blob: f024c587e5ebc559539ec5848660c571cb3899b0 [file] [log] [blame]
/*
* Copyright © 2007, 2011, 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Daniel Vetter <daniel.vetter@ffwll.ch>
*
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <string.h>
#include <sys/mman.h>
#include <signal.h>
#include <pciaccess.h>
#include <math.h>
#include <getopt.h>
#include <stdlib.h>
#include <linux/kd.h>
#include <unistd.h>
#include <sys/wait.h>
#include "drm_fourcc.h"
#include "drmtest.h"
#include "i915_drm.h"
#include "intel_chipset.h"
#include "intel_gpu_tools.h"
/* This file contains a bunch of wrapper functions to directly use gem ioctls.
* Mostly useful to write kernel tests. */
drm_intel_bo *
gem_handle_to_libdrm_bo(drm_intel_bufmgr *bufmgr, int fd, const char *name, uint32_t handle)
{
struct drm_gem_flink flink;
int ret;
drm_intel_bo *bo;
flink.handle = handle;
ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink);
igt_assert(ret == 0);
bo = drm_intel_bo_gem_create_from_name(bufmgr, name, flink.name);
igt_assert(bo);
return bo;
}
static int
is_intel(int fd)
{
struct drm_i915_getparam gp;
int devid;
gp.param = I915_PARAM_CHIPSET_ID;
gp.value = &devid;
if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)))
return 0;
return IS_INTEL(devid);
}
bool gem_uses_aliasing_ppgtt(int fd)
{
struct drm_i915_getparam gp;
int val;
gp.param = 18; /* HAS_ALIASING_PPGTT */
gp.value = &val;
if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)))
return 0;
return val;
}
int gem_available_fences(int fd)
{
struct drm_i915_getparam gp;
int val;
gp.param = I915_PARAM_NUM_FENCES_AVAIL;
gp.value = &val;
if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)))
return 0;
return val;
}
#define LOCAL_I915_EXEC_VEBOX (4 << 0)
/* Ensure the gpu is idle by launching a nop execbuf and stalling for it. */
void gem_quiescent_gpu(int fd)
{
uint32_t batch[2] = {MI_BATCH_BUFFER_END, 0};
uint32_t handle;
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 gem_exec[1];
handle = gem_create(fd, 4096);
gem_write(fd, handle, 0, batch, sizeof(batch));
gem_exec[0].handle = handle;
gem_exec[0].relocation_count = 0;
gem_exec[0].relocs_ptr = 0;
gem_exec[0].alignment = 0;
gem_exec[0].offset = 0;
gem_exec[0].flags = 0;
gem_exec[0].rsvd1 = 0;
gem_exec[0].rsvd2 = 0;
execbuf.buffers_ptr = (uintptr_t)gem_exec;
execbuf.buffer_count = 1;
execbuf.batch_start_offset = 0;
execbuf.batch_len = 8;
execbuf.cliprects_ptr = 0;
execbuf.num_cliprects = 0;
execbuf.DR1 = 0;
execbuf.DR4 = 0;
execbuf.flags = 0;
i915_execbuffer2_set_context_id(execbuf, 0);
execbuf.rsvd2 = 0;
do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
if (gem_has_blt(fd)) {
execbuf.flags = I915_EXEC_BLT;
do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
}
if (gem_has_bsd(fd)) {
execbuf.flags = I915_EXEC_BSD;
do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
}
if (gem_has_vebox(fd)) {
execbuf.flags = LOCAL_I915_EXEC_VEBOX;
do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
}
gem_sync(fd, handle);
}
static bool is_master(int fd)
{
drm_client_t client;
int ret;
/* Check that we're the only opener and authed. */
client.idx = 0;
ret = ioctl(fd, DRM_IOCTL_GET_CLIENT, &client);
igt_assert (ret == 0);
if (!client.auth) {
return 0;
}
client.idx = 1;
ret = ioctl(fd, DRM_IOCTL_GET_CLIENT, &client);
if (ret != -1 || errno != EINVAL) {
return 0;
}
return 1;
}
/**
* drm_get_card() - get an intel card number for use in /dev or /sys
*
* @master: -1 not a master, 0 don't care, 1 is the master
*
* returns -1 on error
*/
int drm_get_card(int master)
{
char *name;
int i, fd;
for (i = 0; i < 16; i++) {
int ret;
ret = asprintf(&name, "/dev/dri/card%u", i);
if (ret == -1)
return -1;
fd = open(name, O_RDWR);
free(name);
if (fd == -1)
continue;
if (is_intel(fd) && master == 0) {
close(fd);
break;
}
if (master == 1 && is_master(fd)) {
close(fd);
break;
}
if (master == -1 && !is_master(fd)) {
close(fd);
break;
}
close(fd);
}
return i;
}
/** Open the first DRM device we can find, searching up to 16 device nodes */
static int __drm_open_any(void)
{
char *name;
int ret, fd;
ret = asprintf(&name, "/dev/dri/card%d", drm_get_card(0));
if (ret == -1)
return -1;
fd = open(name, O_RDWR);
free(name);
if (!is_intel(fd)) {
close(fd);
fd = -1;
}
return fd;
}
static void quiescent_gpu_at_exit(int sig)
{
int fd;
fd = __drm_open_any();
if (fd >= 0) {
gem_quiescent_gpu(fd);
close(fd);
}
}
int drm_open_any(void)
{
static int open_count;
int fd = __drm_open_any();
if (fd < -1) {
fprintf(stderr, "Failed to open any drm device.%s\n",
geteuid() ? "Retry as root?" : "");
return fd;
}
if (__sync_fetch_and_add(&open_count, 1))
return fd;
gem_quiescent_gpu(fd);
igt_install_exit_handler(quiescent_gpu_at_exit);
return fd;
}
/**
* Open the first DRM device we can find where we end up being the master.
