blob: e1b4fd55269c47e24173a79810a65cfacd3c276c [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*
* Author:
* Armin Reese <armin.c.reese@intel.com>
*/
/*
* This program is intended for testing sprite functionality.
*/
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <termios.h>
#include <sys/time.h>
#include <sys/poll.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include "i915_drm.h"
#include "drmtest.h"
#if defined(DRM_IOCTL_MODE_ADDFB2) && defined(DRM_I915_SET_SPRITE_COLORKEY)
#define TEST_PLANES 1
#include "drm_fourcc.h"
#endif
/*
* Mode setting with the kernel interfaces is a bit of a chore.
* First you have to find the connector in question and make sure the
* requested mode is available.
* Then you need to find the encoder attached to that connector so you
* can bind it with a free crtc.
*/
struct connector {
uint32_t id;
int mode_valid;
drmModeModeInfo mode;
drmModeEncoder *encoder;
drmModeConnector *connector;
int crtc;
int pipe;
};
static void dump_mode(drmModeModeInfo *mode)
{
printf(" %s %d %d %d %d %d %d %d %d %d 0x%x 0x%x %d\n",
mode->name,
mode->vrefresh,
mode->hdisplay,
mode->hsync_start,
mode->hsync_end,
mode->htotal,
mode->vdisplay,
mode->vsync_start,
mode->vsync_end,
mode->vtotal,
mode->flags,
mode->type,
mode->clock);
}
static void dump_connectors(int gfx_fd, drmModeRes *resources)
{
int i, j;
printf("Connectors:\n");
printf("id\tencoder\tstatus\t\ttype\tsize (mm)\tmodes\n");
for (i = 0; i < resources->count_connectors; i++) {
drmModeConnector *connector;
connector = drmModeGetConnector(gfx_fd, resources->connectors[i]);
if (!connector) {
printf("could not get connector %i: %s\n",
resources->connectors[i], strerror(errno));
continue;
}
printf("%d\t%d\t%s\t%s\t%dx%d\t\t%d\n",
connector->connector_id,
connector->encoder_id,
kmstest_connector_status_str(connector->connection),
kmstest_connector_type_str(connector->connector_type),
connector->mmWidth, connector->mmHeight,
connector->count_modes);
if (!connector->count_modes)
continue;
printf(" modes:\n");
printf(" name refresh (Hz) hdisp hss hse htot vdisp vss vse vtot flags type clock\n");
for (j = 0; j < connector->count_modes; j++)
dump_mode(&connector->modes[j]);
drmModeFreeConnector(connector);
}
printf("\n");
}
static void dump_crtcs(int gfx_fd, drmModeRes *resources)
{
int i;
printf("CRTCs:\n");
printf("id\tfb\tpos\tsize\n");
for (i = 0; i < resources->count_crtcs; i++) {
drmModeCrtc *crtc;
crtc = drmModeGetCrtc(gfx_fd, resources->crtcs[i]);
if (!crtc) {
printf("could not get crtc %i: %s\n",
resources->crtcs[i],
strerror(errno));
continue;
}
printf("%d\t%d\t(%d,%d)\t(%dx%d)\n",
crtc->crtc_id,
crtc->buffer_id,
crtc->x, crtc->y,
crtc->width, crtc->height);
dump_mode(&crtc->mode);
drmModeFreeCrtc(crtc);
}
printf("\n");
}
static void dump_planes(int gfx_fd, drmModeRes *resources)
{
drmModePlaneRes *plane_resources;
drmModePlane *ovr;
int i;
plane_resources = drmModeGetPlaneResources(gfx_fd);
if (!plane_resources) {
printf("drmModeGetPlaneResources failed: %s\n",
strerror(errno));
return;
}
printf("Planes:\n");
printf("id\tcrtc\tfb\tCRTC x,y\tx,y\tgamma size\n");
for (i = 0; i < plane_resources->count_planes; i++) {
ovr = drmModeGetPlane(gfx_fd, plane_resources->planes[i]);
if (!ovr) {
printf("drmModeGetPlane failed: %s\n",
strerror(errno));
continue;
}
