blob: 03da68b6ff69d50762532da21a53d71d069fb2aa [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*/
#include <inttypes.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <err.h>
#include <string.h>
#include "intel_io.h"
#include "intel_chipset.h"
#include "drmtest.h"
static uint32_t display_base;
static uint32_t devid;
static uint32_t read_reg(uint32_t addr)
{
return INREG(display_base + addr);
}
struct gmch_wm {
int wm, wm1, dl, fifo, fbc, burst;
bool dl_prec, valid;
};
enum plane {
PRI_HPLL_SR,
CUR_HPLL_SR,
PRI_SR,
CUR_SR,
PRI_A,
CUR_A,
SPR_A,
SPR_B,
PRI_B,
CUR_B,
SPR_C,
SPR_D,
PRI_C,
CUR_C,
SPR_E,
SPR_F,
MAX_PLANE,
};
#define NAME(x) [x] = #x
static const char * const plane_name[] = {
NAME(PRI_HPLL_SR),
NAME(CUR_HPLL_SR),
NAME(PRI_SR),
NAME(CUR_SR),
NAME(PRI_A),
NAME(CUR_A),
NAME(SPR_A),
NAME(SPR_B),
NAME(PRI_B),
NAME(CUR_B),
NAME(SPR_C),
NAME(SPR_D),
NAME(PRI_C),
NAME(CUR_C),
NAME(SPR_E),
NAME(SPR_F),
};
struct ilk_wm_level {
int primary, sprite, cursor, latency, fbc;
bool enabled, sprite_enabled;
bool primary_trickle_feed_dis, sprite_trickle_feed_dis;
};
struct ilk_wm {
struct ilk_wm_level pipe[3];
struct {
int linetime, ips;
} linetime[3];
struct ilk_wm_level lp[3];
};
#define MASK(size) ((1 << (size)) - 1)
#define REG_DECODE1(x, shift, size) \
(((x) >> (shift)) & MASK(size))
#define REG_DECODE2(lo, shift_lo, size_lo, hi, shift_hi, size_hi) \
((((lo) >> (shift_lo)) & MASK(size_lo)) | \
((((hi) >> (shift_hi)) & MASK(size_hi)) << (size_lo)))
static char pipe_name(int pipe)
{
return 'A' + pipe;
}
static const char *endis(bool enabled)
{
return enabled ? "enabled" : "disabled";
}
static char endis_ast(bool enabled)
{
return enabled ? '*' : ' ';
}
static int is_gen7_plus(uint32_t d)
{
return !(IS_GEN5(d) || IS_GEN6(d));
}
static int is_hsw_plus(uint32_t d)
{
return !(IS_GEN5(d) || IS_GEN6(d) || IS_IVYBRIDGE(d));
}
static int skl_num_planes(uint32_t d, int pipe)
{
if (IS_GEN10(d) || IS_GEMINILAKE(d))
return 5;
else if (IS_BROXTON(d))
return pipe == 2 ? 4 : 5;
else
return 4;
}
static int skl_max_planes(uint32_t d)
{
if (IS_GEN10(d) || IS_GEMINILAKE(d) || IS_BROXTON(d))
return 5;
else
return 4;
}
static const char *skl_plane_name(int pipe, int plane)
{
static char name[32];
if (plane == 0)
snprintf(name, sizeof(name), "CURSOR");
else
snprintf(name, sizeof(name), "PLANE_%1d%c",
plane, pipe_name(pipe));
return name;
}
static const char *skl_wm_linetime_reg_name(int pipe)
{
static char reg_name[32];
snprintf(reg_name, sizeof(reg_name), "WM_LINETIME_%c",
pipe_name(pipe));
return reg_name;
}
static const char *skl_wm_reg_name(int pipe, int plane, int level)
{
static char reg_name[32];
if (plane == 0)
snprintf(reg_name, sizeof(reg_name), "CUR_WM_%c_%1d",
pipe_name(pipe), level);
else
snprintf(reg_name, sizeof(reg_name), "PLANE_WM_%1d_%c_%1d",
plane, pipe_name(pipe), level);
return reg_name;
}
static const char *skl_wm_trans_reg_name(int pipe, int plane)
{
static char reg_name[32];
if (plane == 0)
snprintf(reg_name, sizeof(reg_name), "CUR_WM_TRANS_%c",
pipe_name(pipe));
else
snprintf(reg_name, sizeof(reg_name), "PLANE_WM_TRANS_%1d_%c",
plane, pipe_name(pipe));
return reg_name;
}
static const char *skl_buf_cfg_reg_name(int pipe, int plane)
{
static char reg_name[32];
if (plane == 0)
snprintf(reg_name, sizeof(reg_name), "CUR_BUF_CFG_%c",
pipe_name(pipe));
else
snprintf(reg_name, sizeof(reg_name), "PLANE_BUF_CFG_%1d_%c",
plane, pipe_name(pipe));
return reg_name;
}
static void skl_wm_dump(void)
{
int pipe, plane, level;
int num_pipes = 3;
int max_planes = skl_max_planes(devid);
int num_levels = 8;
uint32_t base_addr = 0x70000, addr, wm_offset;
uint32_t wm[num_levels][num_pipes][max_planes];
uint32_t wm_trans[num_pipes][max_planes];
uint32_t buf_cfg[num_pipes][max_planes];
