blob: 4d0de5c4eee4942de79397fd2a30627f080d913f [file] [log] [blame]
/*
* Copyright © 2011 Daniel Vetter
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Daniel Vetter <daniel.vetter@ffwll.ch>
*
* Partially based upon gem_tiled_fence_blits.c
*/
/** @file gem_stress.c
*
* This is a general gem coherency test. It's designed to eventually replicate
* any possible sequence of access patterns. It works by copying a set of tiles
* between two sets of backing buffer objects, randomly permutating the assinged
* position on each copy operations.
*
* The copy operation are done in tiny portions (to reduce any race windows
* for corruptions, hence increasing the chances for observing one) and are
* constantly switched between all means to copy stuff (fenced blitter, unfenced
* render, mmap, pwrite/read).
*
* After every complete move of a set tiling parameters of a buffer are randomly
* changed to simulate the effects of libdrm caching.
*
* Buffers are 1mb big to nicely fit into fences on gen2/3. A few are further
* split up to test relaxed fencing. Using this to push the average working set
* size over the available gtt space forces objects to be mapped as unfenceable
* (and as a side-effect tests gtt map/unmap coherency).
*
* In short: designed for maximum evilness.
*/
#include "igt.h"
#include <stdlib.h>
#include <sys/ioctl.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <drm.h>
#include "intel_bufmgr.h"
IGT_TEST_DESCRIPTION("General gem coherency test.");
#define CMD_POLY_STIPPLE_OFFSET 0x7906
#define DUCTAPE 0xdead0001
#define TILESZ 0xdead0002
#define CHCK_RENDER 0xdead0003
/** TODO:
* - beat on relaxed fencing (i.e. mappable/fenceable tracking in the kernel)
* - render copy (to check fence tracking and cache coherency management by the
* kernel)
* - multi-threading: probably just a wrapper script to launch multiple
* instances + an option to accordingly reduce the working set
* - gen6 inter-ring coherency (needs render copy, first)
* - variable buffer size
* - add an option to fork a second process that randomly sends signals to the
* first one (to check consistency of the kernel recovery paths)
*/
drm_intel_bufmgr *bufmgr;
struct intel_batchbuffer *batch;
int drm_fd;
int devid;
int num_fences;
drm_intel_bo *busy_bo;
struct option_struct {
unsigned scratch_buf_size;
unsigned max_dimension;
unsigned num_buffers;
int trace_tile;
int no_hw;
int gpu_busy_load;
int use_render;
int use_blt;
int forced_tiling;
int use_cpu_maps;
int total_rounds;
int fail;
int tiles_per_buf;
int ducttape;
int tile_size;
int check_render_cpyfn;
int use_signal_helper;
};
struct option_struct options;
#define MAX_BUFS 4096
#define SCRATCH_BUF_SIZE 1024*1024
#define BUSY_BUF_SIZE (256*4096)
#define TILE_BYTES(size) ((size)*(size)*sizeof(uint32_t))
static struct igt_buf buffers[2][MAX_BUFS];
/* tile i is at logical position tile_permutation[i] */
static unsigned *tile_permutation;
static unsigned num_buffers = 0;
static unsigned current_set = 0;
static unsigned target_set = 0;
static unsigned num_total_tiles = 0;
int fence_storm = 0;
static int gpu_busy_load = 10;
struct {
unsigned num_failed;
unsigned max_failed_reads;
} stats;
static void tile2xy(struct igt_buf *buf, unsigned tile, unsigned *x, unsigned *y)
{
igt_assert(tile < buf->num_tiles);