printf("%d\t%d\t%d\t%d,%d\t\t%d,%d\t%d\n",
ovr->plane_id, ovr->crtc_id, ovr->fb_id,
ovr->crtc_x, ovr->crtc_y, ovr->x, ovr->y,
ovr->gamma_size);
drmModeFreePlane(ovr);
}
printf("\n");
return;
}
static void connector_find_preferred_mode(int gfx_fd,
drmModeRes *gfx_resources,
struct connector *c)
{
drmModeConnector *connector;
drmModeEncoder *encoder = NULL;
int i, j;
/* First, find the connector & mode */
c->mode_valid = 0;
connector = drmModeGetConnector(gfx_fd, c->id);
if (!connector) {
printf("could not get connector %d: %s\n",
c->id,
strerror(errno));
drmModeFreeConnector(connector);
return;
}
if (connector->connection != DRM_MODE_CONNECTED) {
drmModeFreeConnector(connector);
return;
}
if (!connector->count_modes) {
printf("connector %d has no modes\n",
c->id);
drmModeFreeConnector(connector);
return;
}
if (connector->connector_id != c->id) {
printf("connector id doesn't match (%d != %d)\n",
connector->connector_id,
c->id);
drmModeFreeConnector(connector);
return;
}
for (j = 0; j < connector->count_modes; j++) {
c->mode = connector->modes[j];
if (c->mode.type & DRM_MODE_TYPE_PREFERRED) {
c->mode_valid = 1;
break;
}
}
if (!c->mode_valid) {
if (connector->count_modes > 0) {
/* use the first mode as test mode */
c->mode = connector->modes[0];
c->mode_valid = 1;
} else {
printf("failed to find any modes on connector %d\n",
c->id);
return;
}
}
/* Now get the encoder */
for (i = 0; i < connector->count_encoders; i++) {
encoder = drmModeGetEncoder(gfx_fd, connector->encoders[i]);
if (!encoder) {
printf("could not get encoder %i: %s\n",
gfx_resources->encoders[i],
strerror(errno));
drmModeFreeEncoder(encoder);
continue;
}
break;
}
c->encoder = encoder;
if (i == gfx_resources->count_encoders) {
printf("failed to find encoder\n");
c->mode_valid = 0;
return;
}
/* Find first CRTC not in use */
for (i = 0; i < gfx_resources->count_crtcs; i++) {
if (gfx_resources->crtcs[i] && (c->encoder->possible_crtcs & (1<<i)))
break;
}
c->crtc = gfx_resources->crtcs[i];
c->pipe = i;
gfx_resources->crtcs[i] = 0;
c->connector = connector;
}
static int connector_find_plane(int gfx_fd, struct connector *c)
{
drmModePlaneRes *plane_resources;
drmModePlane *ovr;
uint32_t id = 0;
int i;
plane_resources = drmModeGetPlaneResources(gfx_fd);
if (!plane_resources) {
printf("drmModeGetPlaneResources failed: %s\n",
strerror(errno));
return 0;
}
for (i = 0; i < plane_resources->count_planes; i++) {
ovr = drmModeGetPlane(gfx_fd, plane_resources->planes[i]);
if (!ovr) {
printf("drmModeGetPlane failed: %s\n",
strerror(errno));
continue;
}
if (ovr->possible_crtcs & (1 << c->pipe)) {
id = ovr->plane_id;
drmModeFreePlane(ovr);
break;
}
drmModeFreePlane(ovr);
}
return id;
}
static int prepare_primary_surface(int fd, int prim_width, int prim_height,
uint32_t *prim_handle, uint32_t *prim_stride,
uint32_t *prim_size, int tiled)
{
uint32_t bytes_per_pixel = sizeof(uint32_t);
uint32_t *prim_fb_ptr;
if (bytes_per_pixel != sizeof(uint32_t)) {
printf("Bad bytes_per_pixel for primary surface: %d\n",
bytes_per_pixel);
return -EINVAL;
}
if (tiled) {
int v;
/* Round the tiling up to the next power-of-two and the
* region up to the next pot fence size so that this works
* on all generations.
*
* This can still fail if the framebuffer is too large to
* be tiled. But then that failure is expected.