uint32_t wm_linetime[num_pipes];
intel_register_access_init(intel_get_pci_device(), 0, -1);
for (pipe = 0; pipe < num_pipes; pipe++) {
int num_planes = skl_num_planes(devid, pipe);
wm_linetime[pipe] = read_reg(0x45270 + pipe * 0x4);
for (plane = 0; plane < num_planes; plane++) {
addr = base_addr + pipe * 0x1000 + plane * 0x100;
wm_trans[pipe][plane] = read_reg(addr + 0x00168);
buf_cfg[pipe][plane] = read_reg(addr + 0x0017C);
for (level = 0; level < num_levels; level++) {
wm_offset = addr + 0x00140 + level * 0x4;
wm[level][pipe][plane] = read_reg(wm_offset);
}
}
}
for (pipe = 0; pipe < num_pipes; pipe++) {
printf("%18s 0x%08x\t",
skl_wm_linetime_reg_name(pipe),
wm_linetime[pipe]);
}
printf("\n\n");
for (plane = 0; plane < max_planes; plane++) {
for (level = 0; level < num_levels; level++) {
for (pipe = 0; pipe < num_pipes; pipe++) {
if (plane >= skl_num_planes(devid, pipe))
break;
printf("%18s 0x%08x\t" ,
skl_wm_reg_name(pipe, plane, level),
wm[level][pipe][plane]);
}
printf("\n");
}
printf("\n");
}
for (plane = 0; plane < max_planes; plane++) {
for (pipe = 0; pipe < num_pipes; pipe++) {
if (plane >= skl_num_planes(devid, pipe))
break;
printf("%18s 0x%08x\t",
skl_wm_trans_reg_name(pipe, plane),
wm_trans[pipe][plane]);
}
printf("\n");
}
printf("\n");
for (plane = 0; plane < max_planes; plane++) {
for (pipe = 0; pipe < num_pipes; pipe++) {
if (plane >= skl_num_planes(devid, pipe))
break;
printf("%18s 0x%08x\t",
skl_buf_cfg_reg_name(pipe, plane),
buf_cfg[pipe][plane]);
}
printf("\n");
}
printf("\n");
for (pipe = 0; pipe < num_pipes; pipe++) {
uint32_t start, end, size;
uint32_t lines, blocks, enable;
uint32_t linetime;
int num_planes = skl_num_planes(devid, pipe);
printf("PIPE_%c\n", pipe_name(pipe));
linetime = REG_DECODE1(wm_linetime[pipe], 0, 9);
printf("LINETIME: %d (%.3f usec)\n", linetime, linetime* 0.125f);
printf("LEVEL");
for (plane = 0; plane < num_planes; plane++)
printf("%10s", skl_plane_name(pipe, plane));
printf("\n");
for (level = 0; level < num_levels; level++) {
printf("%5d", level);
for (plane = 0; plane < num_planes; plane++) {
blocks = REG_DECODE1(wm[level][pipe][plane], 0, 9);
lines = REG_DECODE1(wm[level][pipe][plane], 14, 5);
enable = REG_DECODE1(wm[level][pipe][plane], 31, 1);
printf("%5d%c", blocks, endis_ast(enable));
if (!REG_DECODE1(wm[level][pipe][plane], 30, 1))
printf("(%2d)", lines);
else
printf("(--)");
}
printf("\n");
}
printf("TRANS");
for (plane = 0; plane < num_planes; plane++) {
blocks = REG_DECODE1(wm_trans[pipe][plane], 0, 9);
lines = REG_DECODE1(wm_trans[pipe][plane], 14, 5);
enable = REG_DECODE1(wm_trans[pipe][plane], 31, 1);
printf("%5d%c", blocks, endis_ast(enable));
if (!REG_DECODE1(wm_trans[pipe][plane], 30, 1))
printf("(%2d)", lines);
else
printf("(--)");
}
printf("\nDDB allocation:");
printf("\nstart");
for (plane = 0; plane < num_planes; plane++) {
start = REG_DECODE1(buf_cfg[pipe][plane], 0, 10);
printf("%10d", start);
}
printf("\n end");
for (plane = 0; plane < num_planes; plane++) {
end = REG_DECODE1(buf_cfg[pipe][plane], 16, 10);
printf("%10d", end);
}
printf("\n size");
for (plane = 0; plane < num_planes; plane++) {
start = REG_DECODE1(buf_cfg[pipe][plane], 0, 10);
end = REG_DECODE1(buf_cfg[pipe][plane], 16, 10);
size = end - start + 1;
printf("%10d", (end == 0 && size == 1) ? 0 : size);
}
printf("\n\n\n");
}
printf("* plane watermark enabled\n");
printf("(x) line watermark if enabled\n");
}
static void ilk_wm_dump(void)
{
int i;
uint32_t dspcntr[3];
uint32_t spcntr[3];
uint32_t wm_pipe[3];
uint32_t wm_linetime[3];
uint32_t wm_lp[3];
uint32_t wm_lp_spr[3];
uint32_t arb_ctl, arb_ctl2, wm_misc = 0;
int num_pipes = is_gen7_plus(devid) ? 3 : 2;
struct ilk_wm wm = {};
intel_register_access_init(intel_get_pci_device(), 0, -1);
