blob: 0406aa62621c1d78861ef98be852c089cb56cf7a [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#define _GNU_SOURCE
#include "igt.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <inttypes.h>
#include <pthread.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include "drm.h"
#define OBJECT_SIZE 1024*1024
#define CHUNK_SIZE 32
#define COPY_BLT_CMD (2<<29|0x53<<22|0x6)
#define BLT_WRITE_ALPHA (1<<21)
#define BLT_WRITE_RGB (1<<20)
#define BLT_WRITE_ARGB (BLT_WRITE_ALPHA | BLT_WRITE_RGB)
#define LOCAL_I915_EXEC_HANDLE_LUT (1<<12)
IGT_TEST_DESCRIPTION("Test of streaming writes into active GPU sources");
static bool __gem_execbuf(int fd, struct drm_i915_gem_execbuffer2 *eb)
{
return drmIoctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, eb) == 0;
}
#define SRC 0
#define DST 1
#define BATCH 2
#define src exec[SRC].handle
#define src_offset exec[SRC].offset
#define dst exec[DST].handle
#define dst_offset exec[DST].offset
static void test_streaming(int fd, int mode, int sync)
{
const int has_64bit_reloc = intel_gen(intel_get_drm_devid(fd)) >= 8;
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 exec[3];
struct drm_i915_gem_relocation_entry reloc[128];
uint32_t tmp[] = { MI_BATCH_BUFFER_END };
uint64_t __src_offset, __dst_offset;
uint32_t *s, *d;
uint32_t offset;
struct {
uint32_t handle;
uint64_t offset;
} *batch;
int i, n;
memset(exec, 0, sizeof(exec));
exec[SRC].handle = gem_create(fd, OBJECT_SIZE);
exec[DST].handle = gem_create(fd, OBJECT_SIZE);
switch (mode) {
case 0: /* cpu/snoop */
gem_set_caching(fd, src, I915_CACHING_CACHED);
s = gem_mmap__cpu(fd, src, 0, OBJECT_SIZE,
PROT_READ | PROT_WRITE);
break;
case 1: /* gtt */
s = gem_mmap__gtt(fd, src, OBJECT_SIZE,
PROT_READ | PROT_WRITE);
break;
case 2: /* wc */
s = gem_mmap__wc(fd, src, 0, OBJECT_SIZE,
PROT_READ | PROT_WRITE);
break;
}
*s = 0; /* fault the object into the mappable range first (for GTT) */
d = gem_mmap__cpu(fd, dst, 0, OBJECT_SIZE, PROT_READ);
gem_write(fd, dst, 0, tmp, sizeof(tmp));
memset(&execbuf, 0, sizeof(execbuf));
execbuf.buffers_ptr = (uintptr_t)exec;
execbuf.buffer_count = 2;
execbuf.flags = LOCAL_I915_EXEC_HANDLE_LUT;
if (!__gem_execbuf(fd, &execbuf)) {
execbuf.flags = 0;
igt_require(__gem_execbuf(fd, &execbuf));
}
/* We assume that the active objects are fixed to avoid relocations */
__src_offset = src_offset;
__dst_offset = dst_offset;
memset(reloc, 0, sizeof(reloc));
for (i = 0; i < 64; i++) {
reloc[2*i+0].offset = 64*i + 4 * sizeof(uint32_t);
reloc[2*i+0].delta = 0;
reloc[2*i+0].target_handle = execbuf.flags & LOCAL_I915_EXEC_HANDLE_LUT ? DST : dst;
reloc[2*i+0].presumed_offset = dst_offset;