*x = (tile*options.tile_size) % (buf->stride/sizeof(uint32_t));
*y = ((tile*options.tile_size) / (buf->stride/sizeof(uint32_t))) * options.tile_size;
}
static void emit_blt(drm_intel_bo *src_bo, uint32_t src_tiling, unsigned src_pitch,
unsigned src_x, unsigned src_y, unsigned w, unsigned h,
drm_intel_bo *dst_bo, uint32_t dst_tiling, unsigned dst_pitch,
unsigned dst_x, unsigned dst_y)
{
uint32_t cmd_bits = 0;
if (IS_965(devid) && src_tiling) {
src_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_SRC_TILED;
}
if (IS_965(devid) && dst_tiling) {
dst_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_DST_TILED;
}
/* copy lower half to upper half */
BLIT_COPY_BATCH_START(cmd_bits);
OUT_BATCH((3 << 24) | /* 32 bits */
(0xcc << 16) | /* copy ROP */
dst_pitch);
OUT_BATCH(dst_y << 16 | dst_x);
OUT_BATCH((dst_y+h) << 16 | (dst_x+w));
OUT_RELOC_FENCED(dst_bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, 0);
OUT_BATCH(src_y << 16 | src_x);
OUT_BATCH(src_pitch);
OUT_RELOC_FENCED(src_bo, I915_GEM_DOMAIN_RENDER, 0, 0);
ADVANCE_BATCH();
if (batch->gen >= 6) {
BEGIN_BATCH(3, 0);
OUT_BATCH(XY_SETUP_CLIP_BLT_CMD);
OUT_BATCH(0);
OUT_BATCH(0);
ADVANCE_BATCH();
}
}
/* All this gem trashing wastes too much cpu time, so give the gpu something to
* do to increase changes for races. */
static void keep_gpu_busy(void)
{
int tmp;
tmp = 1 << gpu_busy_load;
igt_assert_lte(tmp, 1024);
emit_blt(busy_bo, 0, 4096, 0, 0, tmp, 128,
busy_bo, 0, 4096, 0, 128);
}
static void set_to_cpu_domain(struct igt_buf *buf, int writing)
{
gem_set_domain(drm_fd, buf->bo->handle, I915_GEM_DOMAIN_CPU,
writing ? I915_GEM_DOMAIN_CPU : 0);
}
static unsigned int copyfunc_seq = 0;
static void (*copyfunc)(struct igt_buf *src, unsigned src_x, unsigned src_y,
struct igt_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no);
/* stride, x, y in units of uint32_t! */
static void cpucpy2d(uint32_t *src, unsigned src_stride, unsigned src_x, unsigned src_y,
uint32_t *dst, unsigned dst_stride, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
int i, j;
int failed = 0;
for (i = 0; i < options.tile_size; i++) {
for (j = 0; j < options.tile_size; j++) {
unsigned dst_ofs = dst_x + j + dst_stride * (dst_y + i);
unsigned src_ofs = src_x + j + src_stride * (src_y + i);
unsigned expect = logical_tile_no*options.tile_size*options.tile_size
+ i*options.tile_size + j;
uint32_t tmp = src[src_ofs];
if (tmp != expect) {
igt_info("mismatch at tile %i pos %i, read %i, expected %i, diff %i\n", logical_tile_no, i * options.tile_size + j, tmp, expect, (int)tmp - expect);
igt_fail_on(options.trace_tile >= 0 && options.fail);
failed++;
}
/* when not aborting, correct any errors */
dst[dst_ofs] = expect;
}
}
igt_fail_on(failed && options.fail);
if (failed > stats.max_failed_reads)
stats.max_failed_reads = failed;
if (failed)
stats.num_failed++;
}
static void cpu_copyfunc(struct igt_buf *src, unsigned src_x, unsigned src_y,
struct igt_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
igt_assert(batch->ptr == batch->buffer);
if (options.ducttape)
drm_intel_bo_wait_rendering(dst->bo);
if (options.use_cpu_maps) {
set_to_cpu_domain(src, 0);
set_to_cpu_domain(dst, 1);
}
cpucpy2d(src->data, src->stride/sizeof(uint32_t), src_x, src_y,
dst->data, dst->stride/sizeof(uint32_t), dst_x, dst_y,
logical_tile_no);
}