for (i = 0; i < num_pipes; i++) {
dspcntr[i] = read_reg(0x70180 + i * 0x1000);
if (is_gen7_plus(devid))
spcntr[i] = read_reg(0x70280 + i * 0x1000);
else
spcntr[i] = read_reg(0x72180 + i * 0x1000);
}
wm_pipe[0] = read_reg(0x45100);
wm_pipe[1] = read_reg(0x45104);
if (num_pipes == 3)
wm_pipe[2] = read_reg(0x45200);
if (is_hsw_plus(devid)) {
wm_linetime[0] = read_reg(0x45270);
wm_linetime[1] = read_reg(0x45274);
wm_linetime[2] = read_reg(0x45278);
}
wm_lp[0] = read_reg(0x45108);
wm_lp[1] = read_reg(0x4510c);
wm_lp[2] = read_reg(0x45110);
wm_lp_spr[0] = read_reg(0x45120);
if (is_gen7_plus(devid)) {
wm_lp_spr[1] = read_reg(0x45124);
wm_lp_spr[2] = read_reg(0x45128);
}
arb_ctl = read_reg(0x45000);
arb_ctl2 = read_reg(0x45004);
if (is_hsw_plus(devid))
wm_misc = read_reg(0x45260);
intel_register_access_fini();
for (i = 0; i < num_pipes; i++)
printf(" WM_PIPE_%c = 0x%08x\n", pipe_name(i), wm_pipe[i]);
if (is_hsw_plus(devid)) {
for (i = 0; i < num_pipes; i++)
printf("WM_LINETIME_%c = 0x%08x\n", pipe_name(i), wm_linetime[i]);
}
printf(" WM_LP1 = 0x%08x\n", wm_lp[0]);
printf(" WM_LP2 = 0x%08x\n", wm_lp[1]);
printf(" WM_LP3 = 0x%08x\n", wm_lp[2]);
printf(" WM_LP1_SPR = 0x%08x\n", wm_lp_spr[0]);
if (is_gen7_plus(devid)) {
printf(" WM_LP2_SPR = 0x%08x\n", wm_lp_spr[1]);
printf(" WM_LP3_SPR = 0x%08x\n", wm_lp_spr[2]);
}
printf(" ARB_CTL = 0x%08x\n", arb_ctl);
printf(" ARB_CTL2 = 0x%08x\n", arb_ctl2);
if (is_hsw_plus(devid))
printf(" WM_MISC = 0x%08x\n", wm_misc);
for (i = 0 ; i < num_pipes; i++) {
wm.pipe[i].primary = REG_DECODE1(wm_pipe[i], 16, 8);
wm.pipe[i].sprite = REG_DECODE1(wm_pipe[i], 8, 8);
wm.pipe[i].cursor = REG_DECODE1(wm_pipe[i], 0, 6);
if (is_hsw_plus(devid)) {
wm.linetime[i].linetime = REG_DECODE1(wm_linetime[i], 0, 9);
wm.linetime[i].ips = REG_DECODE1(wm_linetime[i], 16, 9);
}
wm.pipe[i].primary_trickle_feed_dis =
REG_DECODE1(dspcntr[i], 14, 1);
if (!IS_GEN5(devid))
wm.pipe[i].sprite_trickle_feed_dis =
REG_DECODE1(spcntr[i], 14, 1);
}
for (i = 0; i < 3; i++) {
wm.lp[i].enabled = REG_DECODE1(wm_lp[i], 31, 1);
wm.lp[i].latency = REG_DECODE1(wm_lp[i], 24, 7);
if (IS_GEN8(devid))
wm.lp[i].fbc = REG_DECODE1(wm_lp[i], 19, 5);
else
wm.lp[i].fbc = REG_DECODE1(wm_lp[i], 20, 4);
wm.lp[i].primary = REG_DECODE1(wm_lp[i], 8, 11);
wm.lp[i].cursor = REG_DECODE1(wm_lp[i], 0, 8);
if (i == 0 || is_gen7_plus(devid)) {
if (!is_gen7_plus(devid))
wm.lp[i].sprite_enabled = REG_DECODE1(wm_lp_spr[i], 31, 1);
wm.lp[i].sprite = REG_DECODE1(wm_lp_spr[i], 0, 11);
}
}
for (i = 0; i < num_pipes; i++) {
printf("WM_PIPE_%c: primary=%d, cursor=%d, sprite=%d\n",
pipe_name(i), wm.pipe[i].primary, wm.pipe[i].cursor, wm.pipe[i].sprite);
}
if (is_hsw_plus(devid)) {
for (i = 0; i < num_pipes; i++) {
printf("WM_LINETIME_%c: line time=%d (%.3f usec), ips line time=%d (%.3f usec)\n",
pipe_name(i),
wm.linetime[i].linetime, wm.linetime[i].linetime * 0.125f,
wm.linetime[i].ips, wm.linetime[i].ips * 0.125f);
}
}
if (is_gen7_plus(devid)) {
for (i = 0; i < 3; i++) {
printf("WM_LP%d: %s, latency=%d, fbc=%d, primary=%d, cursor=%d, sprite=%d\n",
i + 1, endis(wm.lp[i].enabled), wm.lp[i].latency, wm.lp[i].fbc,
wm.lp[i].primary, wm.lp[i].cursor, wm.lp[i].sprite);
}
} else {
i = 0;
printf("WM_LP%d: %s, latency=%d, fbc=%d, primary=%d, cursor=%d, sprite=%d (%s)\n",
i + 1, endis(wm.lp[i].enabled), wm.lp[i].latency, wm.lp[i].fbc,
wm.lp[i].primary, wm.lp[i].cursor, wm.lp[i].sprite,
endis(wm.lp[i].sprite_enabled));
for (i = 1; i < 3; i++) {
printf("WM_LP%d: %s, latency=%d, fbc=%d, primary=%d, cursor=%d\n",
i + 1, endis(wm.lp[i].enabled), wm.lp[i].latency, wm.lp[i].fbc,
wm.lp[i].primary, wm.lp[i].cursor);
}
}
for (i = 0; i < num_pipes; i++) {
printf("Primary %c trickle feed = %s\n",
pipe_name(i), endis(!wm.pipe[i].primary_trickle_feed_dis));