reloc[2*i+0].read_domains = I915_GEM_DOMAIN_RENDER;
reloc[2*i+0].write_domain = I915_GEM_DOMAIN_RENDER;
reloc[2*i+1].offset = 64*i + 7 * sizeof(uint32_t);
if (has_64bit_reloc)
reloc[2*i+1].offset += sizeof(uint32_t);
reloc[2*i+1].delta = 0;
reloc[2*i+1].target_handle = execbuf.flags & LOCAL_I915_EXEC_HANDLE_LUT ? SRC : src;
reloc[2*i+1].presumed_offset = src_offset;
reloc[2*i+1].read_domains = I915_GEM_DOMAIN_RENDER;
reloc[2*i+1].write_domain = 0;
}
igt_assert(__gem_execbuf(fd, &execbuf));
igt_assert_eq_u64(__src_offset, src_offset);
igt_assert_eq_u64(__dst_offset, dst_offset);
exec[DST].flags = EXEC_OBJECT_WRITE;
exec[BATCH].relocation_count = 2;
execbuf.buffer_count = 3;
execbuf.flags |= I915_EXEC_NO_RELOC;
if (gem_has_blt(fd))
execbuf.flags |= I915_EXEC_BLT;
batch = malloc(sizeof(*batch) * (OBJECT_SIZE / CHUNK_SIZE / 64));
for (i = n = 0; i < OBJECT_SIZE / CHUNK_SIZE / 64; i++) {
uint32_t *base;
batch[i].handle = gem_create(fd, 4096);
batch[i].offset = 0;
base = gem_mmap__cpu(fd, batch[i].handle, 0, 4096, PROT_WRITE);
gem_set_domain(fd, batch[i].handle,
I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU);
for (int j = 0; j < 64; j++) {
unsigned x = (n * CHUNK_SIZE) % 4096 >> 2;
unsigned y = (n * CHUNK_SIZE) / 4096;
uint32_t *b = base + 16 * j;
int k = 0;
b[k] = COPY_BLT_CMD | BLT_WRITE_ARGB;
if (has_64bit_reloc)
b[k] += 2;
k++;
b[k++] = 0xcc << 16 | 1 << 25 | 1 << 24 | 4096;
b[k++] = (y << 16) | x;
b[k++] = ((y+1) << 16) | (x + (CHUNK_SIZE >> 2));
b[k++] = dst_offset;
if (has_64bit_reloc)
b[k++] = dst_offset >> 32;
b[k++] = (y << 16) | x;
b[k++] = 4096;
b[k++] = src_offset;
if (has_64bit_reloc)
b[k++] = src_offset >> 32;
b[k++] = MI_BATCH_BUFFER_END;
n++;
}
munmap(base, 4096);
}
for (int pass = 0; pass < 256; pass++) {
int domain = mode ? I915_GEM_DOMAIN_GTT : I915_GEM_DOMAIN_CPU;
gem_set_domain(fd, src, domain, domain);
if (pass == 0) {
for (i = 0; i < OBJECT_SIZE/4; i++)
s[i] = i;
}
/* Now copy from the src to the dst in 32byte chunks */
for (offset = 0; offset < OBJECT_SIZE; offset += CHUNK_SIZE) {
int b;
if (pass) {
if (sync)
gem_set_domain(fd, src, domain, domain);
for (i = 0; i < CHUNK_SIZE/4; i++)
s[offset/4 + i] = (OBJECT_SIZE*pass + offset)/4 + i;
}
igt_assert(exec[DST].flags & EXEC_OBJECT_WRITE);
b = offset / CHUNK_SIZE / 64;
n = offset / CHUNK_SIZE % 64;
exec[BATCH].relocs_ptr = (uintptr_t)(reloc + 2*n);
exec[BATCH].handle = batch[b].handle;
exec[BATCH].offset = batch[b].offset;
execbuf.batch_start_offset = 64*n;
gem_execbuf(fd, &execbuf);
igt_assert_eq_u64(__src_offset, src_offset);
igt_assert_eq_u64(__dst_offset, dst_offset);
batch[b].offset = exec[BATCH].offset;
}