*/
int drm_open_any_master(void)
{
char *name;
int ret, fd;
ret = asprintf(&name, "/dev/dri/card%d", drm_get_card(1));
if (ret == -1)
return -1;
fd = open(name, O_RDWR);
free(name);
if (fd == -1)
fprintf(stderr, "Couldn't find an un-controlled DRM device\n");
igt_assert(is_intel(fd));
return fd;
}
void gem_set_tiling(int fd, uint32_t handle, int tiling, int stride)
{
struct drm_i915_gem_set_tiling st;
int ret;
memset(&st, 0, sizeof(st));
do {
st.handle = handle;
st.tiling_mode = tiling;
st.stride = tiling ? stride : 0;
ret = ioctl(fd, DRM_IOCTL_I915_GEM_SET_TILING, &st);
} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
igt_assert(ret == 0);
igt_assert(st.tiling_mode == tiling);
}
bool gem_has_enable_ring(int fd,int param)
{
drm_i915_getparam_t gp;
int ret, tmp;
memset(&gp, 0, sizeof(gp));
gp.value = &tmp;
gp.param = param;
ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
if ((ret == 0) && (*gp.value > 0))
return true;
else
return false;
}
bool gem_has_bsd(int fd)
{
return gem_has_enable_ring(fd,I915_PARAM_HAS_BSD);
}
bool gem_has_blt(int fd)
{
return gem_has_enable_ring(fd,I915_PARAM_HAS_BLT);
}
#define LOCAL_I915_PARAM_HAS_VEBOX 22
bool gem_has_vebox(int fd)
{
return gem_has_enable_ring(fd,LOCAL_I915_PARAM_HAS_VEBOX);
}
int gem_get_num_rings(int fd)
{
int num_rings = 1; /* render ring is always available */
if (gem_has_bsd(fd))
num_rings++;
else
goto skip;
if (gem_has_blt(fd))
num_rings++;
else
goto skip;
if (gem_has_vebox(fd))
num_rings++;
else
goto skip;
skip:
return num_rings;
}
struct local_drm_i915_gem_caching {
uint32_t handle;
uint32_t caching;
};
#define LOCAL_DRM_I915_GEM_SET_CACHEING 0x2f
#define LOCAL_DRM_I915_GEM_GET_CACHEING 0x30
#define LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING \
DRM_IOW(DRM_COMMAND_BASE + LOCAL_DRM_I915_GEM_SET_CACHEING, struct local_drm_i915_gem_caching)
#define LOCAL_DRM_IOCTL_I915_GEM_GET_CACHEING \
DRM_IOWR(DRM_COMMAND_BASE + LOCAL_DRM_I915_GEM_GET_CACHEING, struct local_drm_i915_gem_caching)
void gem_require_caching(int fd)
{
struct local_drm_i915_gem_caching arg;
int ret;
arg.handle = gem_create(fd, 4096);
igt_assert(arg.handle != 0);
arg.caching = 0;
ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING, &arg);
gem_close(fd, arg.handle);
igt_require(ret == 0);
}
void gem_set_caching(int fd, uint32_t handle, int caching)
{
struct local_drm_i915_gem_caching arg;
int ret;
arg.handle = handle;
arg.caching = caching;
ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING, &arg);
igt_assert(ret == 0 || (errno == ENOTTY || errno == EINVAL));
igt_require(ret == 0);
}
uint32_t gem_get_caching(int fd, uint32_t handle)
{
struct local_drm_i915_gem_caching arg;
int ret;
arg.handle = handle;
arg.caching = 0;
ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_GET_CACHEING, &arg);
igt_assert(ret == 0);
return arg.caching;
}
uint32_t gem_open(int fd, uint32_t name)
{
struct drm_gem_open open_struct;
int ret;
open_struct.name = name;
ret = ioctl(fd, DRM_IOCTL_GEM_OPEN, &open_struct);
igt_assert(ret == 0);
igt_assert(open_struct.handle != 0);
return open_struct.handle;
}
uint32_t gem_flink(int fd, uint32_t handle)
{
struct drm_gem_flink flink;
int ret;
flink.handle = handle;
ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink);
igt_assert(ret == 0);
return flink.name;
}
void gem_close(int fd, uint32_t handle)
{
struct drm_gem_close close_bo;
close_bo.handle = handle;
do_ioctl(fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
}
void gem_write(int fd, uint32_t handle, uint32_t offset, const void *buf, uint32_t size)
{
struct drm_i915_gem_pwrite gem_pwrite;
gem_pwrite.handle = handle;
gem_pwrite.offset = offset;
gem_pwrite.size = size;
gem_pwrite.data_ptr = (uintptr_t)buf;
do_ioctl(fd, DRM_IOCTL_I915_GEM_PWRITE, &gem_pwrite);
}
void gem_read(int fd, uint32_t handle, uint32_t offset, void *buf, uint32_t length)
{
struct drm_i915_gem_pread gem_pread;
gem_pread.handle = handle;
gem_pread.offset = offset;
gem_pread.size = length;
gem_pread.data_ptr = (uintptr_t)buf;
do_ioctl(fd, DRM_IOCTL_I915_GEM_PREAD, &gem_pread);
}
void gem_set_domain(int fd, uint32_t handle,
uint32_t read_domains, uint32_t write_domain)
{
struct drm_i915_gem_set_domain set_domain;
set_domain.handle = handle;
set_domain.read_domains = read_domains;