static void prw_copyfunc(struct igt_buf *src, unsigned src_x, unsigned src_y,
struct igt_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
uint32_t tmp_tile[options.tile_size*options.tile_size];
int i;
igt_assert(batch->ptr == batch->buffer);
if (options.ducttape)
drm_intel_bo_wait_rendering(dst->bo);
if (src->tiling == I915_TILING_NONE) {
for (i = 0; i < options.tile_size; i++) {
unsigned ofs = src_x*sizeof(uint32_t) + src->stride*(src_y + i);
drm_intel_bo_get_subdata(src->bo, ofs,
options.tile_size*sizeof(uint32_t),
tmp_tile + options.tile_size*i);
}
} else {
if (options.use_cpu_maps)
set_to_cpu_domain(src, 0);
cpucpy2d(src->data, src->stride/sizeof(uint32_t), src_x, src_y,
tmp_tile, options.tile_size, 0, 0, logical_tile_no);
}
if (dst->tiling == I915_TILING_NONE) {
for (i = 0; i < options.tile_size; i++) {
unsigned ofs = dst_x*sizeof(uint32_t) + dst->stride*(dst_y + i);
drm_intel_bo_subdata(dst->bo, ofs,
options.tile_size*sizeof(uint32_t),
tmp_tile + options.tile_size*i);
}
} else {
if (options.use_cpu_maps)
set_to_cpu_domain(dst, 1);
cpucpy2d(tmp_tile, options.tile_size, 0, 0,
dst->data, dst->stride/sizeof(uint32_t), dst_x, dst_y,
logical_tile_no);
}
}
static void blitter_copyfunc(struct igt_buf *src, unsigned src_x, unsigned src_y,
struct igt_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
static unsigned keep_gpu_busy_counter = 0;
/* check both edges of the fence usage */
if (keep_gpu_busy_counter & 1 && !fence_storm)
keep_gpu_busy();
emit_blt(src->bo, src->tiling, src->stride, src_x, src_y,
options.tile_size, options.tile_size,
dst->bo, dst->tiling, dst->stride, dst_x, dst_y);
if (!(keep_gpu_busy_counter & 1) && !fence_storm)
keep_gpu_busy();
keep_gpu_busy_counter++;
if (src->tiling)
fence_storm--;
if (dst->tiling)
fence_storm--;
if (fence_storm <= 1) {
fence_storm = 0;
intel_batchbuffer_flush(batch);
}
}
static void render_copyfunc(struct igt_buf *src, unsigned src_x, unsigned src_y,
struct igt_buf *dst, unsigned dst_x, unsigned dst_y,
unsigned logical_tile_no)
{
static unsigned keep_gpu_busy_counter = 0;
igt_render_copyfunc_t rendercopy = igt_get_render_copyfunc(devid);
/* check both edges of the fence usage */
if (keep_gpu_busy_counter & 1)
keep_gpu_busy();
if (rendercopy) {
/*
* Flush outstanding blts so that they don't end up on
* the render ring when that's not allowed (gen6+).
*/
intel_batchbuffer_flush(batch);
rendercopy(batch, NULL, src, src_x, src_y,
options.tile_size, options.tile_size,
dst, dst_x, dst_y);
} else
blitter_copyfunc(src, src_x, src_y,
dst, dst_x, dst_y,
logical_tile_no);
if (!(keep_gpu_busy_counter & 1))
keep_gpu_busy();
keep_gpu_busy_counter++;
intel_batchbuffer_flush(batch);
}
static void next_copyfunc(int tile)
{
if (fence_storm) {
if (tile == options.trace_tile)
igt_info(" using fence storm\n");
return;
}
if (copyfunc_seq % 61 == 0
&& options.forced_tiling != I915_TILING_NONE) {
if (tile == options.trace_tile)
igt_info(" using fence storm\n");
fence_storm = num_fences;
copyfunc = blitter_copyfunc;
} else if (copyfunc_seq % 17 == 0) {
if (tile == options.trace_tile)
igt_info(" using cpu\n");
copyfunc = cpu_copyfunc;
} else if (copyfunc_seq % 19 == 0) {
if (tile == options.trace_tile)
igt_info(" using prw\n");
copyfunc = prw_copyfunc;
} else if (copyfunc_seq % 3 == 0 && options.use_render) {