if (!IS_GEN5(devid))
printf("Sprite %c trickle feed = %s\n",
pipe_name(i), endis(!wm.pipe[i].sprite_trickle_feed_dis));
}
if (is_hsw_plus(devid)) {
printf("DDB partitioning = %s\n",
REG_DECODE1(wm_misc, 0, 1) ? "5/6" : "1/2");
} else if (is_gen7_plus(devid)) {
printf("DDB partitioning = %s\n",
REG_DECODE1(arb_ctl2, 6, 1) ? "5/6" : "1/2");
}
printf("FBC watermark = %s\n",
endis(!REG_DECODE1(arb_ctl, 15, 1)));
}
static void vlv_wm_dump(void)
{
int i;
unsigned int num_pipes = IS_CHERRYVIEW(devid) ? 3 : 2;
uint32_t dsparb, dsparb2, dsparb3;
uint32_t fw1, fw2, fw3, fw4, fw5, fw6, fw7, fw8, fw9, howm, howm1;
uint32_t ddl1, ddl2, ddl3;
uint32_t fw_blc_self, mi_arb,cbr1;
uint32_t dsp_ss_pm, ddr_setup2;
struct gmch_wm wms[MAX_PLANE] = {};
intel_register_access_init(intel_get_pci_device(), 0, -1);
dsparb = read_reg(0x70030);
dsparb2 = read_reg(0x70060);
fw1 = read_reg(0x70034);
fw2 = read_reg(0x70038);
fw3 = read_reg(0x7003c);
fw4 = read_reg(0x70070);
fw5 = read_reg(0x70074);
fw6 = read_reg(0x70078);
howm = read_reg(0x70064);
howm1 = read_reg(0x70068);
ddl1 = read_reg(0x70050);
ddl2 = read_reg(0x70054);
fw_blc_self = read_reg(0x6500);
mi_arb = read_reg(0x6504);
cbr1 = read_reg(0x70400);
if (IS_CHERRYVIEW(devid)) {
dsparb3 = read_reg(0x7006c);
fw7 = read_reg(0x700b4);
fw8 = read_reg(0x700b8);
fw9 = read_reg(0x7007c);
ddl3 = read_reg(0x70058);
intel_punit_read(0x36, &dsp_ss_pm);
intel_punit_read(0x139, &ddr_setup2);
} else {
fw7 = read_reg(0x7007c);
}
intel_register_access_fini();
printf(" FW1 = 0x%08x\n", fw1);
printf(" FW2 = 0x%08x\n", fw2);
printf(" FW3 = 0x%08x\n", fw3);
printf(" FW4 = 0x%08x\n", fw4);
printf(" FW5 = 0x%08x\n", fw5);
printf(" FW6 = 0x%08x\n", fw6);
printf(" FW7 = 0x%08x\n", fw7);
if (IS_CHERRYVIEW(devid)) {
printf(" FW8 = 0x%08x\n", fw8);
printf(" FW9 = 0x%08x\n", fw9);
}
printf(" HOWM = 0x%08x\n", howm);
printf(" HOWM1 = 0x%08x\n", howm1);
printf(" DDL1 = 0x%08x\n", ddl1);
printf(" DDL2 = 0x%08x\n", ddl2);
if (IS_CHERRYVIEW(devid))
printf(" DDL3 = 0x%08x\n", ddl3);
printf(" DSPARB = 0x%08x\n", dsparb);
printf(" DSPARB2 = 0x%08x\n", dsparb2);
if (IS_CHERRYVIEW(devid))
printf(" DSPARB3 = 0x%08x\n", dsparb3);
printf("FW_BLC_SELF = 0x%08x\n", fw_blc_self);
printf(" MI_ARB = 0x%08x\n", mi_arb);
printf(" CBR1 = 0x%08x\n", cbr1);
if (IS_CHERRYVIEW(devid)) {
printf(" DSP_SS_PM = 0x%08x\n", dsp_ss_pm);
printf(" DDR_SETUP2 = 0x%08x\n", ddr_setup2);
}
wms[PRI_A].valid = true;
wms[PRI_B].valid = true;
wms[CUR_A].valid = true;
wms[CUR_B].valid = true;
wms[SPR_A].valid = true;
wms[SPR_B].valid = true;
wms[SPR_C].valid = true;
wms[SPR_D].valid = true;
wms[PRI_SR].valid = true;
wms[CUR_SR].valid = true;
if (IS_CHERRYVIEW(devid)) {
wms[PRI_C].valid = true;
wms[CUR_C].valid = true;
wms[SPR_E].valid = true;
wms[SPR_F].valid = true;
}
wms[PRI_A].fifo = REG_DECODE2(dsparb, 0, 8, dsparb2, 0, 1) - 0;
wms[SPR_A].fifo = REG_DECODE2(dsparb, 8, 8, dsparb2, 4, 1) - wms[PRI_A].fifo;
wms[SPR_B].fifo = 512 - 1 - wms[SPR_A].fifo - wms[PRI_A].fifo;
wms[CUR_A].fifo = 0x3f;
wms[PRI_B].fifo = REG_DECODE2(dsparb, 16, 8, dsparb2, 8, 1) - 0;
wms[SPR_C].fifo = REG_DECODE2(dsparb, 24, 8, dsparb2, 12, 1) - wms[PRI_B].fifo;
wms[SPR_D].fifo = 512 - 1 - wms[SPR_C].fifo - wms[PRI_B].fifo;
wms[CUR_B].fifo = 0x3f;
if (IS_CHERRYVIEW(devid)) {
wms[PRI_C].fifo = REG_DECODE2(dsparb3, 0, 8, dsparb2, 16, 1) - 0;
wms[SPR_E].fifo = REG_DECODE2(dsparb3, 8, 8, dsparb2, 20, 1) - wms[PRI_C].fifo;
wms[SPR_F].fifo = 512 - 1 - wms[SPR_E].fifo - wms[PRI_C].fifo;
wms[CUR_C].fifo = 0x3f;
}
wms[PRI_SR].fifo = 512 * num_pipes - 1;
wms[CUR_SR].fifo = 0x3f;
wms[PRI_HPLL_SR].fifo = 512 * num_pipes - 1;
wms[CUR_HPLL_SR].fifo = 0x3f;
wms[PRI_A].wm = REG_DECODE2(fw1, 0, 8, howm, 0, 1);
wms[PRI_B].wm = REG_DECODE2(fw1, 8, 8, howm, 12, 1);
