD(df, 0)&0x1c003fff)==0 \
379 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
380 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
381 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
382 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
383 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
384 && DFWORD(df, 2)==0 \
385 && DFWORD(df, 1)==0 \
386 && (DFWORD(df, 0)&0x00003fff)==0)
387
388 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
389 && (DFWORD(df, 1)&~0x44912449)==0 \
390 && (DFWORD(df, 2)&~0x12449124)==0 \
391 && (DFWORD(df, 3)&~0x49124491)==0)
392 #endif
393
394 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
395 /* are a canonical declet [higher or lower bits are ignored]. */
396 /* declet is at offset 0 (from the right) in a uInt: */
397 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
398 /* declet is at offset k (a multiple of 2) in a uInt: */
399 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
400 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
401 /* declet is at offset k (a multiple of 2) in a pair of uInts: */
402 /* [the top 2 bits will always be in the more-significant uInt] */
403 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
404 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
405 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
406
407 /* Macro to test whether a full-length (length DECPMAX) BCD8 */
408 /* coefficient, starting at uByte u, is all zeros */
409 /* Test just the LSWord first, then the remainder as a sequence */
410 /* of tests in order to avoid same-level use of UBTOUI */
411 #if DECPMAX==7
412 #define ISCOEFFZERO(u) ( \
413 UBTOUI((u)+DECPMAX-4)==0 \
414 && UBTOUS((u)+DECPMAX-6)==0 \
415 && *(u)==0)
416 #elif DECPMAX==16
417 #define ISCOEFFZERO(u) ( \
418 UBTOUI((u)+DECPMAX-4)==0 \
419 && UBTOUI((u)+DECPMAX-8)==0 \
420 && UBTOUI((u)+DECPMAX-12)==0 \
421 && UBTOUI(u)==0)
422 #elif DECPMAX==34
423 #define ISCOEFFZERO(u) ( \
424 UBTOUI((u)+DECPMAX-4)==0 \
425 && UBTOUI((u)+DECPMAX-8)==0 \
426 && UBTOUI((u)+DECPMAX-12)==0 \
427 && UBTOUI((u)+DECPMAX-16)==0 \
428 && UBTOUI((u)+DECPMAX-20)==0 \
429 && UBTOUI((u)+DECPMAX-24)==0 \
430 && UBTOUI((u)+DECPMAX-28)==0 \
431 && UBTOUI((u)+DECPMAX-32)==0 \
432 && UBTOUS(u)==0)
433 #endif
434
435 /* Macros and masks for the exponent continuation field and MSD */
436 /* Get the exponent continuation from a decFloat *df as an Int */
437 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
438 /* Ditto, from the next-wider format */
439 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
440 /* Get the biased exponent similarly */
441 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
442 /* Get the unbiased exponent similarly */
443 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
444 /* Get the MSD similarly (as uInt) */
445 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
446
447 /* Compile-time computes of the exponent continuation field masks */
448 /* full exponent continuation field: */
449 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
450 /* same, not including its first digit (the qNaN/sNaN selector): */
451 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
452
453 /* Macros to decode the coefficient in a finite decFloat *df into */
454 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
455
456 /* In-line sequence to convert least significant 10 bits of uInt */
457 /* dpd to three BCD8 digits starting at uByte u. Note that an */
458 /* extra byte is written to the right of the three digits because */
459 /* four bytes are moved at a time for speed; the alternative */
460 /* macro moves exactly three bytes (usually slower). */
461 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
462 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
463
464 /* Decode the declets. After extracting each one, it is decoded */
465 /* to BCD8 using a table lookup (also used for variable-length */
466 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
467 /* length which is not used, here). Fixed-length 4-byte moves */
468 /* are fast, however, almost everywhere, and so are used except */
469 /* for the final three bytes (to avoid overrun). The code below */
470 /* is 36 instructions for Doubles and about 70 for Quads, even */
471 /* on IA32. */
472
473 /* Two macros are defined for each format: */
474 /* GETCOEFF extracts the coefficient of the current format */
475 /* GETWCOEFF extracts the coefficient of the next-wider format. */
476 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
477
478 #if DECPMAX==7
479 #define GETCOEFF(df, bcd) { \
480 uInt sourhi=DFWORD(df, 0); \
481 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
482 dpd2bcd8(bcd+1, sourhi>>10); \
483 dpd2bcd83(bcd+4, sourhi);}
484 #define GETWCOEFF(df, bcd) { \
485 uInt sourhi=DFWWORD(df, 0); \
486 uInt sourlo=DFWWORD(df, 1); \