if (tile == options.trace_tile)
igt_info(" using render\n");
copyfunc = render_copyfunc;
} else if (options.use_blt){
if (tile == options.trace_tile)
igt_info(" using blitter\n");
copyfunc = blitter_copyfunc;
} else if (options.use_render){
if (tile == options.trace_tile)
igt_info(" using render\n");
copyfunc = render_copyfunc;
} else {
copyfunc = cpu_copyfunc;
}
copyfunc_seq++;
}
static void fan_out(void)
{
uint32_t tmp_tile[options.tile_size*options.tile_size];
uint32_t seq = 0;
int i, k;
unsigned tile, buf_idx, x, y;
for (i = 0; i < num_total_tiles; i++) {
tile = i;
buf_idx = tile / options.tiles_per_buf;
tile %= options.tiles_per_buf;
tile2xy(&buffers[current_set][buf_idx], tile, &x, &y);
for (k = 0; k < options.tile_size*options.tile_size; k++)
tmp_tile[k] = seq++;
if (options.use_cpu_maps)
set_to_cpu_domain(&buffers[current_set][buf_idx], 1);
cpucpy2d(tmp_tile, options.tile_size, 0, 0,
buffers[current_set][buf_idx].data,
buffers[current_set][buf_idx].stride / sizeof(uint32_t),
x, y, i);
}
for (i = 0; i < num_total_tiles; i++)
tile_permutation[i] = i;
}
static void fan_in_and_check(void)
{
uint32_t tmp_tile[options.tile_size*options.tile_size];
unsigned tile, buf_idx, x, y;
int i;
for (i = 0; i < num_total_tiles; i++) {
tile = tile_permutation[i];
buf_idx = tile / options.tiles_per_buf;
tile %= options.tiles_per_buf;
tile2xy(&buffers[current_set][buf_idx], tile, &x, &y);
if (options.use_cpu_maps)
set_to_cpu_domain(&buffers[current_set][buf_idx], 0);
cpucpy2d(buffers[current_set][buf_idx].data,
buffers[current_set][buf_idx].stride / sizeof(uint32_t),
x, y,
tmp_tile, options.tile_size, 0, 0,
i);
}
}
static void sanitize_stride(struct igt_buf *buf)
{
if (igt_buf_height(buf) > options.max_dimension)
buf->stride = buf->size / options.max_dimension;
if (igt_buf_height(buf) < options.tile_size)
buf->stride = buf->size / options.tile_size;
if (igt_buf_width(buf) < options.tile_size)
buf->stride = options.tile_size * sizeof(uint32_t);
igt_assert(buf->stride <= 8192);
igt_assert(igt_buf_width(buf) <= options.max_dimension);
igt_assert(igt_buf_height(buf) <= options.max_dimension);
igt_assert(igt_buf_width(buf) >= options.tile_size);
igt_assert(igt_buf_height(buf) >= options.tile_size);
}
static void init_buffer(struct igt_buf *buf, unsigned size)
{
buf->bo = drm_intel_bo_alloc(bufmgr, "tiled bo", size, 4096);
buf->size = size;
igt_assert(buf->bo);
buf->tiling = I915_TILING_NONE;
buf->stride = 4096;
sanitize_stride(buf);
if (options.no_hw)
buf->data = malloc(size);
else {
if (options.use_cpu_maps)
drm_intel_bo_map(buf->bo, 1);
else
drm_intel_gem_bo_map_gtt(buf->bo);
buf->data = buf->bo->virtual;
}
buf->num_tiles = options.tiles_per_buf;
}
static void exchange_buf(void *array, unsigned i, unsigned j)
{
struct igt_buf *buf_arr, tmp;
buf_arr = array;
memcpy(&tmp, &buf_arr[i], sizeof(struct igt_buf));
memcpy(&buf_arr[i], &buf_arr[j], sizeof(struct igt_buf));
memcpy(&buf_arr[j], &tmp, sizeof(struct igt_buf));
}
static void init_set(unsigned set)
{
long int r;
int i;
igt_permute_array(buffers[set], num_buffers, exchange_buf);
if (current_set == 1 && options.gpu_busy_load == 0) {
gpu_busy_load++;
if (gpu_busy_load > 10)
gpu_busy_load = 6;
}
for (i = 0; i < num_buffers; i++) {
r = random();
if ((r & 3) != 0)
continue;
r >>= 2;
if ((r & 3) != 0)
