blob: 909dd19df7a787d70e7939b73ed42f366da577bb [file] [log] [blame]
/*
* Copyright © 2009-2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris@chris-wilson.co.uk>
* Tvrtko Ursulin <tvrtko.ursulin@intel.com>
*
*/
/** @file gem_userptr_blits.c
*
* This is a test of doing many blits using a mixture of normal system pages
* and uncached linear buffers, with a working set larger than the
* aperture size.
*
* The goal is to simply ensure the basics work.
*/
#include "igt.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <inttypes.h>
#include <errno.h>
#include <setjmp.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <openssl/sha.h>
#include <signal.h>
#include <pthread.h>
#include <time.h>
#include <linux/memfd.h>
#include "drm.h"
#include "i915_drm.h"
#include "intel_bufmgr.h"
#include "eviction_common.c"
#ifndef PAGE_SIZE
#define PAGE_SIZE 4096
#endif
#define LOCAL_EXEC_OBJECT_SUPPORTS_48B (1 << 3)
static uint32_t userptr_flags = LOCAL_I915_USERPTR_UNSYNCHRONIZED;
#define WIDTH 512
#define HEIGHT 512
static uint32_t linear[WIDTH*HEIGHT];
static void gem_userptr_test_unsynchronized(void)
{
userptr_flags = LOCAL_I915_USERPTR_UNSYNCHRONIZED;
}
static void gem_userptr_test_synchronized(void)
{
userptr_flags = 0;
}
static void gem_userptr_sync(int fd, uint32_t handle)
{
gem_set_domain(fd, handle, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU);
}
static int copy(int fd, uint32_t dst, uint32_t src)
{
uint32_t batch[12];
struct drm_i915_gem_relocation_entry reloc[2];
struct drm_i915_gem_exec_object2 obj[3];
struct drm_i915_gem_execbuffer2 exec;
uint32_t handle;
int ret, i=0;
batch[i++] = XY_SRC_COPY_BLT_CMD |
XY_SRC_COPY_BLT_WRITE_ALPHA |
XY_SRC_COPY_BLT_WRITE_RGB;
if (intel_gen(intel_get_drm_devid(fd)) >= 8)
batch[i - 1] |= 8;
else
batch[i - 1] |= 6;
batch[i++] = (3 << 24) | /* 32 bits */
(0xcc << 16) | /* copy ROP */
WIDTH*4;
batch[i++] = 0; /* dst x1,y1 */
batch[i++] = (HEIGHT << 16) | WIDTH; /* dst x2,y2 */
batch[i++] = 0; /* dst reloc */
if (intel_gen(intel_get_drm_devid(fd)) >= 8)
batch[i++] = 0;
batch[i++] = 0; /* src x1,y1 */
batch[i++] = WIDTH*4;
batch[i++] = 0; /* src reloc */
if (intel_gen(intel_get_drm_devid(fd)) >= 8)
batch[i++] = 0;
batch[i++] = MI_BATCH_BUFFER_END;
batch[i++] = MI_NOOP;
handle = gem_create(fd, 4096);
gem_write(fd, handle, 0, batch, sizeof(batch));
reloc[0].target_handle = dst;
reloc[0].delta = 0;
reloc[0].offset = 4 * sizeof(batch[0]);
reloc[0].presumed_offset = 0;
reloc[0].read_domains = I915_GEM_DOMAIN_RENDER;
reloc[0].write_domain = I915_GEM_DOMAIN_RENDER;
reloc[1].target_handle = src;
reloc[1].delta = 0;
reloc[1].offset = 7 * sizeof(batch[0]);
if (intel_gen(intel_get_drm_devid(fd)) >= 8)
reloc[1].offset += sizeof(batch[0]);
reloc[1].presumed_offset = 0;
reloc[1].read_domains = I915_GEM_DOMAIN_RENDER;
reloc[1].write_domain = 0;
memset(&exec, 0, sizeof(exec));
memset(obj, 0, sizeof(obj));
obj[exec.buffer_count].handle = dst;
obj[exec.buffer_count].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B;