*/
v = prim_width * bytes_per_pixel;
for (*prim_stride = 512; *prim_stride < v; *prim_stride *= 2)
;
v = *prim_stride * prim_height;
for (*prim_size = 1024*1024; *prim_size < v; *prim_size *= 2)
;
} else {
/* Scan-out has a 64 byte alignment restriction */
*prim_stride = (prim_width * bytes_per_pixel + 63) & ~63;
*prim_size = *prim_stride * prim_height;
}
*prim_handle = gem_create(fd, *prim_size);
if (tiled)
gem_set_tiling(fd, *prim_handle, I915_TILING_X, *prim_stride);
prim_fb_ptr = gem_mmap(fd, *prim_handle, *prim_size, PROT_READ | PROT_WRITE);
if (prim_fb_ptr != NULL) {
// Write primary surface with gray background
memset(prim_fb_ptr, 0x3f, *prim_size);
munmap(prim_fb_ptr, *prim_size);
}
return 0;
}
static void fill_sprite(int sprite_width, int sprite_height, int sprite_stride,
int sprite_index, void *sprite_fb_ptr)
{
__u32 *pLinePat0,
*pLinePat1,
*pLinePtr;
int i,
line;
int stripe_width;
stripe_width = ((sprite_width > 64) &&
(sprite_height > 64)) ? (sprite_index + 1) * 8 :
(sprite_index + 1) * 2;
// Note: sprite_stride is in bytes. pLinePat0 and pLinePat1
// are both __u32 pointers
pLinePat0 = sprite_fb_ptr;
pLinePat1 = pLinePat0 + (stripe_width * (sprite_stride / sizeof(*pLinePat0)));
for (i = 0; i < sprite_width; i++) {
*(pLinePat0 + i) = ((i / stripe_width) & 0x1) ? 0 : ~0;
*(pLinePat1 + i) = ~(*(pLinePat0 + i));
}
for (line = 1; line < sprite_height; line++) {
if (line == stripe_width) {
continue;
}
pLinePtr = ((line / stripe_width) & 0x1) ? pLinePat1 : pLinePat0;
memcpy( pLinePat0 + ((sprite_stride / sizeof(*pLinePat0)) * line),
pLinePtr,
sprite_width * sizeof(*pLinePat0));
}
return;
}
static int prepare_sprite_surfaces(int fd, int sprite_width, int sprite_height,
uint32_t num_surfaces, uint32_t *sprite_handles,
uint32_t *sprite_stride, uint32_t *sprite_size,
int tiled)
{
uint32_t bytes_per_pixel = sizeof(uint32_t);
uint32_t *sprite_fb_ptr;
int i;
if (bytes_per_pixel != sizeof(uint32_t)) {
printf("Bad bytes_per_pixel for sprite: %d\n", bytes_per_pixel);
return -EINVAL;
}
if (tiled) {
int v;
/* Round the tiling up to the next power-of-two and the
* region up to the next pot fence size so that this works
* on all generations.
*
* This can still fail if the framebuffer is too large to
* be tiled. But then that failure is expected.
*/
v = sprite_width * bytes_per_pixel;
for (*sprite_stride = 512; *sprite_stride < v; *sprite_stride *= 2)
;
v = *sprite_stride * sprite_height;
for (*sprite_size = 1024*1024; *sprite_size < v; *sprite_size *= 2)
;
} else {
/* Scan-out has a 64 byte alignment restriction */
*sprite_stride = (sprite_width * bytes_per_pixel + 63) & ~63;
*sprite_size = *sprite_stride * sprite_height;
}
for (i = 0; i < num_surfaces; i++) {
// Create the sprite surface
sprite_handles[i] = gem_create(fd, *sprite_size);
if (tiled)
gem_set_tiling(fd, sprite_handles[i], I915_TILING_X, *sprite_stride);
// Get pointer to the surface
sprite_fb_ptr = gem_mmap(fd,
sprite_handles[i], *sprite_size,
PROT_READ | PROT_WRITE);
if (sprite_fb_ptr != NULL) {
// Fill with checkerboard pattern
fill_sprite(sprite_width, sprite_height, *sprite_stride, i, sprite_fb_ptr);
munmap(sprite_fb_ptr, *sprite_size);
} else {
i--;
while (i >= 0) {
gem_close(fd, sprite_handles[i]);
i--;
}
}
}
return 0;
}
static void ricochet(int tiled, int sprite_w, int sprite_h,
int out_w, int out_h, int dump_info)
{
int ret;
int gfx_fd;
int keep_moving;