buffers[set][i].tiling = I915_TILING_X;
else
buffers[set][i].tiling = I915_TILING_NONE;
r >>= 2;
if (options.forced_tiling >= 0)
buffers[set][i].tiling = options.forced_tiling;
if (buffers[set][i].tiling == I915_TILING_NONE) {
/* min 64 byte stride */
r %= 8;
buffers[set][i].stride = 64 * (1 << r);
} else if (IS_GEN2(devid)) {
/* min 128 byte stride */
r %= 7;
buffers[set][i].stride = 128 * (1 << r);
} else {
/* min 512 byte stride */
r %= 5;
buffers[set][i].stride = 512 * (1 << r);
}
sanitize_stride(&buffers[set][i]);
gem_set_tiling(drm_fd, buffers[set][i].bo->handle,
buffers[set][i].tiling,
buffers[set][i].stride);
if (options.trace_tile != -1 && i == options.trace_tile/options.tiles_per_buf)
igt_info("changing buffer %i containing tile %i: tiling %i, stride %i\n", i, options.trace_tile, buffers[set][i].tiling, buffers[set][i].stride);
}
}
static void exchange_uint(void *array, unsigned i, unsigned j)
{
unsigned *i_arr = array;
igt_swap(i_arr[i], i_arr[j]);
}
static void copy_tiles(unsigned *permutation)
{
unsigned src_tile, src_buf_idx, src_x, src_y;
unsigned dst_tile, dst_buf_idx, dst_x, dst_y;
struct igt_buf *src_buf, *dst_buf;
int i, idx;
for (i = 0; i < num_total_tiles; i++) {
/* tile_permutation is independent of current_permutation, so
* abuse it to randomize the order of the src bos */
idx = tile_permutation[i];
src_buf_idx = idx / options.tiles_per_buf;
src_tile = idx % options.tiles_per_buf;
src_buf = &buffers[current_set][src_buf_idx];
tile2xy(src_buf, src_tile, &src_x, &src_y);
dst_buf_idx = permutation[idx] / options.tiles_per_buf;
dst_tile = permutation[idx] % options.tiles_per_buf;
dst_buf = &buffers[target_set][dst_buf_idx];
tile2xy(dst_buf, dst_tile, &dst_x, &dst_y);
if (options.trace_tile == i)
igt_info("copying tile %i from %i (%i, %i) to %i (%i, %i)", i, tile_permutation[i], src_buf_idx, src_tile, permutation[idx], dst_buf_idx, dst_tile);
if (options.no_hw) {
cpucpy2d(src_buf->data,
src_buf->stride / sizeof(uint32_t),
src_x, src_y,
dst_buf->data,
dst_buf->stride / sizeof(uint32_t),
dst_x, dst_y,
i);
} else {
next_copyfunc(i);
copyfunc(src_buf, src_x, src_y, dst_buf, dst_x, dst_y,
i);
}
}
intel_batchbuffer_flush(batch);
}
static void sanitize_tiles_per_buf(void)
{
if (options.tiles_per_buf > options.scratch_buf_size / TILE_BYTES(options.tile_size))
options.tiles_per_buf = options.scratch_buf_size / TILE_BYTES(options.tile_size);
}
static int parse_options(int opt, int opt_index, void *data)
{
int tmp;
switch(opt) {
case 'd':
options.no_hw = 1;
igt_info("no-hw debug mode\n");
break;
case 'S':
options.use_signal_helper = 0;
igt_info("disabling that pesky nuisance who keeps interrupting us\n");
break;
case 's':
tmp = atoi(optarg);
if (tmp < options.tile_size*8192)
igt_info("scratch buffer size needs to be at least %i\n", options.tile_size * 8192);
else if (tmp & (tmp - 1)) {
igt_info("scratch buffer size needs to be a power-of-two\n");
} else {
igt_info("fixed scratch buffer size to %u\n", tmp);
options.scratch_buf_size = tmp;
sanitize_tiles_per_buf();
}
break;
case 'g':
tmp = atoi(optarg);
if (tmp < 0 || tmp > 10)
igt_info("gpu busy load needs to be bigger than 0 and smaller than 10\n");
else {
igt_info("gpu busy load factor set to %i\n", tmp);
gpu_busy_load = options.gpu_busy_load = tmp;
}
break;
