blob: d9b35c03366813e6b2262a1ce6353826c34aef9d [file] [log] [blame]
Victor Chang73229502020-09-17 13:39:19 +01001// © 2017 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3
4#include "unicode/utypes.h"
5
6#if !UCONFIG_NO_FORMATTING
7#ifndef __NUMBER_DECIMALQUANTITY_H__
8#define __NUMBER_DECIMALQUANTITY_H__
9
10#include <cstdint>
11#include "unicode/umachine.h"
12#include "standardplural.h"
13#include "plurrule_impl.h"
14#include "number_types.h"
15
16U_NAMESPACE_BEGIN namespace number {
17namespace impl {
18
19// Forward-declare (maybe don't want number_utils.h included here):
20class DecNum;
21
22/**
23 * An class for representing a number to be processed by the decimal formatting pipeline. Includes
24 * methods for rounding, plural rules, and decimal digit extraction.
25 *
26 * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
27 * object holding state during a pass through the decimal formatting pipeline.
28 *
29 * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
30 *
31 * <p>Java has multiple implementations for testing, but C++ has only one implementation.
32 */
33class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
34 public:
35 /** Copy constructor. */
36 DecimalQuantity(const DecimalQuantity &other);
37
38 /** Move constructor. */
39 DecimalQuantity(DecimalQuantity &&src) U_NOEXCEPT;
40
41 DecimalQuantity();
42
43 ~DecimalQuantity() override;
44
45 /**
46 * Sets this instance to be equal to another instance.
47 *
48 * @param other The instance to copy from.
49 */
50 DecimalQuantity &operator=(const DecimalQuantity &other);
51
52 /** Move assignment */
53 DecimalQuantity &operator=(DecimalQuantity&& src) U_NOEXCEPT;
54
55 /**
56 * Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
57 * This method does not perform rounding.
58 *
59 * @param minInt The minimum number of integer digits.
60 */
61 void setMinInteger(int32_t minInt);
62
63 /**
64 * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
65 * This method does not perform rounding.
66 *
67 * @param minFrac The minimum number of fraction digits.
68 */
69 void setMinFraction(int32_t minFrac);
70
71 /**
72 * Truncates digits from the upper magnitude of the number in order to satisfy the
73 * specified maximum number of integer digits.
74 *
75 * @param maxInt The maximum number of integer digits.
76 */
77 void applyMaxInteger(int32_t maxInt);
78
79 /**
80 * Rounds the number to a specified interval, such as 0.05.
81 *
82 * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
83 *
84 * @param roundingIncrement The increment to which to round.
85 * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
86 */
87 void roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
88 UErrorCode& status);
89
90 /** Removes all fraction digits. */
91 void truncate();
92
93 /**
94 * Rounds the number to the nearest multiple of 5 at the specified magnitude.
95 * For example, when magnitude == -2, this performs rounding to the nearest 0.05.
96 *
97 * @param magnitude The magnitude at which the digit should become either 0 or 5.
98 * @param roundingMode Rounding strategy.
99 */
100 void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
101
102 /**
103 * Rounds the number to a specified magnitude (power of ten).
104 *
105 * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
106 * round to 2 decimal places.
107 * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
108 */
109 void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
110
111 /**
112 * Rounds the number to an infinite number of decimal points. This has no effect except for
113 * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
114 */
115 void roundToInfinity();
116
117 /**
118 * Multiply the internal value. Uses decNumber.
119 *
120 * @param multiplicand The value by which to multiply.
121 */
122 void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
123
124 /**
125 * Divide the internal value. Uses decNumber.
126 *
127 * @param multiplicand The value by which to multiply.
128 */
129 void divideBy(const DecNum& divisor, UErrorCode& status);
130
131 /** Flips the sign from positive to negative and back. */
132 void negate();
133
134 /**
135 * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
136 * this method with delta=-3 will change the value to "1.23456".
137 *
138 * @param delta The number of magnitudes of ten to change by.