set_domain.write_domain = write_domain;
do_ioctl(fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain);
}
void gem_sync(int fd, uint32_t handle)
{
gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
}
uint32_t gem_create(int fd, int size)
{
struct drm_i915_gem_create create;
create.handle = 0;
create.size = size;
do_ioctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create);
igt_assert(create.handle);
return create.handle;
}
void *gem_mmap__gtt(int fd, uint32_t handle, int size, int prot)
{
struct drm_i915_gem_mmap_gtt mmap_arg;
void *ptr;
mmap_arg.handle = handle;
if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg))
return NULL;
ptr = mmap64(0, size, prot, MAP_SHARED, fd, mmap_arg.offset);
if (ptr == MAP_FAILED)
ptr = NULL;
return ptr;
}
void *gem_mmap__cpu(int fd, uint32_t handle, int size, int prot)
{
struct drm_i915_gem_mmap mmap_arg;
mmap_arg.handle = handle;
mmap_arg.offset = 0;
mmap_arg.size = size;
if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg))
return NULL;
return (void *)(uintptr_t)mmap_arg.addr_ptr;
}
uint64_t gem_aperture_size(int fd)
{
struct drm_i915_gem_get_aperture aperture;
aperture.aper_size = 256*1024*1024;
do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
return aperture.aper_size;
}
uint64_t gem_mappable_aperture_size(void)
{
struct pci_device *pci_dev;
int bar;
pci_dev = intel_get_pci_device();
if (intel_gen(pci_dev->device_id) < 3)
bar = 0;
else
bar = 2;
return pci_dev->regions[bar].size;
}
int gem_madvise(int fd, uint32_t handle, int state)
{
struct drm_i915_gem_madvise madv;
madv.handle = handle;
madv.madv = state;
madv.retained = 1;
do_ioctl(fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
return madv.retained;
}
/* prime */
int prime_handle_to_fd(int fd, uint32_t handle)
{
struct drm_prime_handle args;
args.handle = handle;
args.flags = DRM_CLOEXEC;
args.fd = -1;
do_ioctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args);
return args.fd;
}
uint32_t prime_fd_to_handle(int fd, int dma_buf_fd)
{
struct drm_prime_handle args;
args.fd = dma_buf_fd;
args.flags = 0;
args.handle = 0;
do_ioctl(fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &args);
return args.handle;
}
/* signal interrupt helpers */
static pid_t signal_helper = -1;
long long int sig_stat;
static void __attribute__((noreturn)) signal_helper_process(pid_t pid)
{
/* Interrupt the parent process at 500Hz, just to be annoying */
while (1) {
usleep(1000 * 1000 / 500);
if (kill(pid, SIGUSR1)) /* Parent has died, so must we. */
exit(0);
}
}
static void sig_handler(int i)
{
sig_stat++;
}
static void signal_helper_exit_handler(int sig)
{
igt_stop_signal_helper();
}
void igt_fork_signal_helper(void)
{
pid_t pid;
sighandler_t oldsig;
if (igt_only_list_subtests())
return;
igt_install_exit_handler(signal_helper_exit_handler);
signal(SIGUSR1, sig_handler);
oldsig = signal(SIGQUIT, SIG_DFL);
pid = fork();
signal(SIGQUIT, oldsig);
if (pid == 0) {
signal_helper_process(getppid());
return;
}
signal_helper = pid;
}
void igt_stop_signal_helper(void)
{
int exitcode;
if (signal_helper != -1) {
kill(signal_helper, SIGQUIT);
wait(&exitcode);
} else
return;
if (sig_stat)
fprintf(stdout, "signal handler called %llu times\n", sig_stat);
sig_stat = 0;
signal_helper = -1;
}
/* subtests helpers */
static bool list_subtests = false;
static char *run_single_subtest = NULL;
static const char *in_subtest = NULL;
static bool test_with_subtests = false;
static bool skip_subtests_henceforth = false;
void igt_subtest_init(int argc, char **argv)
{
int c, option_index = 0;
static struct option long_options[] = {
{"list-subtests", 0, 0, 'l'},
{"run-subtest", 1, 0, 'r'},
{NULL, 0, 0, 0,}
};
test_with_subtests = true;
/* supress getopt errors about unknown options */
opterr = 0;
/* restrict the option parsing to long option names to avoid collisions
* with options the test declares */
while((c = getopt_long(argc, argv, "",
long_options, &option_index)) != -1) {
switch(c) {
case 'l':
list_subtests = true;
goto out;
case 'r':
run_single_subtest = strdup(optarg);
goto out;
}
}
out:
/* reset opt parsing */
optind = 1;
}
/*
* Note: Testcases which use these helpers MUST NOT output anything to stdout
* outside of places protected by igt_run_subtest checks - the piglit
* runner adds every line to the subtest list.