wms[CUR_B].wm = REG_DECODE1(fw1, 16, 6);
wms[PRI_SR].wm = REG_DECODE2(fw1, 23, 9, howm, 24, 2);
wms[SPR_A].wm = REG_DECODE2(fw2, 0, 8, howm, 4, 1);
wms[CUR_A].wm = REG_DECODE1(fw2, 8, 6);
wms[SPR_B].wm = REG_DECODE2(fw2, 16, 8, howm, 8, 1);
wms[CUR_SR].wm = REG_DECODE1(fw3, 24, 6);
wms[SPR_A].wm1 = REG_DECODE2(fw4, 0, 8, howm1, 4, 1);
wms[CUR_A].wm1 = REG_DECODE1(fw4, 8, 6);
wms[SPR_B].wm1 = REG_DECODE2(fw4, 16, 8, howm1, 8, 1);
wms[CUR_SR].wm1 = REG_DECODE1(fw5, 0, 6);
wms[CUR_B].wm1 = REG_DECODE1(fw5, 8, 6);
wms[PRI_A].wm1 = REG_DECODE2(fw5, 16, 8, howm1, 0, 1);
wms[PRI_B].wm1 = REG_DECODE2(fw5, 24, 8, howm1, 12, 1);
wms[PRI_SR].wm1 = REG_DECODE2(fw6, 0, 9, howm1, 24, 2);
wms[SPR_C].wm = REG_DECODE2(fw7, 0, 8, howm, 16, 1);
wms[SPR_C].wm1 = REG_DECODE2(fw7, 8, 8, howm1, 16, 1);
wms[SPR_D].wm = REG_DECODE2(fw7, 16, 8, howm, 20, 1);
wms[SPR_D].wm1 = REG_DECODE2(fw7, 24, 8, howm1, 20, 1);
if (IS_CHERRYVIEW(devid)) {
wms[SPR_E].wm = REG_DECODE2(fw8, 0, 8, howm, 22, 1);
wms[SPR_E].wm1 = REG_DECODE2(fw8, 8, 8, howm1, 22, 1);
wms[SPR_F].wm = REG_DECODE2(fw8, 16, 8, howm, 23, 1);
wms[SPR_F].wm1 = REG_DECODE2(fw8, 24, 8, howm1, 23, 1);
wms[CUR_C].wm = REG_DECODE1(fw9, 0, 6);
wms[CUR_C].wm1 = REG_DECODE1(fw9, 8, 6);
wms[PRI_C].wm = REG_DECODE2(fw9, 16, 8, howm, 21, 1);
wms[PRI_C].wm1 = REG_DECODE2(fw9, 24, 8, howm1, 21, 1);
}
wms[PRI_A].dl = REG_DECODE1(ddl1, 0, 7);
wms[SPR_A].dl = REG_DECODE1(ddl1, 8, 7);
wms[SPR_B].dl = REG_DECODE1(ddl1, 16, 7);
wms[CUR_A].dl = REG_DECODE1(ddl1, 24, 7);
wms[PRI_A].dl_prec = REG_DECODE1(ddl1, 7, 1);
wms[SPR_A].dl_prec = REG_DECODE1(ddl1, 15, 1);
wms[SPR_B].dl_prec = REG_DECODE1(ddl1, 23, 1);
wms[CUR_A].dl_prec = REG_DECODE1(ddl1, 31, 1);
wms[PRI_B].dl = REG_DECODE1(ddl2, 0, 7);
wms[SPR_C].dl = REG_DECODE1(ddl2, 8, 7);
wms[SPR_D].dl = REG_DECODE1(ddl2, 16, 7);
wms[CUR_B].dl = REG_DECODE1(ddl2, 24, 7);
wms[PRI_B].dl_prec = REG_DECODE1(ddl2, 7, 1);
wms[SPR_C].dl_prec = REG_DECODE1(ddl2, 15, 1);
wms[SPR_D].dl_prec = REG_DECODE1(ddl2, 23, 1);
wms[CUR_B].dl_prec = REG_DECODE1(ddl2, 31, 1);
if (IS_CHERRYVIEW(devid)) {
wms[PRI_C].dl = REG_DECODE1(ddl3, 0, 7);
wms[SPR_E].dl = REG_DECODE1(ddl3, 8, 7);
wms[SPR_F].dl = REG_DECODE1(ddl3, 16, 7);
wms[CUR_C].dl = REG_DECODE1(ddl3, 24, 7);
wms[PRI_C].dl_prec = REG_DECODE1(ddl3, 7, 1);
wms[SPR_E].dl_prec = REG_DECODE1(ddl3, 15, 1);
wms[SPR_F].dl_prec = REG_DECODE1(ddl3, 23, 1);
wms[CUR_C].dl_prec = REG_DECODE1(ddl3, 31, 1);
}
for (i = 0; i < ARRAY_SIZE(wms); i++) {
if (!wms[i].valid)
continue;
printf("%s: WM = %d, WM1 = %d, DDL = %d (prec=%d), FIFO = %d\n",
plane_name[i], wms[i].wm, wms[i].wm1, wms[i].dl, wms[i].dl_prec, wms[i].fifo);
}
printf("CxSR = %s\n",
endis(REG_DECODE1(fw_blc_self, 15, 1)));
printf("Trickle feed = %s\n",
endis(!REG_DECODE1(mi_arb, 2, 1)));
printf("PND deadline = %s\n",
endis(!REG_DECODE1(cbr1, 31, 1)));
if (IS_CHERRYVIEW(devid)) {
printf("PM5 = %s\n",
endis(REG_DECODE1(dsp_ss_pm, 6, 1)));
printf("PM5 state = %s\n",
endis(REG_DECODE1(dsp_ss_pm, 22, 1)));
printf("DDR force high frequency = %s\n",
endis(REG_DECODE1(ddr_setup2, 0, 1)));
printf("DDR force low frequency = %s\n",
endis(REG_DECODE1(ddr_setup2, 1, 1)));
}
}
static void g4x_wm_dump(void)
{
int i;
uint32_t dspacntr, dspbcntr;
uint32_t dsparb;
uint32_t fw1, fw2, fw3;
uint32_t mi_display_power_down;
uint32_t mi_arb_state;
struct gmch_wm wms[MAX_PLANE] = {};
intel_register_access_init(intel_get_pci_device(), 0, -1);
dspacntr = read_reg(0x70180);
dspbcntr = read_reg(0x71180);
dsparb = read_reg(0x70030);
fw1 = read_reg(0x70034);
fw2 = read_reg(0x70038);
fw3 = read_reg(0x7003c);
mi_display_power_down = read_reg(0x20e0);
mi_arb_state = read_reg(0x20e4);
intel_register_access_fini();
printf(" DSPACNTR = 0x%08x\n", dspacntr);
printf(" DSPBCNTR = 0x%08x\n", dspbcntr);