const int num_surfaces = 3;
uint32_t sprite_handles[num_surfaces];
uint32_t sprite_fb_id[num_surfaces];
int sprite_x;
int sprite_y;
uint32_t sprite_stride;
uint32_t sprite_size;
uint32_t handles[4],
pitches[4],
offsets[4]; /* we only use [0] */
uint32_t prim_width,
prim_height,
prim_handle,
prim_stride,
prim_size,
prim_fb_id;
struct drm_intel_sprite_colorkey set;
struct connector curr_connector;
drmModeRes *gfx_resources;
struct termios orig_term,
curr_term;
int c_index;
int sprite_index;
unsigned int sprite_plane_id;
uint32_t plane_flags = 0;
int delta_x,
delta_y;
struct timeval stTimeVal;
long long currTime,
prevFlipTime,
prevMoveTime,
deltaFlipTime,
deltaMoveTime,
SleepTime;
char key;
// Open up I915 graphics device
gfx_fd = drmOpen("i915", NULL);
if (gfx_fd < 0) {
printf("Failed to load i915 driver: %s\n", strerror(errno));
return;
}
// Obtain pointer to struct containing graphics resources
gfx_resources = drmModeGetResources(gfx_fd);
if (!gfx_resources) {
printf("drmModeGetResources failed: %s\n", strerror(errno));
return;
}
if (dump_info != 0) {
dump_connectors(gfx_fd, gfx_resources);
dump_crtcs(gfx_fd, gfx_resources);
dump_planes(gfx_fd, gfx_resources);
}
// Save previous terminal settings
if (tcgetattr( 0, &orig_term) != 0) {
printf("tcgetattr failure: %s\n",
strerror(errno));
return;
}
// Set up input to return characters immediately
curr_term = orig_term;
curr_term.c_lflag &= ~(ICANON | ECHO | ECHONL);
curr_term.c_cc[VMIN] = 0; // No minimum number of characters
curr_term.c_cc[VTIME] = 0 ; // Return immediately, even if
// nothing has been entered.
if (tcsetattr( 0, TCSANOW, &curr_term) != 0) {
printf("tcgetattr failure: %s\n", strerror(errno));
return;
}
// Cycle through all connectors and display the flying sprite
// where there are displays attached and the hardware will support it.
for (c_index = 0; c_index < gfx_resources->count_connectors; c_index++) {
curr_connector.id = gfx_resources->connectors[c_index];
// Find the native (preferred) display mode
connector_find_preferred_mode(gfx_fd, gfx_resources, &curr_connector);
if (curr_connector.mode_valid == 0) {
printf("No valid preferred mode detected\n");
goto out;
}
// Determine if sprite hardware is available on pipe
// associated with this connector.
sprite_plane_id = connector_find_plane(gfx_fd, &curr_connector);
if (!sprite_plane_id) {
printf("Failed to find sprite plane on crtc\n");
goto out;
}
// Width and height of preferred mode
prim_width = curr_connector.mode.hdisplay;
prim_height = curr_connector.mode.vdisplay;
// Allocate and fill memory for primary surface
ret = prepare_primary_surface(
gfx_fd,
prim_width,
prim_height,
&prim_handle,
&prim_stride,
&prim_size,
tiled);
if (ret != 0) {
printf("Failed to add primary fb (%dx%d): %s\n",
prim_width, prim_height, strerror(errno));
goto out;
}
// Add the primary surface framebuffer
ret = drmModeAddFB(gfx_fd, prim_width, prim_height, 24, 32,
prim_stride, prim_handle, &prim_fb_id);
gem_close(gfx_fd, prim_handle);
if (ret != 0) {
printf("Failed to add primary fb (%dx%d): %s\n",
prim_width, prim_height, strerror(errno));
goto out;
}
// Allocate and fill sprite surfaces
ret = prepare_sprite_surfaces(gfx_fd, sprite_w, sprite_h, num_surfaces,
&sprite_handles[0],
&sprite_stride, &sprite_size,
tiled);
if (ret != 0) {
printf("Preparation of sprite surfaces failed %dx%d\n",
sprite_w, sprite_h);