*/
bool __igt_run_subtest(const char *subtest_name)
{
assert(!in_subtest);
if (list_subtests) {
printf("%s\n", subtest_name);
return false;
}
if (skip_subtests_henceforth) {
printf("Subtest %s: SKIP\n", in_subtest);
return false;
}
if (!run_single_subtest) {
return (in_subtest = subtest_name);
} else {
if (strcmp(subtest_name, run_single_subtest) == 0)
return (in_subtest = subtest_name);
return false;
}
}
bool igt_only_list_subtests(void)
{
return list_subtests;
}
static bool skipped_one = false;
static bool succeeded_one = false;
static bool failed_one = false;
static int igt_exitcode;
static void exit_subtest(const char *) __attribute__((noreturn));
static void exit_subtest(const char *result)
{
printf("Subtest %s: %s\n", in_subtest, result);
in_subtest = NULL;
longjmp(igt_subtest_jmpbuf, 1);
}
void igt_skip(void)
{
skipped_one = true;
if (in_subtest)
exit_subtest("SKIP");
else if (test_with_subtests)
skip_subtests_henceforth = true;
else
exit(77);
}
void __igt_skip_check(const char *file, const int line,
const char *func, const char *check)
{
if (!igt_only_list_subtests()) {
printf("Test requirement not met in function %s, file %s:%i:\n"
"Test requirement: (%s)\n",
func, file, line, check);
}
igt_skip();
}
void igt_success(void)
{
succeeded_one = true;
if (in_subtest)
exit_subtest("SUCCESS");
}
void igt_fail(int exitcode)
{
assert(exitcode != 0 && exitcode != 77);
if (!failed_one)
igt_exitcode = exitcode;
failed_one = true;
if (in_subtest)
exit_subtest("FAIL");
else {
assert(!test_with_subtests);
exit(exitcode);
}
}
void __igt_fail_assert(int exitcode, const char *file,
const int line, const char *func, const char *assertion)
{
printf("Test assertion failure function %s, file %s:%i:\n"
"Failed assertion: %s\n",
func, file, line, assertion);
igt_fail(exitcode);
}
void igt_exit(void)
{
if (igt_only_list_subtests())
return;
/* Calling this without calling one of the above is a failure */
assert(skipped_one || succeeded_one || failed_one);
if (failed_one)
exit(igt_exitcode);
else if (succeeded_one)
exit(0);
else
exit(77);
}
static bool env_set(const char *env_var, bool default_value)
{
char *val;
val = getenv(env_var);
if (!val)
return default_value;
return atoi(val) != 0;
}
bool igt_run_in_simulation(void)
{
static int simulation = -1;
if (simulation == -1)
simulation = env_set("INTEL_SIMULATION", false);
return simulation;
}
/* Skip the test when running on simulation (and that's relevant only when
* we're not in the mode where we list the subtests) */
void igt_skip_on_simulation(void)
{
if (igt_only_list_subtests())
return;
igt_require(!igt_run_in_simulation());
}
/* other helpers */
void igt_exchange_int(void *array, unsigned i, unsigned j)
{
int *int_arr, tmp;
int_arr = array;
tmp = int_arr[i];
int_arr[i] = int_arr[j];
int_arr[j] = tmp;
}
void igt_permute_array(void *array, unsigned size,
void (*exchange_func)(void *array,
unsigned i,
unsigned j))
{
int i;
for (i = size - 1; i > 1; i--) {
/* yes, not perfectly uniform, who cares */
long l = random() % (i +1);
if (i != l)
exchange_func(array, i, l);
}
}
void igt_progress(const char *header, uint64_t i, uint64_t total)
{
int divider = 200;
if (!isatty(fileno(stderr)))
return;
if (i+1 >= total) {
fprintf(stderr, "\r%s100%%\n", header);
return;
}
if (total / 200 == 0)
divider = 1;
/* only bother updating about every 0.5% */
if (i % (total / divider) == 0 || i+1 >= total) {
fprintf(stderr, "\r%s%3llu%%", header,
(long long unsigned) i * 100 / total);
}
}
/* mappable aperture trasher helper */
drm_intel_bo **trash_bos;
int num_trash_bos;
void igt_init_aperture_trashers(drm_intel_bufmgr *bufmgr)
{
int i;
num_trash_bos = gem_mappable_aperture_size() / (1024*1024);
trash_bos = malloc(num_trash_bos * sizeof(drm_intel_bo *));
assert(trash_bos);
for (i = 0; i < num_trash_bos; i++)
trash_bos[i] = drm_intel_bo_alloc(bufmgr, "trash bo", 1024*1024, 4096);
}
void igt_trash_aperture(void)
{
int i;
uint8_t *gtt_ptr;
for (i = 0; i < num_trash_bos; i++) {
drm_intel_gem_bo_map_gtt(trash_bos[i]);
gtt_ptr = trash_bos[i]->virtual;
*gtt_ptr = 0;
drm_intel_gem_bo_unmap_gtt(trash_bos[i]);
}
}
void igt_cleanup_aperture_trashers(void)
{
int i;
for (i = 0; i < num_trash_bos; i++)
drm_intel_bo_unreference(trash_bos[i]);
free(trash_bos);
}
/* helpers to create nice-looking framebuffers */
static int create_bo_for_fb(int fd, int width, int height, int bpp,
bool tiled, uint32_t *gem_handle_ret,
unsigned *size_ret, unsigned *stride_ret)
{
struct drm_i915_gem_set_tiling set_tiling;
uint32_t gem_handle;
int size;
unsigned stride;
if (tiled) {
int v;
/* Round the tiling up to the next power-of-two and the
* region up to the next pot fence size so that this works
* on all generations.
*
* This can still fail if the framebuffer is too large to
* be tiled. But then that failure is expected.