139 * @return true if integer overflow occured; false otherwise.
140 */
141 bool adjustMagnitude(int32_t delta);
142
143 /**
144 * @return The power of ten corresponding to the most significant nonzero digit.
145 * The number must not be zero.
146 */
147 int32_t getMagnitude() const;
148
149 /**
Victor Changd8aa9d52021-01-05 23:49:57 +0000150 * @return The value of the (suppressed) exponent after the number has been
151 * put into a notation with exponents (ex: compact, scientific). Ex: given
152 * the number 1000 as "1K" / "1E3", the return value will be 3 (positive).
153 */
154 int32_t getExponent() const;
155
156 /**
157 * Adjusts the value for the (suppressed) exponent stored when using
158 * notation with exponents (ex: compact, scientific).
159 *
160 * <p>Adjusting the exponent is decoupled from {@link #adjustMagnitude} in
161 * order to allow flexibility for {@link StandardPlural} to be selected in
162 * formatting (ex: for compact notation) either with or without the exponent
163 * applied in the value of the number.
164 * @param delta
165 * The value to adjust the exponent by.
166 */
167 void adjustExponent(int32_t delta);
168
169 /**
Victor Chang73229502020-09-17 13:39:19 +0100170 * @return Whether the value represented by this {@link DecimalQuantity} is
171 * zero, infinity, or NaN.
172 */
173 bool isZeroish() const;
174
175 /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
176 bool isNegative() const;
177
178 /** @return The appropriate value from the Signum enum. */
179 Signum signum() const;
180
181 /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
182 bool isInfinite() const U_OVERRIDE;
183
184 /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
185 bool isNaN() const U_OVERRIDE;
186
Victor Changd8aa9d52021-01-05 23:49:57 +0000187 /**
188 * Note: this method incorporates the value of {@code exponent}
189 * (for cases such as compact notation) to return the proper long value
190 * represented by the result.
191 * @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error.
192 */
Victor Chang73229502020-09-17 13:39:19 +0100193 int64_t toLong(bool truncateIfOverflow = false) const;
194
Victor Changd8aa9d52021-01-05 23:49:57 +0000195 /**
196 * Note: this method incorporates the value of {@code exponent}
197 * (for cases such as compact notation) to return the proper long value
198 * represented by the result.
199 */
Victor Chang73229502020-09-17 13:39:19 +0100200 uint64_t toFractionLong(bool includeTrailingZeros) const;
201
202 /**
203 * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
204 * @param ignoreFraction if true, silently ignore digits after the decimal place.
205 */
206 bool fitsInLong(bool ignoreFraction = false) const;
207
208 /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
209 double toDouble() const;
210
211 /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
212 void toDecNum(DecNum& output, UErrorCode& status) const;
213
214 DecimalQuantity &setToInt(int32_t n);
215
216 DecimalQuantity &setToLong(int64_t n);
217
218 DecimalQuantity &setToDouble(double n);
219
220 /** decNumber is similar to BigDecimal in Java. */
221 DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
222
223 /** Internal method if the caller already has a DecNum. */
224 DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
225
226 /**
227 * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
228 * by this DecimalQuantity.
229 *
230 * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
231 * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
232 *
233 * @param value The digit to append.
234 * @param leadingZeros The number of zeros to append before the digit. For example, if the value
235 * in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
236 * 12.304.
237 * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
238 * new digit. If false, append to the end like a fraction digit. If true, there must not be
239 * any fraction digits already in the number.
240 * @internal
241 * @deprecated This API is ICU internal only.
242 */
243 void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
244
245 double getPluralOperand(PluralOperand operand) const U_OVERRIDE;
246
247 bool hasIntegerValue() const U_OVERRIDE;
248
249 /**
250 * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
251 * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
252 *
253 * @param magnitude The magnitude of the digit.
254 * @return The digit at the specified magnitude.