goto out;
}
// Add the sprite framebuffers
for (sprite_index = 0; sprite_index < num_surfaces; sprite_index++) {
handles[0] = sprite_handles[sprite_index];
handles[1] = handles[0];
handles[2] = handles[0];
handles[3] = handles[0];
pitches[0] = sprite_stride;
pitches[1] = sprite_stride;
pitches[2] = sprite_stride;
pitches[3] = sprite_stride;
memset(offsets, 0, sizeof(offsets));
ret = drmModeAddFB2(gfx_fd, sprite_w, sprite_h,
DRM_FORMAT_XRGB8888,
handles, pitches, offsets,
&sprite_fb_id[sprite_index], plane_flags);
gem_close(gfx_fd, sprite_handles[sprite_index]);
if (ret) {
printf("Failed to add sprite fb (%dx%d): %s\n",
sprite_w, sprite_h, strerror(errno));
sprite_index--;
while (sprite_index >= 0) {
drmModeRmFB(gfx_fd, sprite_fb_id[sprite_index]);
sprite_index--;
}
goto out;
}
}
if (dump_info != 0) {
printf("Displayed Mode Connector struct:\n"
" .id = %d\n"
" .mode_valid = %d\n"
" .crtc = %d\n"
" .pipe = %d\n"
" drmModeModeInfo ...\n"
" .name = %s\n"
" .type = %d\n"
" .flags = %08x\n"
" drmModeEncoder ...\n"
" .encoder_id = %d\n"
" .encoder_type = %d (%s)\n"
" .crtc_id = %d\n"
" .possible_crtcs = %d\n"
" .possible_clones = %d\n"
" drmModeConnector ...\n"
" .connector_id = %d\n"
" .encoder_id = %d\n"
" .connector_type = %d (%s)\n"
" .connector_type_id = %d\n\n",
curr_connector.id,
curr_connector.mode_valid,
curr_connector.crtc,
curr_connector.pipe,
curr_connector.mode.name,
curr_connector.mode.type,
curr_connector.mode.flags,
curr_connector.encoder->encoder_id,
curr_connector.encoder->encoder_type,
kmstest_encoder_type_str(curr_connector.encoder->encoder_type),
curr_connector.encoder->crtc_id,
curr_connector.encoder->possible_crtcs,
curr_connector.encoder->possible_clones,
curr_connector.connector->connector_id,
curr_connector.connector->encoder_id,
curr_connector.connector->connector_type,
kmstest_connector_type_str(curr_connector.connector->connector_type),
curr_connector.connector->connector_type_id);
printf("Sprite surface dimensions = %dx%d\n"
"Sprite output dimensions = %dx%d\n"
"Press any key to continue >\n",
sprite_w, sprite_h, out_w, out_h);
// Wait for a key-press
while( read(0, &key, 1) == 0);
// Purge unread characters
tcflush(0, TCIFLUSH);
}
// Set up the primary display mode
ret = drmModeSetCrtc(gfx_fd, curr_connector.crtc, prim_fb_id,
0, 0, &curr_connector.id, 1, &curr_connector.mode);
if (ret != 0) {
printf("Failed to set mode (%dx%d@%dHz): %s\n",
prim_width, prim_height, curr_connector.mode.vrefresh,
strerror(errno));
continue;
}
// Set the sprite colorkey state
set.plane_id = sprite_plane_id;
set.min_value = 0;
set.max_value = 0;
set.flags = I915_SET_COLORKEY_NONE;
ret = drmCommandWrite(gfx_fd, DRM_I915_SET_SPRITE_COLORKEY, &set, sizeof(set));
assert(ret == 0);
// Set up sprite output dimensions, initial position, etc.
if (out_w > prim_width / 2)
out_w = prim_width / 2;
if (out_h > prim_height / 2)
out_h = prim_height / 2;
delta_x = 3;
delta_y = 4;
sprite_x = (prim_width / 2) - (out_w / 2);
sprite_y = (prim_height / 2) - (out_h / 2);
currTime = 0;
prevFlipTime = 0; // Will force immediate sprite flip
prevMoveTime = 0; // Will force immediate sprite move
deltaFlipTime = 500000; // Flip sprite surface every 1/2 second
deltaMoveTime = 100000; // Move sprite every 100 ms
sprite_index = num_surfaces - 1;
keep_moving = 1;
// Bounce sprite off the walls
while (keep_moving) {
// Obtain system time in usec.