*/
v = width * bpp / 8;
for (stride = 512; stride < v; stride *= 2)
;
v = stride * height;
for (size = 1024*1024; size < v; size *= 2)
;
} else {
/* Scan-out has a 64 byte alignment restriction */
stride = (width * (bpp / 8) + 63) & ~63;
size = stride * height;
}
gem_handle = gem_create(fd, size);
if (tiled) {
set_tiling.handle = gem_handle;
set_tiling.tiling_mode = I915_TILING_X;
set_tiling.stride = stride;
if (ioctl(fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling)) {
fprintf(stderr, "set tiling failed: %s (stride=%d, size=%d)\n",
strerror(errno), stride, size);
return -1;
}
}
*stride_ret = stride;
*size_ret = size;
*gem_handle_ret = gem_handle;
return 0;
}
void
kmstest_paint_color_gradient(cairo_t *cr, int x, int y, int w, int h,
int r, int g, int b)
{
cairo_pattern_t *pat;
pat = cairo_pattern_create_linear(x, y, x + w, y + h);
cairo_pattern_add_color_stop_rgba(pat, 1, 0, 0, 0, 1);
cairo_pattern_add_color_stop_rgba(pat, 0, r, g, b, 1);
cairo_rectangle(cr, x, y, w, h);
cairo_set_source(cr, pat);
cairo_fill(cr);
cairo_pattern_destroy(pat);
}
static void
paint_test_patterns(cairo_t *cr, int width, int height)
{
double gr_height, gr_width;
int x, y;
y = height * 0.10;
gr_width = width * 0.75;
gr_height = height * 0.08;
x = (width / 2) - (gr_width / 2);
kmstest_paint_color_gradient(cr, x, y, gr_width, gr_height, 1, 0, 0);
y += gr_height;
kmstest_paint_color_gradient(cr, x, y, gr_width, gr_height, 0, 1, 0);
y += gr_height;
kmstest_paint_color_gradient(cr, x, y, gr_width, gr_height, 0, 0, 1);
y += gr_height;
kmstest_paint_color_gradient(cr, x, y, gr_width, gr_height, 1, 1, 1);
}
int kmstest_cairo_printf_line(cairo_t *cr, enum kmstest_text_align align,
double yspacing, const char *fmt, ...)
{
double x, y, xofs, yofs;
cairo_text_extents_t extents;
char *text;
va_list ap;
int ret;
va_start(ap, fmt);
ret = vasprintf(&text, fmt, ap);
assert(ret >= 0);
va_end(ap);
cairo_text_extents(cr, text, &extents);
xofs = yofs = 0;
if (align & align_right)
xofs = -extents.width;
else if (align & align_hcenter)
xofs = -extents.width / 2;
if (align & align_top)
yofs = extents.height;
else if (align & align_vcenter)
yofs = extents.height / 2;
cairo_get_current_point(cr, &x, &y);
if (xofs || yofs)
cairo_rel_move_to(cr, xofs, yofs);
cairo_text_path(cr, text);
cairo_set_source_rgb(cr, 0, 0, 0);
cairo_stroke_preserve(cr);
cairo_set_source_rgb(cr, 1, 1, 1);
cairo_fill(cr);
cairo_move_to(cr, x, y + extents.height + yspacing);
free(text);
return extents.width;
}
static void
paint_marker(cairo_t *cr, int x, int y)
{
enum kmstest_text_align align;
int xoff, yoff;
cairo_move_to(cr, x, y - 20);
cairo_line_to(cr, x, y + 20);
cairo_move_to(cr, x - 20, y);
cairo_line_to(cr, x + 20, y);
cairo_new_sub_path(cr);
cairo_arc(cr, x, y, 10, 0, M_PI * 2);
cairo_set_line_width(cr, 4);
cairo_set_source_rgb(cr, 0, 0, 0);
cairo_stroke_preserve(cr);
cairo_set_source_rgb(cr, 1, 1, 1);
cairo_set_line_width(cr, 2);
cairo_stroke(cr);
xoff = x ? -20 : 20;
align = x ? align_right : align_left;
yoff = y ? -20 : 20;
align |= y ? align_bottom : align_top;
cairo_move_to(cr, x + xoff, y + yoff);
cairo_set_font_size(cr, 18);
kmstest_cairo_printf_line(cr, align, 0, "(%d, %d)", x, y);
}
void kmstest_paint_test_pattern(cairo_t *cr, int width, int height)
{
paint_test_patterns(cr, width, height);
cairo_set_line_cap(cr, CAIRO_LINE_CAP_SQUARE);
/* Paint corner markers */
paint_marker(cr, 0, 0);
paint_marker(cr, width, 0);
paint_marker(cr, 0, height);
paint_marker(cr, width, height);
assert(!cairo_status(cr));
}
#define DF(did, cid, _bpp, _depth) \
{ DRM_FORMAT_##did, CAIRO_FORMAT_##cid, # did, _bpp, _depth }
static struct format_desc_struct {
uint32_t drm_id;
cairo_format_t cairo_id;
const char *name;
int bpp;
int depth;
} format_desc[] = {
DF(RGB565, RGB16_565, 16, 16),
DF(RGB888, INVALID, 24, 24),
DF(XRGB8888, RGB24, 32, 24),
DF(XRGB2101010, RGB30, 32, 30),
DF(ARGB8888, ARGB32, 32, 32),
};
#undef DF
#define for_each_format(f) \
for (f = format_desc; f - format_desc < ARRAY_SIZE(format_desc); f++)
static uint32_t bpp_depth_to_drm_format(int bpp, int depth)
{
struct format_desc_struct *f;
for_each_format(f)
if (f->bpp == bpp && f->depth == depth)
return f->drm_id;
abort();
}
/* Return fb_id on success, 0 on error */
unsigned int kmstest_create_fb(int fd, int width, int height, int bpp,