printf(" FW1 = 0x%08x\n", fw1);
printf(" FW2 = 0x%08x\n", fw2);
printf(" FW3 = 0x%08x\n", fw3);
printf(" DSPARB = 0x%08x\n", dsparb);
printf("MI_DISPLAY_POWER_DOWN = 0x%08x\n", mi_display_power_down);
printf(" MI_ARB_STATE = 0x%08x\n", mi_arb_state);
wms[PRI_A].valid = true;
wms[PRI_B].valid = true;
wms[CUR_A].valid = true;
wms[CUR_B].valid = true;
wms[SPR_A].valid = true;
wms[SPR_B].valid = true;
wms[PRI_SR].valid = true;
wms[CUR_SR].valid = true;
wms[PRI_HPLL_SR].valid = true;
wms[CUR_HPLL_SR].valid = true;
wms[PRI_A].fifo = REG_DECODE1(dsparb, 0, 7) - 0;
wms[PRI_B].fifo = REG_DECODE1(dsparb, 7, 7) - wms[PRI_A].fifo;
wms[PRI_A].wm = REG_DECODE1(fw1, 0, 7);
wms[PRI_B].wm = REG_DECODE1(fw1, 8, 7);
wms[CUR_B].wm = REG_DECODE1(fw1, 16, 6);
wms[PRI_SR].wm = REG_DECODE1(fw1, 23, 9);
wms[PRI_SR].fbc = REG_DECODE1(fw2, 0, 8);
wms[PRI_HPLL_SR].fbc = REG_DECODE1(fw2, 8, 6);
wms[SPR_B].wm = REG_DECODE1(fw2, 16, 7);
wms[CUR_A].wm = REG_DECODE1(fw2, 8, 6);
wms[SPR_A].wm = REG_DECODE1(fw2, 0, 7);
wms[CUR_SR].wm = REG_DECODE1(fw3, 24, 6);
wms[CUR_HPLL_SR].wm = REG_DECODE1(fw3, 16, 6);
wms[PRI_HPLL_SR].wm = REG_DECODE1(fw3, 0, 9);
for (i = 0; i < ARRAY_SIZE(wms); i++) {
if (!wms[i].valid)
continue;
printf("%s: WM = %d, FBC = %d, FIFO = %d\n",
plane_name[i], wms[i].wm, wms[i].fbc, wms[i].fifo);
}
printf("CxSR = %s\n",
endis(REG_DECODE1(mi_display_power_down, 15, 1)));
printf("HPLL SR = %s\n",
endis(REG_DECODE1(fw3, 31, 1)));
printf("FBC SR = %s\n",
endis(REG_DECODE1(fw2, 31, 1)));
printf("Display A trickle feed = %s\n",
endis(!REG_DECODE1(dspacntr, 14, 1)));
printf("Display B trickle feed = %s\n",
endis(!REG_DECODE1(dspbcntr, 14, 1)));
printf("Display A uses sprite data buffer = %s\n",
endis(!REG_DECODE1(dspacntr, 13, 1)));
printf("Display B uses sprite data buffer = %s\n",
endis(!REG_DECODE1(dspbcntr, 13, 1)));
printf("Primary display = %c\n",
REG_DECODE1(mi_arb_state, 0, 1) ? 'B' : 'A');
}
static void gen4_wm_dump(void)
{
int i;
int totalsize = IS_CRESTLINE(devid) ? 128 : 96;
uint32_t dsparb;
uint32_t fw1, fw2, fw3;
uint32_t mi_display_power_down;
uint32_t mi_arb_state;
struct gmch_wm wms[MAX_PLANE] = {};
intel_register_access_init(intel_get_pci_device(), 0, -1);
dsparb = read_reg(0x70030);
fw1 = read_reg(0x70034);
fw2 = read_reg(0x70038);
fw3 = read_reg(0x7003c);
mi_display_power_down = read_reg(0x20e0);
mi_arb_state = read_reg(0x20e4);
intel_register_access_fini();
printf(" FW1 = 0x%08x\n", fw1);
printf(" FW2 = 0x%08x\n", fw2);
printf(" FW3 = 0x%08x\n", fw3);
printf(" DSPARB = 0x%08x\n", dsparb);
printf("MI_DISPLAY_POWER_DOWN = 0x%08x\n", mi_display_power_down);
printf(" MI_ARB_STATE = 0x%08x\n", mi_arb_state);
wms[PRI_A].valid = true;
wms[PRI_B].valid = true;
wms[PRI_C].valid = true;
wms[CUR_A].valid = true;
wms[CUR_B].valid = true;
wms[PRI_SR].valid = true;
wms[CUR_SR].valid = true;
wms[PRI_HPLL_SR].valid = true;
wms[CUR_HPLL_SR].valid = true;
wms[PRI_A].fifo = REG_DECODE1(dsparb, 0, 7) - 0;
wms[PRI_B].fifo = REG_DECODE1(dsparb, 7, 7) - wms[PRI_A].fifo;
wms[PRI_C].fifo = totalsize - wms[PRI_B].fifo - wms[PRI_A].fifo - 1;
wms[PRI_A].wm = REG_DECODE1(fw1, 0, 7);
wms[PRI_B].wm = REG_DECODE1(fw1, 8, 7);
wms[CUR_B].wm = REG_DECODE1(fw1, 16, 6);
wms[PRI_SR].wm = REG_DECODE1(fw1, 23, 9);
wms[CUR_A].wm = REG_DECODE1(fw2, 8, 6);
wms[PRI_C].wm = REG_DECODE1(fw2, 0, 7);
wms[CUR_SR].wm = REG_DECODE1(fw3, 24, 6);
wms[CUR_HPLL_SR].wm = REG_DECODE1(fw3, 16, 6);
wms[PRI_HPLL_SR].wm = REG_DECODE1(fw3, 0, 9);
for (i = 0; i < ARRAY_SIZE(wms); i++) {
if (!wms[i].valid)
continue;
printf("%s: WM = %d, FIFO = %d\n",
plane_name[i], wms[i].wm, wms[i].fifo);
}
printf("CxSR = %s\n",
endis(REG_DECODE1(mi_display_power_down, 15, 1)));
printf("HPLL SR enable = %s\n",
endis(REG_DECODE1(fw3, 31, 1)));