487 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
488 dpd2bcd8(bcd+1, sourhi>>8); \
489 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
490 dpd2bcd8(bcd+7, sourlo>>20); \
491 dpd2bcd8(bcd+10, sourlo>>10); \
492 dpd2bcd83(bcd+13, sourlo);}
493
494 #elif DECPMAX==16
495 #define GETCOEFF(df, bcd) { \
496 uInt sourhi=DFWORD(df, 0); \
497 uInt sourlo=DFWORD(df, 1); \
498 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
499 dpd2bcd8(bcd+1, sourhi>>8); \
500 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
501 dpd2bcd8(bcd+7, sourlo>>20); \
502 dpd2bcd8(bcd+10, sourlo>>10); \
503 dpd2bcd83(bcd+13, sourlo);}
504 #define GETWCOEFF(df, bcd) { \
505 uInt sourhi=DFWWORD(df, 0); \
506 uInt sourmh=DFWWORD(df, 1); \
507 uInt sourml=DFWWORD(df, 2); \
508 uInt sourlo=DFWWORD(df, 3); \
509 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
510 dpd2bcd8(bcd+1, sourhi>>4); \
511 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
512 dpd2bcd8(bcd+7, sourmh>>16); \
513 dpd2bcd8(bcd+10, sourmh>>6); \
514 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
515 dpd2bcd8(bcd+16, sourml>>18); \
516 dpd2bcd8(bcd+19, sourml>>8); \
517 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
518 dpd2bcd8(bcd+25, sourlo>>20); \
519 dpd2bcd8(bcd+28, sourlo>>10); \
520 dpd2bcd83(bcd+31, sourlo);}
521
522 #elif DECPMAX==34
523 #define GETCOEFF(df, bcd) { \
524 uInt sourhi=DFWORD(df, 0); \
525 uInt sourmh=DFWORD(df, 1); \
526 uInt sourml=DFWORD(df, 2); \
527 uInt sourlo=DFWORD(df, 3); \
528 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
529 dpd2bcd8(bcd+1, sourhi>>4); \
530 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
531 dpd2bcd8(bcd+7, sourmh>>16); \
532 dpd2bcd8(bcd+10, sourmh>>6); \
533 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
534 dpd2bcd8(bcd+16, sourml>>18); \
535 dpd2bcd8(bcd+19, sourml>>8); \
536 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
537 dpd2bcd8(bcd+25, sourlo>>20); \
538 dpd2bcd8(bcd+28, sourlo>>10); \
539 dpd2bcd83(bcd+31, sourlo);}
540
541 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
542 #endif
543
544 /* Macros to decode the coefficient in a finite decFloat *df into */
545 /* a base-billion uInt array, with the least-significant */
546 /* 0-999999999 'digit' at offset 0. */
547
548 /* Decode the declets. After extracting each one, it is decoded */
549 /* to binary using a table lookup. Three tables are used; one */
550 /* the usual DPD to binary, the other two pre-multiplied by 1000 */
551 /* and 1000000 to avoid multiplication during decode. These */
552 /* tables can also be used for multiplying up the MSD as the DPD */
553 /* code for 0 through 9 is the identity. */
554 #define DPD2BIN0 DPD2BIN /* for prettier code */
555
556 #if DECPMAX==7
557 #define GETCOEFFBILL(df, buf) { \
558 uInt sourhi=DFWORD(df, 0); \
559 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
560 +DPD2BINK[(sourhi>>10)&0x3ff] \
561 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
562
563 #elif DECPMAX==16
564 #define GETCOEFFBILL(df, buf) { \
565 uInt sourhi, sourlo; \
566 sourlo=DFWORD(df, 1); \
567 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
568 +DPD2BINK[(sourlo>>10)&0x3ff] \
569 +DPD2BINM[(sourlo>>20)&0x3ff]; \
570 sourhi=DFWORD(df, 0); \
571 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
572 +DPD2BINK[(sourhi>>8)&0x3ff] \
573 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
574
575 #elif DECPMAX==34
576 #define GETCOEFFBILL(df, buf) { \
577 uInt sourhi, sourmh, sourml, sourlo; \
578 sourlo=DFWORD(df, 3); \
579 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
580 +DPD2BINK[(sourlo>>10)&0x3ff] \
581 +DPD2BINM[(sourlo>>20)&0x3ff]; \
582 sourml=DFWORD(df, 2); \
583 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
584 +DPD2BINK[(sourml>>8)&0x3ff] \
585 +DPD2BINM[(sourml>>18)&0x3ff]; \
586 sourmh=DFWORD(df, 1); \
587 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
588 +DPD2BINK[(sourmh>>6)&0x3ff] \
589 +DPD2BINM[(sourmh>>16)&0x3ff]; \
590 sourhi=DFWORD(df, 0); \
591 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
592 +DPD2BINK[(sourhi>>4)&0x3ff] \
593 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
594
595 #endif
596
597 /* Macros to decode the coefficient in a finite decFloat *df into */
598 /* a base-thousand uInt array (of size DECLETS+1, to allow for */
599 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
600
601 /* Decode the declets. After extracting each one, it is decoded */
602 /* to binary using a table lookup. */
603 #if DECPMAX==7
604 #define GETCOEFFTHOU(df, buf) { \
605 uInt sourhi=DFWORD(df, 0); \
606 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
607 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
608 (buf)[2]=DECCOMBMSD[sourhi>>26];}
609
610 #elif DECPMAX==16
611 #define GETCOEFFTHOU(df, buf) { \
612 uInt sourhi, sourlo; \