int depth, bool tiled, struct kmstest_fb *fb)
{
memset(fb, 0, sizeof(*fb));
if (create_bo_for_fb(fd, width, height, bpp, tiled, &fb->gem_handle,
&fb->size, &fb->stride) < 0)
return 0;
if (drmModeAddFB(fd, width, height, depth, bpp, fb->stride,
fb->gem_handle, &fb->fb_id) < 0) {
gem_close(fd, fb->gem_handle);
return 0;
}
fb->width = width;
fb->height = height;
fb->drm_format = bpp_depth_to_drm_format(bpp, depth);
return fb->fb_id;
}
uint32_t drm_format_to_bpp(uint32_t drm_format)
{
struct format_desc_struct *f;
for_each_format(f)
if (f->drm_id == drm_format)
return f->bpp;
abort();
}
unsigned int kmstest_create_fb2(int fd, int width, int height, uint32_t format,
bool tiled, struct kmstest_fb *fb)
{
uint32_t handles[4];
uint32_t pitches[4];
uint32_t offsets[4];
uint32_t fb_id;
int bpp;
int ret;
memset(fb, 0, sizeof(*fb));
bpp = drm_format_to_bpp(format);
ret = create_bo_for_fb(fd, width, height, bpp, tiled, &fb->gem_handle,
&fb->size, &fb->stride);
if (ret < 0)
return ret;
memset(handles, 0, sizeof(handles));
handles[0] = fb->gem_handle;
memset(pitches, 0, sizeof(pitches));
pitches[0] = fb->stride;
memset(offsets, 0, sizeof(offsets));
if (drmModeAddFB2(fd, width, height, format, handles, pitches,
offsets, &fb_id, 0) < 0) {
gem_close(fd, fb->gem_handle);
return 0;
}
fb->width = width;
fb->height = height;
fb->drm_format = format;
fb->fb_id = fb_id;
return fb_id;
}
static cairo_format_t drm_format_to_cairo(uint32_t drm_format)
{
struct format_desc_struct *f;
for_each_format(f)
if (f->drm_id == drm_format)
return f->cairo_id;
abort();
}
static cairo_t *create_cairo_ctx(int fd, struct kmstest_fb *fb)
{
cairo_t *cr;
cairo_surface_t *surface;
cairo_format_t cformat;
void *fb_ptr;
cformat = drm_format_to_cairo(fb->drm_format);
fb_ptr = gem_mmap(fd, fb->gem_handle, fb->size, PROT_READ | PROT_WRITE);
surface = cairo_image_surface_create_for_data((unsigned char *)fb_ptr,
cformat, fb->width,
fb->height, fb->stride);
assert(surface);
cr = cairo_create(surface);
cairo_surface_destroy(surface);
return cr;
}
cairo_t *kmstest_get_cairo_ctx(int fd, struct kmstest_fb *fb)
{
if (!fb->cairo_ctx)
fb->cairo_ctx = create_cairo_ctx(fd, fb);
gem_set_domain(fd, fb->gem_handle, I915_GEM_DOMAIN_CPU,
I915_GEM_DOMAIN_CPU);
return fb->cairo_ctx;
}
void kmstest_remove_fb(int fd, struct kmstest_fb *fb)
{
if (fb->cairo_ctx)
cairo_destroy(fb->cairo_ctx);
do_or_die(drmModeRmFB(fd, fb->fb_id));
gem_close(fd, fb->gem_handle);
}
const char *kmstest_format_str(uint32_t drm_format)
{
struct format_desc_struct *f;
for_each_format(f)
if (f->drm_id == drm_format)
return f->name;
return "invalid";
}
const char *kmstest_pipe_str(int pipe)
{
const char *str[] = { "A", "B", "C" };
if (pipe > 2)
return "invalid";
return str[pipe];
}
void kmstest_get_all_formats(const uint32_t **formats, int *format_count)
{
static uint32_t *drm_formats;
if (!drm_formats) {
struct format_desc_struct *f;
uint32_t *format;
drm_formats = calloc(ARRAY_SIZE(format_desc),
sizeof(*drm_formats));
format = &drm_formats[0];
for_each_format(f)
*format++ = f->drm_id;
}
*formats = drm_formats;
*format_count = ARRAY_SIZE(format_desc);
}
struct type_name {
int type;
const char *name;
};
#define type_name_fn(res) \
const char * kmstest_##res##_str(int type) { \
unsigned int i; \
for (i = 0; i < ARRAY_SIZE(res##_names); i++) { \
if (res##_names[i].type == type) \
return res##_names[i].name; \
} \
return "(invalid)"; \
}
struct type_name encoder_type_names[] = {
{ DRM_MODE_ENCODER_NONE, "none" },
{ DRM_MODE_ENCODER_DAC, "DAC" },
{ DRM_MODE_ENCODER_TMDS, "TMDS" },
{ DRM_MODE_ENCODER_LVDS, "LVDS" },
{ DRM_MODE_ENCODER_TVDAC, "TVDAC" },
};
type_name_fn(encoder_type)
struct type_name connector_status_names[] = {
{ DRM_MODE_CONNECTED, "connected" },
{ DRM_MODE_DISCONNECTED, "disconnected" },
{ DRM_MODE_UNKNOWNCONNECTION, "unknown" },
};
type_name_fn(connector_status)
struct type_name connector_type_names[] = {
{ DRM_MODE_CONNECTOR_Unknown, "unknown" },
{ DRM_MODE_CONNECTOR_VGA, "VGA" },
{ DRM_MODE_CONNECTOR_DVII, "DVI-I" },
{ DRM_MODE_CONNECTOR_DVID, "DVI-D" },
{ DRM_MODE_CONNECTOR_DVIA, "DVI-A" },
{ DRM_MODE_CONNECTOR_Composite, "composite" },
{ DRM_MODE_CONNECTOR_SVIDEO, "s-video" },
{ DRM_MODE_CONNECTOR_LVDS, "LVDS" },
{ DRM_MODE_CONNECTOR_Component, "component" },
{ DRM_MODE_CONNECTOR_9PinDIN, "9-pin DIN" },