gem_set_domain(fd, dst, I915_GEM_DOMAIN_CPU, 0);
for (offset = 0; offset < OBJECT_SIZE/4; offset++)
igt_assert_eq(pass*OBJECT_SIZE/4 + offset, d[offset]);
}
for (i = 0; i < OBJECT_SIZE / CHUNK_SIZE / 64; i++)
gem_close(fd, batch[i].handle);
free(batch);
munmap(s, OBJECT_SIZE);
gem_close(fd, src);
munmap(d, OBJECT_SIZE);
gem_close(fd, dst);
}
static void test_batch(int fd, int mode, int reverse)
{
const int has_64bit_reloc = intel_gen(intel_get_drm_devid(fd)) >= 8;
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 exec[3];
struct drm_i915_gem_relocation_entry reloc[2];
uint32_t tmp[] = { MI_BATCH_BUFFER_END };
uint64_t __src_offset, __dst_offset;
uint64_t batch_size;
uint32_t *s, *d;
uint32_t *base;
uint32_t offset;
memset(exec, 0, sizeof(exec));
exec[DST].handle = gem_create(fd, OBJECT_SIZE);
exec[SRC].handle = gem_create(fd, OBJECT_SIZE);
s = gem_mmap__wc(fd, src, 0, OBJECT_SIZE, PROT_READ | PROT_WRITE);
d = gem_mmap__cpu(fd, dst, 0, OBJECT_SIZE, PROT_READ);
memset(reloc, 0, sizeof(reloc));
reloc[0].offset = 4 * sizeof(uint32_t);
reloc[0].delta = 0;
reloc[0].target_handle = execbuf.flags & LOCAL_I915_EXEC_HANDLE_LUT ? DST : dst;
reloc[0].presumed_offset = dst_offset;
reloc[0].read_domains = I915_GEM_DOMAIN_RENDER;
reloc[0].write_domain = I915_GEM_DOMAIN_RENDER;
reloc[1].offset = 7 * sizeof(uint32_t);
if (has_64bit_reloc)
reloc[1].offset += sizeof(uint32_t);
reloc[1].delta = 0;
reloc[1].target_handle = execbuf.flags & LOCAL_I915_EXEC_HANDLE_LUT ? SRC : src;
reloc[1].presumed_offset = src_offset;
reloc[1].read_domains = I915_GEM_DOMAIN_RENDER;
reloc[1].write_domain = 0;
batch_size = ALIGN(OBJECT_SIZE / CHUNK_SIZE * 128, 4096);
exec[BATCH].relocs_ptr = (uintptr_t)reloc;
exec[BATCH].relocation_count = 2;
exec[BATCH].handle = gem_create(fd, batch_size);
switch (mode) {
case 0: /* cpu/snoop */
igt_require(gem_has_llc(fd));
base = gem_mmap__cpu(fd, exec[BATCH].handle, 0, batch_size,
PROT_READ | PROT_WRITE);
break;
case 1: /* gtt */
base = gem_mmap__gtt(fd, exec[BATCH].handle, batch_size,
PROT_READ | PROT_WRITE);
break;
case 2: /* wc */
base = gem_mmap__wc(fd, exec[BATCH].handle, 0, batch_size,
PROT_READ | PROT_WRITE);
break;
}
*base = 0; /* fault the object into the mappable range first */
gem_write(fd, exec[BATCH].handle, 0, tmp, sizeof(tmp));
memset(&execbuf, 0, sizeof(execbuf));
execbuf.buffers_ptr = (uintptr_t)exec;
execbuf.buffer_count = 3;
execbuf.flags = LOCAL_I915_EXEC_HANDLE_LUT;
if (gem_has_blt(fd))
execbuf.flags |= I915_EXEC_BLT;
if (!__gem_execbuf(fd, &execbuf)) {
execbuf.flags &= ~LOCAL_I915_EXEC_HANDLE_LUT;
gem_execbuf(fd, &execbuf);
}
execbuf.flags |= I915_EXEC_NO_RELOC;