case 'c':
options.num_buffers = atoi(optarg);
igt_info("buffer count set to %i\n", options.num_buffers);
break;
case 't':
options.trace_tile = atoi(optarg);
igt_info("tracing tile %i\n", options.trace_tile);
break;
case 'r':
options.use_render = 0;
igt_info("disabling render copy\n");
break;
case 'b':
options.use_blt = 0;
igt_info("disabling blt copy\n");
break;
case 'u':
options.forced_tiling = I915_TILING_NONE;
igt_info("disabling tiling\n");
break;
case 'x':
if (options.use_cpu_maps) {
igt_info("tiling not possible with cpu maps\n");
} else {
options.forced_tiling = I915_TILING_X;
igt_info("using only X-tiling\n");
}
break;
case 'm':
options.use_cpu_maps = 1;
options.forced_tiling = I915_TILING_NONE;
igt_info("disabling tiling\n");
break;
case 'o':
options.total_rounds = atoi(optarg);
igt_info("total rounds %i\n", options.total_rounds);
break;
case 'f':
options.fail = 0;
igt_info("not failing when detecting errors\n");
break;
case 'p':
options.tiles_per_buf = atoi(optarg);
igt_info("tiles per buffer %i\n", options.tiles_per_buf);
break;
case DUCTAPE:
options.ducttape = 0;
igt_info("applying duct-tape\n");
break;
case TILESZ:
options.tile_size = atoi(optarg);
sanitize_tiles_per_buf();
igt_info("til size %i\n", options.tile_size);
break;
case CHCK_RENDER:
options.check_render_cpyfn = 1;
igt_info("checking render copy function\n");
break;
}
/* actually 32767, according to docs, but that kills our nice pot calculations. */
options.max_dimension = 16*1024;
if (options.use_render) {
if (IS_GEN2(devid) || IS_GEN3(devid))
options.max_dimension = 2048;
else
options.max_dimension = 8192;
}
igt_info("Limiting buffer to %dx%d\n", options.max_dimension, options.max_dimension);
return 0;
}
static void init(void)
{
int i;
unsigned tmp;
if (options.num_buffers == 0) {
tmp = gem_aperture_size(drm_fd);
tmp = min(256 * (1024 * 1024), tmp);
num_buffers = 2 * tmp / options.scratch_buf_size / 3;
num_buffers /= 2;
igt_info("using %u buffers\n", num_buffers);
} else
num_buffers = options.num_buffers;
bufmgr = drm_intel_bufmgr_gem_init(drm_fd, 4096);
drm_intel_bufmgr_gem_enable_reuse(bufmgr);
drm_intel_bufmgr_gem_enable_fenced_relocs(bufmgr);
num_fences = gem_available_fences(drm_fd);
igt_assert_lt(4, num_fences);
batch = intel_batchbuffer_alloc(bufmgr, devid);
busy_bo = drm_intel_bo_alloc(bufmgr, "tiled bo", BUSY_BUF_SIZE, 4096);
if (options.forced_tiling >= 0)
gem_set_tiling(drm_fd, busy_bo->handle, options.forced_tiling, 4096);
for (i = 0; i < num_buffers; i++) {
init_buffer(&buffers[0][i], options.scratch_buf_size);
init_buffer(&buffers[1][i], options.scratch_buf_size);
num_total_tiles += buffers[0][i].num_tiles;
}
current_set = 0;
/* just in case it helps reproducability */
srandom(0xdeadbeef);
}
static void check_render_copyfunc(void)
{
struct igt_buf src, dst;
uint32_t *ptr;
int i, j, pass;
if (!options.check_render_cpyfn)
return;
init_buffer(&src, options.scratch_buf_size);
init_buffer(&dst, options.scratch_buf_size);
for (pass = 0; pass < 16; pass++) {
int sx = random() % (igt_buf_width(&src)-options.tile_size);
int sy = random() % (igt_buf_height(&src)-options.tile_size);
int dx = random() % (igt_buf_width(&dst)-options.tile_size);
int dy = random() % (igt_buf_height(&dst)-options.tile_size);
if (options.use_cpu_maps)
set_to_cpu_domain(&src, 1);