printf("Trickle feed = %s\n",
endis(!REG_DECODE1(mi_arb_state, 2, 1)));
printf("Primary display = %c\n",
REG_DECODE1(mi_arb_state, 0, 1) + 'A');
}
static void pnv_wm_dump(void)
{
int i;
int totalsize = 96; /* FIXME? */
uint32_t dsparb;
uint32_t fw1, fw2, fw3;
uint32_t mi_display_power_down;
uint32_t mi_arb_state;
uint32_t cbr;
struct gmch_wm wms[MAX_PLANE] = {};
intel_register_access_init(intel_get_pci_device(), 0, -1);
dsparb = read_reg(0x70030);
fw1 = read_reg(0x70034);
fw2 = read_reg(0x70038);
fw3 = read_reg(0x7003c);
cbr = read_reg(0x70400);
mi_display_power_down = read_reg(0x20e0);
mi_arb_state = read_reg(0x20e4);
intel_register_access_fini();
printf(" DSPARB = 0x%08x\n", dsparb);
printf(" FW1 = 0x%08x\n", fw1);
printf(" FW2 = 0x%08x\n", fw2);
printf(" FW3 = 0x%08x\n", fw3);
printf(" CBR = 0x%08x\n", cbr);
printf("MI_DISPLAY_POWER_DOWN = 0x%08x\n", mi_display_power_down);
printf(" MI_ARB_STATE = 0x%08x\n", mi_arb_state);
wms[PRI_A].valid = true;
wms[PRI_B].valid = true;
wms[PRI_C].valid = true;
wms[CUR_A].valid = true;
wms[CUR_B].valid = true;
wms[PRI_SR].valid = true;
wms[CUR_SR].valid = true;
wms[PRI_HPLL_SR].valid = true;
wms[CUR_HPLL_SR].valid = true;
wms[PRI_A].fifo = REG_DECODE1(dsparb, 0, 7) - 0;
wms[PRI_B].fifo = REG_DECODE1(dsparb, 7, 7) - wms[PRI_A].fifo;
wms[PRI_C].fifo = totalsize - wms[PRI_B].fifo - wms[PRI_A].fifo - 1;
wms[PRI_A].wm = REG_DECODE1(fw1, 0, 7);
wms[PRI_B].wm = REG_DECODE1(fw1, 8, 7);
wms[CUR_B].wm = REG_DECODE1(fw1, 16, 6);
wms[PRI_SR].wm = REG_DECODE1(fw1, 23, 9);
wms[CUR_A].wm = REG_DECODE1(fw2, 8, 6);
wms[PRI_C].wm = REG_DECODE1(fw2, 0, 7);
switch ((REG_DECODE1(cbr, 30, 1) << 1) | REG_DECODE1(cbr, 25, 1)) {
case 3:
case 2:
wms[PRI_SR].fifo = 8 * 1024 / 64;
break;
case 1:
wms[PRI_SR].fifo = 16 * 1024 / 64;
break;
case 0:
wms[PRI_SR].fifo = 32 * 1024 / 64;
break;
}
wms[CUR_SR].wm = REG_DECODE1(fw3, 24, 6);
wms[CUR_HPLL_SR].wm = REG_DECODE1(fw3, 16, 6);
wms[PRI_HPLL_SR].wm = REG_DECODE1(fw3, 0, 9);
for (i = 0; i < ARRAY_SIZE(wms); i++) {
if (!wms[i].valid)
continue;
printf("%s: WM = %d, FIFO = %d\n",
plane_name[i], wms[i].wm, wms[i].fifo);
}
printf("CxSR enable = %s\n",
endis(REG_DECODE1(fw3, 30, 1)));
printf("HPLL SR enable = %s\n",
endis(REG_DECODE1(fw3, 31, 1)));
printf("Trickle feed = %s\n",
endis(!REG_DECODE1(mi_arb_state, 2, 1)));
printf("Primary display = %c\n",
REG_DECODE1(mi_arb_state, 0, 1) + 'A');
printf("Display plane A throttling = %s\n",
endis(!REG_DECODE1(cbr, 0, 1)));
printf("Display plane B throttling = %s\n",
endis(!REG_DECODE1(cbr, 1, 1)));
}
static void gen3_wm_dump(void)
{
int i;
int totalsize = IS_945GM(devid) ? 128 : 96; /* FIXME? */
uint32_t dsparb;
uint32_t instpm;
uint64_t fw_blc;
uint32_t fw_blc_self;
uint32_t mi_arb_state;
struct gmch_wm wms[MAX_PLANE] = {};
intel_register_access_init(intel_get_pci_device(), 0, -1);
dsparb = read_reg(0x70030);
instpm = read_reg(0x20c0);
fw_blc = read_reg(0x20d8) | ((uint64_t)read_reg(0x20dc) << 32);
fw_blc_self = read_reg(0x20e0);
mi_arb_state = read_reg(0x20e4);
intel_register_access_fini();
printf(" DSPARB = 0x%08x\n", dsparb);
printf(" FW_BLC = 0x%016" PRIx64 "\n", fw_blc);
printf(" FW_BLC_SELF = 0x%08x\n", fw_blc_self);
printf("MI_ARB_STATE = 0x%08x\n", mi_arb_state);
wms[PRI_A].valid = true;
wms[PRI_B].valid = true;
wms[PRI_C].valid = true;
wms[PRI_SR].valid = true;
wms[PRI_SR].wm = REG_DECODE1(fw_blc_self, 0, 8);
wms[PRI_C].burst = (REG_DECODE1(fw_blc, 40, 2) + 1) * 4;
wms[PRI_C].wm = REG_DECODE1(fw_blc, 32, 8);
wms[PRI_B].burst = (REG_DECODE1(fw_blc, 24, 2) + 1) * 4;
wms[PRI_B].wm = REG_DECODE1(fw_blc, 16, 8);
wms[PRI_A].burst = (REG_DECODE1(fw_blc, 8, 2) + 1) * 4;
wms[PRI_A].wm = REG_DECODE1(fw_blc, 0, 8);
wms[PRI_A].fifo = REG_DECODE1(dsparb, 0, 7) - 0;