if (gettimeofday( &stTimeVal, NULL ) != 0)
printf("gettimeofday error: %s\n", strerror(errno));
else
currTime = ((long long)stTimeVal.tv_sec * 1000000) + stTimeVal.tv_usec;
// Check if it's time to flip the sprite surface
if (currTime - prevFlipTime > deltaFlipTime) {
sprite_index = (sprite_index + 1) % num_surfaces;
prevFlipTime = currTime;
}
// Move the sprite on the screen and flip
// the surface if the index has changed
// NB: sprite_w and sprite_h must be 16.16 fixed point, herego << 16
if (drmModeSetPlane(gfx_fd, sprite_plane_id, curr_connector.crtc,
sprite_fb_id[sprite_index], plane_flags,
sprite_x, sprite_y,
out_w, out_h,
0, 0,
sprite_w << 16, sprite_h << 16))
printf("Failed to enable sprite plane: %s\n", strerror(errno));
// Check if it's time to move the sprite surface
if (currTime - prevMoveTime > deltaMoveTime) {
// Compute the next position for sprite
sprite_x += delta_x;
sprite_y += delta_y;
if (sprite_x < 0) {
sprite_x = 0;
delta_x = -delta_x;
}
else if (sprite_x > prim_width - out_w) {
sprite_x = prim_width - out_w;
delta_x = -delta_x;
}
if (sprite_y < 0) {
sprite_y = 0;
delta_y = -delta_y;
}
else if (sprite_y > prim_height - out_h) {
sprite_y = prim_height - out_h;
delta_y = -delta_y;
}
prevMoveTime = currTime;
}
// Fetch a key from input (non-blocking)
if (read(0, &key, 1) == 1) {
switch (key) {
case 'q': // Kill the program
case 'Q':
goto out;
break;
case 's': // Slow down sprite movement;
deltaMoveTime = (deltaMoveTime * 100) / 90;
if (deltaMoveTime > 800000) {
deltaMoveTime = 800000;
}
break;
case 'S': // Speed up sprite movement;
deltaMoveTime = (deltaMoveTime * 100) / 110;
if (deltaMoveTime < 2000) {
deltaMoveTime = 2000;
}
break;
case 'f': // Slow down sprite flipping;
deltaFlipTime = (deltaFlipTime * 100) / 90;
if (deltaFlipTime > 1000000)
deltaFlipTime = 1000000;
break;
case 'F': // Speed up sprite flipping;
deltaFlipTime = (deltaFlipTime * 100) / 110;
if (deltaFlipTime < 20000)
deltaFlipTime = 20000;
break;
case 'n': // Next connector
case 'N':
keep_moving = 0;
break;
default:
break;
}
// Purge unread characters
tcflush(0, TCIFLUSH);
}
// Wait for min of flip or move deltas
SleepTime = (deltaFlipTime < deltaMoveTime) ?
deltaFlipTime : deltaMoveTime;
usleep(SleepTime);
}
}
out:
// Purge unread characters
tcflush(0, TCIFLUSH);
// Restore previous terminal settings
if (tcsetattr( 0, TCSANOW, &orig_term) != 0) {
printf("tcgetattr failure: %s\n", strerror(errno));
return;
}
drmModeFreeResources(gfx_resources);
}
static void usage(char *name)
{
printf("usage: %s -s <plane width>x<plane height> [-dhto]\n"
"\t-d\t[optional] dump mode information\n"
"\t-h\t[optional] output help message\n"
"\t-t\t[optional] enable tiling\n"
"\t-o\t[optional] <output rect width>x<output rect height>\n\n"
"Keyboard control for sprite movement and flip rate ...\n"
"\t'q' or 'Q' - Quit the program\n"
"\t'n' or 'N' - Switch to next display\n"
"\t's' - Slow sprite movement\n"
"\t'S' - Speed up sprite movement\n"
"\t'f' - Slow sprite surface flipping\n"
"\t'F' - Speed up sprite surface flipping\n",
name);
}
int main(int argc, char **argv)
{
int c;
int test_overlay = 0,
enable_tiling = 0,
dump_info = 0;
int plane_width = 0,
plane_height = 0,
out_width = 0,
out_height = 0;
static char optstr[] = "ds:o:th";
opterr = 0;
while ((c = getopt(argc, argv, optstr)) != -1) {
switch (c) {
case 'd': // Dump information
dump_info = 1;
break;
case 't': // Tiling enable
enable_tiling = 1;
break;
case 's': // Surface dimensions
if (sscanf(optarg, "%dx%d", &plane_width, &plane_height) != 2)
usage(argv[0]);
test_overlay = 1;
break;
case 'o': // Output dimensions
if (sscanf(optarg, "%dx%d", &out_width, &out_height) != 2)
usage(argv[0]);
break;
default:
printf("unknown option %c\n", c);
/* fall through */
case 'h': // Help!
usage(argv[0]);
goto out;
}
}
if (test_overlay) {
if (out_width < (plane_width / 2))
out_width = plane_width;
if (out_height < (plane_height / 2))
out_height = plane_height;
ricochet(enable_tiling, plane_width, plane_height, out_width, out_height, dump_info);
} else {
printf("Sprite dimensions are required:\n");
usage(argv[0]);
}
out:
exit(0);
}