memset(src.data, 0xff, options.scratch_buf_size);
for (j = 0; j < options.tile_size; j++) {
ptr = (uint32_t*)((char *)src.data + sx*4 + (sy+j) * src.stride);
for (i = 0; i < options.tile_size; i++)
ptr[i] = j * options.tile_size + i;
}
render_copyfunc(&src, sx, sy, &dst, dx, dy, 0);
if (options.use_cpu_maps)
set_to_cpu_domain(&dst, 0);
for (j = 0; j < options.tile_size; j++) {
ptr = (uint32_t*)((char *)dst.data + dx*4 + (dy+j) * dst.stride);
for (i = 0; i < options.tile_size; i++)
if (ptr[i] != j * options.tile_size + i) {
igt_info("render copyfunc mismatch at (%d, %d): found %d, expected %d\n", i, j, ptr[i], j * options.tile_size + i);
}
}
}
}
int main(int argc, char **argv)
{
int i, j;
unsigned *current_permutation, *tmp_permutation;
static struct option long_options[] = {
{"no-hw", 0, 0, 'd'},
{"buf-size", 1, 0, 's'},
{"gpu-busy-load", 1, 0, 'g'},
{"no-signals", 0, 0, 'S'},
{"buffer-count", 1, 0, 'c'},
{"trace-tile", 1, 0, 't'},
{"disable-blt", 0, 0, 'b'},
{"disable-render", 0, 0, 'r'},
{"untiled", 0, 0, 'u'},
{"x-tiled", 0, 0, 'x'},
{"use-cpu-maps", 0, 0, 'm'},
{"rounds", 1, 0, 'o'},
{"no-fail", 0, 0, 'f'},
{"tiles-per-buf", 0, 0, 'p'},
{"remove-duct-tape", 0, 0, DUCTAPE},
{"tile-size", 1, 0, TILESZ},
{"check-render-cpyfn", 0, 0, CHCK_RENDER},
{NULL, 0, 0, 0},
};
options.scratch_buf_size = 256*4096;
options.no_hw = 0;
options.use_signal_helper = 1;
options.gpu_busy_load = 0;
options.num_buffers = 0;
options.trace_tile = -1;
options.use_render = 1;
options.use_blt = 1;
options.forced_tiling = -1;
options.use_cpu_maps = 0;
options.total_rounds = 512;
options.fail = 1;
options.ducttape = 1;
options.tile_size = 16;
options.tiles_per_buf = options.scratch_buf_size / TILE_BYTES(options.tile_size);
options.check_render_cpyfn = 0;
igt_simple_init_parse_opts(&argc, argv,"ds:g:c:t:rbuxmo:fp:",
long_options, NULL, parse_options, NULL);
drm_fd = drm_open_driver(DRIVER_INTEL);
devid = intel_get_drm_devid(drm_fd);
/* start our little helper early before too may allocations occur */
if (options.use_signal_helper)
igt_fork_signal_helper();
init();
check_render_copyfunc();
tile_permutation = malloc(num_total_tiles*sizeof(uint32_t));
current_permutation = malloc(num_total_tiles*sizeof(uint32_t));
tmp_permutation = malloc(num_total_tiles*sizeof(uint32_t));
igt_assert(tile_permutation);
igt_assert(current_permutation);
igt_assert(tmp_permutation);
fan_out();
for (i = 0; i < options.total_rounds; i++) {
igt_info("round %i\n", i);
if (i % 64 == 63) {
fan_in_and_check();
igt_info("everything correct after %i rounds\n", i + 1);
}
target_set = (current_set + 1) & 1;
init_set(target_set);
for (j = 0; j < num_total_tiles; j++)
current_permutation[j] = j;
igt_permute_array(current_permutation, num_total_tiles, exchange_uint);
copy_tiles(current_permutation);
memcpy(tmp_permutation, tile_permutation, sizeof(unsigned)*num_total_tiles);
/* accumulate the permutations */
for (j = 0; j < num_total_tiles; j++)
tile_permutation[j] = current_permutation[tmp_permutation[j]];
current_set = target_set;
}
fan_in_and_check();
igt_info("num failed tiles %u, max incoherent bytes %zd\n", stats.num_failed, stats.max_failed_reads * sizeof(uint32_t));
intel_batchbuffer_free(batch);
drm_intel_bufmgr_destroy(bufmgr);
close(drm_fd);
igt_stop_signal_helper();
igt_exit();
}