{ DRM_MODE_CONNECTOR_DisplayPort, "DisplayPort" },
{ DRM_MODE_CONNECTOR_HDMIA, "HDMI-A" },
{ DRM_MODE_CONNECTOR_HDMIB, "HDMI-B" },
{ DRM_MODE_CONNECTOR_TV, "TV" },
{ DRM_MODE_CONNECTOR_eDP, "Embedded DisplayPort" },
};
type_name_fn(connector_type)
void kmstest_dump_mode(drmModeModeInfo *mode)
{
printf(" %s %d %d %d %d %d %d %d %d %d 0x%x 0x%x %d\n",
mode->name,
mode->vrefresh,
mode->hdisplay,
mode->hsync_start,
mode->hsync_end,
mode->htotal,
mode->vdisplay,
mode->vsync_start,
mode->vsync_end,
mode->vtotal,
mode->flags,
mode->type,
mode->clock);
fflush(stdout);
}
int kmstest_get_pipe_from_crtc_id(int fd, int crtc_id)
{
struct drm_i915_get_pipe_from_crtc_id pfci;
int ret;
memset(&pfci, 0, sizeof(pfci));
pfci.crtc_id = crtc_id;
ret = drmIoctl(fd, DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID, &pfci);
igt_assert(ret == 0);
return pfci.pipe;
}
#define MAX_SIGNALS 32
#define MAX_EXIT_HANDLERS 5
static struct {
sighandler_t handler;
bool installed;
} orig_sig[MAX_SIGNALS];
static igt_exit_handler_t exit_handler_fn[MAX_EXIT_HANDLERS];
static int exit_handler_count;
static bool exit_handler_disabled;
static sigset_t saved_sig_mask;
static const int handled_signals[] =
{ SIGINT, SIGHUP, SIGTERM, SIGQUIT, SIGPIPE, SIGABRT };
static int install_sig_handler(int sig_num, sighandler_t handler)
{
orig_sig[sig_num].handler = signal(sig_num, handler);
if (orig_sig[sig_num].handler == SIG_ERR)
return -1;
orig_sig[sig_num].installed = true;
return 0;
}
static void restore_sig_handler(int sig_num)
{
if (orig_sig[sig_num].installed)
signal(sig_num, orig_sig[sig_num].handler);
}
static void restore_all_sig_handler(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(orig_sig); i++)
restore_sig_handler(i);
}
static void call_exit_handlers(int sig)
{
int i;
if (!exit_handler_count) {
fprintf(stderr, "no exit handlers?\n");
return;
}
for (i = exit_handler_count - 1; i >= 0; i--)
exit_handler_fn[i](sig);
}
static void igt_atexit_handler(void)
{
restore_all_sig_handler();
if (!exit_handler_disabled)
call_exit_handlers(0);
}
static void igt_sig_handler(int sig)
{
restore_all_sig_handler();
/*
* exit_handler_disabled is always false here, since when we set it
* we also block signals.
*/
call_exit_handlers(sig);
raise(sig);
}
/*
* Set a handler that will be called either when the process calls exit() or
* returns from the main function, or one of the signals in 'handled_signals'
* is raised. MAX_EXIT_HANDLERS handlers can be installed, each of which will
* be called only once, even if a subsequent signal is raised. If the exit
* handlers are called due to a signal, the signal will be re-raised with the
* original signal disposition after all handlers returned.
*
* The handler will be passed the signal number if called due to a signal, or
* 0 otherwise.
*/
int igt_install_exit_handler(igt_exit_handler_t fn)
{
int i;
if (exit_handler_count == MAX_EXIT_HANDLERS)
return -1;
exit_handler_fn[exit_handler_count] = fn;
exit_handler_count++;
if (exit_handler_count > 1)
return 0;
for (i = 0; i < ARRAY_SIZE(handled_signals); i++) {
if (install_sig_handler(handled_signals[i],
igt_sig_handler))
goto err;
}
if (atexit(igt_atexit_handler))
goto err;
return 0;
err:
restore_all_sig_handler();
exit_handler_count--;
return -1;
}
void igt_disable_exit_handler(void)
{
sigset_t set;
int i;
if (exit_handler_disabled)
return;
sigemptyset(&set);
for (i = 0; i < ARRAY_SIZE(handled_signals); i++)
sigaddset(&set, handled_signals[i]);
if (sigprocmask(SIG_BLOCK, &set, &saved_sig_mask)) {
perror("sigprocmask");
return;
}
exit_handler_disabled = true;
}
void igt_enable_exit_handler(void)
{
if (!exit_handler_disabled)
return;
if (sigprocmask(SIG_SETMASK, &saved_sig_mask, NULL)) {
perror("sigprocmask");
return;
}
exit_handler_disabled = false;
}
static signed long set_vt_mode(unsigned long mode)
{
int fd;
unsigned long prev_mode;
fd = open("/dev/tty0", O_RDONLY);
if (fd < 0)
return -errno;
prev_mode = 0;
if (drmIoctl(fd, KDGETMODE, &prev_mode))
goto err;
if (drmIoctl(fd, KDSETMODE, (void *)mode))
goto err;
close(fd);
return prev_mode;
err:
close(fd);
return -errno;
}
static unsigned long orig_vt_mode = -1UL;
static void restore_vt_mode_at_exit(int sig)
{
if (orig_vt_mode != -1UL)
set_vt_mode(orig_vt_mode);
}
/*
* Set the VT to graphics mode and install an exit handler to restore the
* original mode.