wms[PRI_B].fifo = REG_DECODE1(dsparb, 7, 7) - wms[PRI_A].fifo;
wms[PRI_C].fifo = totalsize - wms[PRI_B].fifo - wms[PRI_A].fifo - 1;
for (i = 0; i < ARRAY_SIZE(wms); i++) {
if (!wms[i].valid)
continue;
printf("%s: WM = %d, FIFO = %d, burst = %d\n",
plane_name[i], wms[i].wm, wms[i].fifo, wms[i].burst);
}
/* FIXME G33 too perhaps? */
if (devid == PCI_CHIP_I945_G || devid == PCI_CHIP_I945_GM ||
devid == PCI_CHIP_I945_GME) {
printf("CxSR = %s\n",
endis(REG_DECODE1(fw_blc_self, 15, 1)));
} else if (devid == PCI_CHIP_I915_GM) {
printf("CxSR = %s\n",
endis(REG_DECODE1(instpm, 12, 1)));
}
printf("Trickle feed = %s\n",
endis(!REG_DECODE1(mi_arb_state, 2, 1)));
printf("Primary display = %c\n",
REG_DECODE1(mi_arb_state, 0, 1) + 'A');
printf("Display plane capability = %d planes\n",
3 - REG_DECODE1(mi_arb_state, 12, 2));
}
static void gen2_wm_dump(void)
{
int i;
int totalsize;
uint32_t dsparb;
uint32_t mem_mode;
uint64_t fw_blc;
uint32_t fw_blc_self;
uint32_t mi_state;
struct gmch_wm wms[MAX_PLANE] = {};
intel_register_access_init(intel_get_pci_device(), 0, -1);
dsparb = read_reg(0x70030);
mem_mode = read_reg(0x20cc);
fw_blc = read_reg(0x20d8) | ((uint64_t)read_reg(0x20dc) << 32);
fw_blc_self = read_reg(0x20e0);
mi_state = read_reg(0x20e4);
intel_register_access_fini();
printf(" DSPARB = 0x%08x\n", dsparb);
printf(" MEM_MODE = 0x%08x\n", mem_mode);
printf(" FW_BLC = 0x%016" PRIx64 "\n", fw_blc);
printf("FW_BLC_SELF = 0x%08x\n", fw_blc_self);
printf(" MI_STATE = 0x%08x\n", mi_state);
wms[PRI_C].burst = (REG_DECODE1(fw_blc, 40, 2) + 1) * 4;
wms[PRI_C].wm = REG_DECODE1(fw_blc, 32, 8);
wms[PRI_B].burst = (REG_DECODE1(fw_blc, 24, 2) + 1) * 4;
wms[PRI_B].wm = REG_DECODE1(fw_blc, 16, 8);
wms[PRI_A].burst = (REG_DECODE1(fw_blc, 8, 2) + 1) * 4;
wms[PRI_A].wm = REG_DECODE1(fw_blc, 0, 8);
if (devid == PCI_CHIP_845_G || devid == PCI_CHIP_I865_G) {
wms[PRI_A].valid = true;
wms[PRI_C].valid = true;
totalsize = 96; /* FIXME? */
wms[PRI_A].fifo = REG_DECODE1(dsparb, 0, 7) - 0;
wms[PRI_C].fifo = totalsize - wms[PRI_A].fifo - 1;
} else {
wms[PRI_A].valid = true;
wms[PRI_B].valid = true;
wms[PRI_C].valid = true;
if (devid == PCI_CHIP_I830_M)
totalsize = 288;
else
totalsize = 256;
totalsize = (devid == PCI_CHIP_I855_GM) ? 256 : 288;
wms[PRI_A].fifo = REG_DECODE1(dsparb, 0, 9) - 0;
wms[PRI_B].fifo = REG_DECODE1(dsparb, 9, 9) - wms[PRI_A].fifo;
wms[PRI_C].fifo = totalsize - wms[PRI_B].fifo - wms[PRI_A].fifo - 1;
}
for (i = 0; i < ARRAY_SIZE(wms); i++) {
if (!wms[i].valid)
continue;
printf("%s: WM = %d, FIFO = %d, burst = %d\n",
plane_name[i], wms[i].wm, wms[i].fifo, wms[i].burst);
}
if (devid == PCI_CHIP_I855_GM || devid == PCI_CHIP_I854_G) {
printf("CxSR = %s (%d)\n",
endis(REG_DECODE1(mi_state, 3, 2)),
REG_DECODE1(mi_state, 3, 2));
printf("Trickle feed = %s\n",
endis(!REG_DECODE1(mem_mode, 2, 1)));
printf("Display round robin = %s\n",
endis(REG_DECODE1(mem_mode, 14, 1)));
printf("Primary display = %c\n",
REG_DECODE1(mem_mode, 15, 1) + 'A');
} else {
printf("Display A trickle feed = %s\n",
endis(!REG_DECODE1(mem_mode, 2, 1)));
printf("Display B trickle feed = %s\n",
endis(!REG_DECODE1(mem_mode, 3, 1)));
printf("Water mark fix = %s\n",
endis(!REG_DECODE1(mem_mode, 14, 1)));
}
}
int main(int argc, char *argv[])
{
devid = intel_get_pci_device()->device_id;
if (IS_GEN9(devid)) {
skl_wm_dump();
} else if (IS_VALLEYVIEW(devid) || IS_CHERRYVIEW(devid)) {
display_base = 0x180000;
vlv_wm_dump();
} else if (HAS_PCH_SPLIT(devid)) {
ilk_wm_dump();
} else if (IS_G4X(devid)) {
g4x_wm_dump();
} else if (IS_GEN4(devid)) {
gen4_wm_dump();
} else if (IS_PINEVIEW(devid)) {
pnv_wm_dump();
} else if (IS_GEN3(devid)) {
gen3_wm_dump();
} else if (IS_GEN2(devid)) {
gen2_wm_dump();
} else {
printf("unknown chip 0x%x\n", devid);
return 1;
}
return 0;
}