255 */
256 int8_t getDigit(int32_t magnitude) const;
257
258 /**
259 * Gets the largest power of ten that needs to be displayed. The value returned by this function
260 * will be bounded between minInt and maxInt.
261 *
262 * @return The highest-magnitude digit to be displayed.
263 */
264 int32_t getUpperDisplayMagnitude() const;
265
266 /**
267 * Gets the smallest power of ten that needs to be displayed. The value returned by this function
268 * will be bounded between -minFrac and -maxFrac.
269 *
270 * @return The lowest-magnitude digit to be displayed.
271 */
272 int32_t getLowerDisplayMagnitude() const;
273
274 int32_t fractionCount() const;
275
276 int32_t fractionCountWithoutTrailingZeros() const;
277
278 void clear();
279
280 /** This method is for internal testing only. */
281 uint64_t getPositionFingerprint() const;
282
283// /**
284// * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
285// * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
286// * happens.
287// *
288// * @param fp The {@link UFieldPosition} to populate.
289// */
290// void populateUFieldPosition(FieldPosition fp);
291
292 /**
293 * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
294 *
295 * @return An error message if this instance is invalid, or null if this instance is healthy.
296 */
297 const char16_t* checkHealth() const;
298
299 UnicodeString toString() const;
300
301 /** Returns the string in standard exponential notation. */
302 UnicodeString toScientificString() const;
303
304 /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
305 UnicodeString toPlainString() const;
306
307 /** Visible for testing */
308 inline bool isUsingBytes() { return usingBytes; }
309
310 /** Visible for testing */
311 inline bool isExplicitExactDouble() { return explicitExactDouble; }
312
313 bool operator==(const DecimalQuantity& other) const;
314
315 inline bool operator!=(const DecimalQuantity& other) const {
316 return !(*this == other);
317 }
318
319 /**
320 * Bogus flag for when a DecimalQuantity is stored on the stack.
321 */
322 bool bogus = false;
323
324 private:
325 /**
326 * The power of ten corresponding to the least significant digit in the BCD. For example, if this
327 * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
328 *
329 * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
330 * digits after the decimal place, which is the negative of our definition of scale.
331 */
332 int32_t scale;
333
334 /**
335 * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
336 * maximum precision is 16 since a long can hold only 16 digits.
337 *
338 * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
339 * #computePrecisionAndCompact()}.
340 */
341 int32_t precision;
342
343 /**
344 * A bitmask of properties relating to the number represented by this object.
345 *
346 * @see #NEGATIVE_FLAG
347 * @see #INFINITY_FLAG
348 * @see #NAN_FLAG
349 */
350 int8_t flags;
351
352 // The following three fields relate to the double-to-ascii fast path algorithm.
353 // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
354 // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
355 // of rounding the number ensures that the converted digits are correct, falling back to a slow-
356 // path algorithm if required. Therefore, if a DecimalQuantity is constructed from a double, it
357 // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
358 // you don't round, assertions will fail in certain other methods if you try calling them.
359
360 /**
361 * Whether the value in the BCD comes from the double fast path without having been rounded to
362 * ensure correctness
363 */
364 UBool isApproximate;
365
366 /**
367 * The original number provided by the user and which is represented in BCD. Used when we need to
368 * re-compute the BCD for an exact double representation.
369 */
370 double origDouble;
371
372 /**
373 * The change in magnitude relative to the original double. Used when we need to re-compute the
374 * BCD for an exact double representation.
375 */
376 int32_t origDelta;
377
378 // Positions to keep track of leading and trailing zeros.
379 // lReqPos is the magnitude of the first required leading zero.
380 // rReqPos is the magnitude of the last required trailing zero.
381 int32_t lReqPos = 0;
382 int32_t rReqPos = 0;
383
Victor Changd8aa9d52021-01-05 23:49:57 +0000384 // The value of the (suppressed) exponent after the number has been put into
385 // a notation with exponents (ex: compact, scientific).