exec[DST].flags = EXEC_OBJECT_WRITE;
/* We assume that the active objects are fixed to avoid relocations */
exec[BATCH].relocation_count = 0;
__src_offset = src_offset;
__dst_offset = dst_offset;
offset = mode ? I915_GEM_DOMAIN_GTT : I915_GEM_DOMAIN_CPU;
gem_set_domain(fd, exec[BATCH].handle, offset, offset);
for (int pass = 0; pass < 256; pass++) {
gem_set_domain(fd, src, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
for (offset = 0; offset < OBJECT_SIZE/4; offset++)
s[offset] = OBJECT_SIZE*pass/4 + offset;
/* Now copy from the src to the dst in 32byte chunks */
for (offset = 0; offset < OBJECT_SIZE / CHUNK_SIZE; offset++) {
unsigned x = (offset * CHUNK_SIZE) % 4096 >> 2;
unsigned y = (offset * CHUNK_SIZE) / 4096;
int k;
execbuf.batch_start_offset = 128 * offset;
execbuf.batch_start_offset += 8 * (pass & 7);
igt_assert(execbuf.batch_start_offset <= batch_size - 64);
if (reverse)
execbuf.batch_start_offset = batch_size - execbuf.batch_start_offset - 64;
igt_assert(execbuf.batch_start_offset <= batch_size - 64);
k = execbuf.batch_start_offset / 4;
base[k] = COPY_BLT_CMD | BLT_WRITE_ARGB;
if (has_64bit_reloc)
base[k] += 2;
k++;
base[k++] = 0xcc << 16 | 1 << 25 | 1 << 24 | 4096;
base[k++] = (y << 16) | x;
base[k++] = ((y+1) << 16) | (x + (CHUNK_SIZE >> 2));
base[k++] = dst_offset;
if (has_64bit_reloc)
base[k++] = dst_offset >> 32;
base[k++] = (y << 16) | x;
base[k++] = 4096;
base[k++] = src_offset;
if (has_64bit_reloc)
base[k++] = src_offset >> 32;
base[k++] = MI_BATCH_BUFFER_END;
igt_assert(exec[DST].flags & EXEC_OBJECT_WRITE);
gem_execbuf(fd, &execbuf);
igt_assert_eq_u64(__src_offset, src_offset);
igt_assert_eq_u64(__dst_offset, dst_offset);
}
gem_set_domain(fd, dst, I915_GEM_DOMAIN_CPU, 0);
for (offset = 0; offset < OBJECT_SIZE/4; offset++)
igt_assert_eq(pass*OBJECT_SIZE/4 + offset, d[offset]);
}
munmap(base, OBJECT_SIZE / CHUNK_SIZE * 128);
gem_close(fd, exec[BATCH].handle);
munmap(s, OBJECT_SIZE);
gem_close(fd, src);
munmap(d, OBJECT_SIZE);
gem_close(fd, dst);
}
igt_main
{
int fd, sync;
igt_fixture
fd = drm_open_driver(DRIVER_INTEL);
for (sync = 2; sync--; ) {
igt_subtest_f("cpu%s", sync ? "-sync":"")
test_streaming(fd, 0, sync);
igt_subtest_f("gtt%s", sync ? "-sync":"")
test_streaming(fd, 1, sync);
igt_subtest_f("wc%s", sync ? "-sync":"")
test_streaming(fd, 2, sync);
}
igt_subtest("batch-cpu")
test_batch(fd, 0, 0);
igt_subtest("batch-gtt")
test_batch(fd, 1, 0);
igt_subtest("batch-wc")
test_batch(fd, 2, 0);
igt_subtest("batch-reverse-cpu")
test_batch(fd, 0, 1);
igt_subtest("batch-reverse-gtt")
test_batch(fd, 1, 1);
igt_subtest("batch-reverse-wc")
test_batch(fd, 2, 1);
igt_fixture
close(fd);
}