613 sourlo=DFWORD(df, 1); \
614 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
615 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
616 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
617 sourhi=DFWORD(df, 0); \
618 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
619 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
620 (buf)[5]=DECCOMBMSD[sourhi>>26];}
621
622 #elif DECPMAX==34
623 #define GETCOEFFTHOU(df, buf) { \
624 uInt sourhi, sourmh, sourml, sourlo; \
625 sourlo=DFWORD(df, 3); \
626 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
627 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
628 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
629 sourml=DFWORD(df, 2); \
630 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
631 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
632 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
633 sourmh=DFWORD(df, 1); \
634 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
635 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
636 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
637 sourhi=DFWORD(df, 0); \
638 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
639 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
640 (buf)[11]=DECCOMBMSD[sourhi>>26];}
641 #endif
642
643
644 /* Macros to decode the coefficient in a finite decFloat *df and */
645 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
646 /* After the addition then most significant 'digit' in the array */
647 /* might have a value larger then 10 (with a maximum of 19). */
648 #if DECPMAX==7
649 #define ADDCOEFFTHOU(df, buf) { \
650 uInt sourhi=DFWORD(df, 0); \
651 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
652 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
653 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
654 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
655 (buf)[2]+=DECCOMBMSD[sourhi>>26];}
656
657 #elif DECPMAX==16
658 #define ADDCOEFFTHOU(df, buf) { \
659 uInt sourhi, sourlo; \
660 sourlo=DFWORD(df, 1); \
661 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
662 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
663 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
664 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
665 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
666 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
667 sourhi=DFWORD(df, 0); \
668 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
669 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
670 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
671 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
672 (buf)[5]+=DECCOMBMSD[sourhi>>26];}
673
674 #elif DECPMAX==34
675 #define ADDCOEFFTHOU(df, buf) { \
676 uInt sourhi, sourmh, sourml, sourlo; \
677 sourlo=DFWORD(df, 3); \
678 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
679 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
680 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
681 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
682 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
683 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
684 sourml=DFWORD(df, 2); \
685 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
686 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
687 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
688 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
689 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
690 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
691 sourmh=DFWORD(df, 1); \
692 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
693 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
694 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
695 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
696 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
697 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
698 sourhi=DFWORD(df, 0); \
699 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
700 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
701 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
702 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
703 (buf)[11]+=DECCOMBMSD[sourhi>>26];}
704 #endif
705
706
707 /* Set a decFloat to the maximum positive finite number (Nmax) */
708 #if DECPMAX==7
709 #define DFSETNMAX(df) \
710 {DFWORD(df, 0)=0x77f3fcff;}
711 #elif DECPMAX==16
712 #define DFSETNMAX(df) \
713 {DFWORD(df, 0)=0x77fcff3f; \
714 DFWORD(df, 1)=0xcff3fcff;}
715 #elif DECPMAX==34
716 #define DFSETNMAX(df) \
717 {DFWORD(df, 0)=0x77ffcff3; \
718 DFWORD(df, 1)=0xfcff3fcf; \
719 DFWORD(df, 2)=0xf3fcff3f; \
720 DFWORD(df, 3)=0xcff3fcff;}
721 #endif
722
723 /* [end of format-dependent macros and constants] */
724 #endif
725
726#else
727 #error decNumberLocal included more than once
728#endif