386 int32_t exponent = 0;
387
Victor Chang73229502020-09-17 13:39:19 +0100388 /**
389 * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
390 * to one digit. For example, the number "12345" in BCD is "0x12345".
391 *
392 * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
393 * like setting the digit to zero.
394 */
395 union {
396 struct {
397 int8_t *ptr;
398 int32_t len;
399 } bcdBytes;
400 uint64_t bcdLong;
401 } fBCD;
402
403 bool usingBytes = false;
404
405 /**
406 * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
407 * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
408 * Used for testing.
409 */
410 bool explicitExactDouble = false;
411
412 void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
413
414 /**
415 * Returns a single digit from the BCD list. No internal state is changed by calling this method.
416 *
417 * @param position The position of the digit to pop, counted in BCD units from the least
418 * significant digit. If outside the range supported by the implementation, zero is returned.
419 * @return The digit at the specified location.
420 */
421 int8_t getDigitPos(int32_t position) const;
422
423 /**
424 * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
425 * responsibility to call {@link #compact} after setting the digit.
426 *
427 * @param position The position of the digit to pop, counted in BCD units from the least
428 * significant digit. If outside the range supported by the implementation, an AssertionError
429 * is thrown.
430 * @param value The digit to set at the specified location.
431 */
432 void setDigitPos(int32_t position, int8_t value);
433
434 /**
435 * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
436 * the caller's responsibility to do further manipulation and then call {@link #compact}.
437 *
438 * @param numDigits The number of zeros to add.
439 */
440 void shiftLeft(int32_t numDigits);
441
442 /**
443 * Directly removes digits from the end of the BCD list.
444 * Updates the scale and precision.
445 *
446 * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
447 */
448 void shiftRight(int32_t numDigits);
449
450 /**
451 * Directly removes digits from the front of the BCD list.
452 * Updates precision.
453 *
454 * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
455 */
456 void popFromLeft(int32_t numDigits);
457
458 /**
459 * Sets the internal representation to zero. Clears any values stored in scale, precision,
Victor Changd8aa9d52021-01-05 23:49:57 +0000460 * hasDouble, origDouble, origDelta, exponent, and BCD data.
Victor Chang73229502020-09-17 13:39:19 +0100461 */
462 void setBcdToZero();
463
464 /**
465 * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
466 * be either positive. The internal state is guaranteed to be empty when this method is called.
467 *
468 * @param n The value to consume.
469 */
470 void readIntToBcd(int32_t n);
471
472 /**
473 * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
474 * be either positive. The internal state is guaranteed to be empty when this method is called.
475 *
476 * @param n The value to consume.
477 */
478 void readLongToBcd(int64_t n);
479
480 void readDecNumberToBcd(const DecNum& dn);
481
482 void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
483
484 void copyFieldsFrom(const DecimalQuantity& other);
485
486 void copyBcdFrom(const DecimalQuantity &other);
487
488 void moveBcdFrom(DecimalQuantity& src);
489
490 /**
491 * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
492 * precision. The precision is the number of digits in the number up through the greatest nonzero
493 * digit.
494 *
495 * <p>This method must always be called when bcd changes in order for assumptions to be correct in
496 * methods like {@link #fractionCount()}.
497 */
498 void compact();
499
500 void _setToInt(int32_t n);
501
502 void _setToLong(int64_t n);
503
504 void _setToDoubleFast(double n);
505
506 void _setToDecNum(const DecNum& dn, UErrorCode& status);
507
508 void convertToAccurateDouble();
509
510 /** Ensure that a byte array of at least 40 digits is allocated. */
511 void ensureCapacity();
512
513 void ensureCapacity(int32_t capacity);
514
515 /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
516 void switchStorage();
517};
518
519} // namespace impl
520} // namespace number
521U_NAMESPACE_END
522
523
524#endif //__NUMBER_DECIMALQUANTITY_H__
525
526#endif /* #if !UCONFIG_NO_FORMATTING */