*/
int igt_set_vt_graphics_mode(void)
{
if (igt_install_exit_handler(restore_vt_mode_at_exit))
return -1;
igt_disable_exit_handler();
orig_vt_mode = set_vt_mode(KD_GRAPHICS);
if (orig_vt_mode < 0)
orig_vt_mode = -1UL;
igt_enable_exit_handler();
return orig_vt_mode < 0 ? -1 : 0;
}
static int get_connector_default_mode(int drm_fd, drmModeConnector *connector,
drmModeModeInfo *mode)
{
drmModeRes *resources;
int i;
resources = drmModeGetResources(drm_fd);
if (!resources) {
perror("drmModeGetResources failed");
return -1;
}
if (!connector->count_modes) {
fprintf(stderr, "no modes for connector %d\n",
connector->connector_id);
drmModeFreeResources(resources);
return -1;
}
for (i = 0; i < connector->count_modes; i++) {
if (i == 0 ||
connector->modes[i].type & DRM_MODE_TYPE_PREFERRED) {
*mode = connector->modes[i];
if (mode->type & DRM_MODE_TYPE_PREFERRED)
break;
}
}
drmModeFreeResources(resources);
return 0;
}
int kmstest_get_connector_config(int drm_fd, uint32_t connector_id,
unsigned long crtc_idx_mask,
struct kmstest_connector_config *config)
{
drmModeRes *resources;
drmModeConnector *connector;
drmModeEncoder *encoder;
int i, j;
resources = drmModeGetResources(drm_fd);
if (!resources) {
perror("drmModeGetResources failed");
goto err1;
}
/* First, find the connector & mode */
connector = drmModeGetConnector(drm_fd, connector_id);
if (!connector)
goto err2;
if (connector->connection != DRM_MODE_CONNECTED)
goto err3;
if (!connector->count_modes) {
fprintf(stderr, "connector %d has no modes\n", connector_id);
goto err3;
}
if (connector->connector_id != connector_id) {
fprintf(stderr, "connector id doesn't match (%d != %d)\n",
connector->connector_id, connector_id);
goto err3;
}
/*
* Find given CRTC if crtc_id != 0 or else the first CRTC not in use.
* In both cases find the first compatible encoder and skip the CRTC
* if there is non such.
*/
encoder = NULL; /* suppress GCC warning */
for (i = 0; i < resources->count_crtcs; i++) {
if (!resources->crtcs[i] || !(crtc_idx_mask & (1 << i)))
continue;
/* Now get a compatible encoder */
for (j = 0; j < connector->count_encoders; j++) {
encoder = drmModeGetEncoder(drm_fd,
connector->encoders[j]);
if (!encoder) {
fprintf(stderr, "could not get encoder %d: %s\n",
resources->encoders[j], strerror(errno));
continue;
}
if (encoder->possible_crtcs & (1 << i))
goto found;
drmModeFreeEncoder(encoder);
}
}
fprintf(stderr,
"no crtc with a compatible encoder (crtc_idx_mask %08lx)\n",
crtc_idx_mask);
goto err3;
found:
if (get_connector_default_mode(drm_fd, connector,
&config->default_mode) < 0)
goto err4;
config->connector = connector;
config->encoder = encoder;
config->crtc = drmModeGetCrtc(drm_fd, resources->crtcs[i]);
config->crtc_idx = i;
config->pipe = kmstest_get_pipe_from_crtc_id(drm_fd,
config->crtc->crtc_id);
drmModeFreeResources(resources);
return 0;
err4:
drmModeFreeEncoder(encoder);
err3:
drmModeFreeConnector(connector);
err2:
drmModeFreeResources(resources);
err1:
return -1;
}
void kmstest_free_connector_config(struct kmstest_connector_config *config)
{
drmModeFreeCrtc(config->crtc);
drmModeFreeEncoder(config->encoder);
drmModeFreeConnector(config->connector);
}
#define PREFAULT_DEBUGFS "/sys/module/i915/parameters/prefault_disable"
static int igt_prefault_control(bool enable)
{
const char *name = PREFAULT_DEBUGFS;
int fd;
char buf[2] = {'Y', 'N'};
int index;
int result = 0;
fd = open(name, O_RDWR);
if (fd == -1) {
fprintf(stderr, "Couldn't open prefault_debugfs.%s\n",
strerror(errno));
return -1;
}
if (enable)
index = 1;
else
index = 0;
if (write(fd, &buf[index], 1) != 1) {
fprintf(stderr, "write prefault_debugfs error.%s\n",
strerror(errno));
result = -1;
}
close(fd);
return result;
}
static void enable_prefault_at_exit(int sig)
{
igt_enable_prefault();
}
int igt_disable_prefault(void)
{
igt_install_exit_handler(enable_prefault_at_exit);
return igt_prefault_control(false);
}
int igt_enable_prefault(void)
{
return igt_prefault_control(true);
}
void igt_system_suspend_autoresume(void)
{
int ret;
ret = system("rtcwake -s 30 -m mem");
igt_assert(ret == 0);
}