exec.buffer_count++;
if (src != dst) {
obj[exec.buffer_count].handle = src;
obj[exec.buffer_count].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B;
exec.buffer_count++;
}
obj[exec.buffer_count].handle = handle;
obj[exec.buffer_count].relocation_count = 2;
obj[exec.buffer_count].relocs_ptr = to_user_pointer(reloc);
obj[exec.buffer_count].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B;
exec.buffer_count++;
exec.buffers_ptr = to_user_pointer(obj);
exec.flags = HAS_BLT_RING(intel_get_drm_devid(fd)) ? I915_EXEC_BLT : 0;
ret = __gem_execbuf(fd, &exec);
gem_close(fd, handle);
return ret;
}
static int
blit(int fd, uint32_t dst, uint32_t src, uint32_t *all_bo, int n_bo)
{
uint32_t batch[12];
struct drm_i915_gem_relocation_entry reloc[2];
struct drm_i915_gem_exec_object2 *obj;
struct drm_i915_gem_execbuffer2 exec;
uint32_t handle;
int n, ret, i=0;
batch[i++] = XY_SRC_COPY_BLT_CMD |
XY_SRC_COPY_BLT_WRITE_ALPHA |
XY_SRC_COPY_BLT_WRITE_RGB;
if (intel_gen(intel_get_drm_devid(fd)) >= 8)
batch[i - 1] |= 8;
else
batch[i - 1] |= 6;
batch[i++] = (3 << 24) | /* 32 bits */
(0xcc << 16) | /* copy ROP */
WIDTH*4;
batch[i++] = 0; /* dst x1,y1 */
batch[i++] = (HEIGHT << 16) | WIDTH; /* dst x2,y2 */
batch[i++] = 0; /* dst reloc */
if (intel_gen(intel_get_drm_devid(fd)) >= 8)
batch[i++] = 0;
batch[i++] = 0; /* src x1,y1 */
batch[i++] = WIDTH*4;
batch[i++] = 0; /* src reloc */
if (intel_gen(intel_get_drm_devid(fd)) >= 8)
batch[i++] = 0;
batch[i++] = MI_BATCH_BUFFER_END;
batch[i++] = MI_NOOP;
handle = gem_create(fd, 4096);
gem_write(fd, handle, 0, batch, sizeof(batch));
reloc[0].target_handle = dst;
reloc[0].delta = 0;
reloc[0].offset = 4 * sizeof(batch[0]);
reloc[0].presumed_offset = 0;
reloc[0].read_domains = I915_GEM_DOMAIN_RENDER;
reloc[0].write_domain = I915_GEM_DOMAIN_RENDER;
reloc[1].target_handle = src;
reloc[1].delta = 0;
reloc[1].offset = 7 * sizeof(batch[0]);
if (intel_gen(intel_get_drm_devid(fd)) >= 8)
reloc[1].offset += sizeof(batch[0]);
reloc[1].presumed_offset = 0;
reloc[1].read_domains = I915_GEM_DOMAIN_RENDER;
reloc[1].write_domain = 0;
memset(&exec, 0, sizeof(exec));
obj = calloc(n_bo + 1, sizeof(*obj));
for (n = 0; n < n_bo; n++) {
obj[n].handle = all_bo[n];
obj[n].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B;
}
obj[n].handle = handle;
obj[n].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B;
obj[n].relocation_count = 2;
obj[n].relocs_ptr = to_user_pointer(reloc);
exec.buffers_ptr = to_user_pointer(obj);
exec.buffer_count = n_bo + 1;
exec.flags = HAS_BLT_RING(intel_get_drm_devid(fd)) ? I915_EXEC_BLT : 0;
ret = __gem_execbuf(fd, &exec);
gem_close(fd, handle);
free(obj);
return ret;
}
static void store_dword(int fd, uint32_t target,
uint32_t offset, uint32_t value)
{
const int gen = intel_gen(intel_get_drm_devid(fd));
struct drm_i915_gem_exec_object2 obj[2];
struct drm_i915_gem_relocation_entry reloc;
struct drm_i915_gem_execbuffer2 execbuf;
uint32_t batch[16];
int i;
memset(&execbuf, 0, sizeof(execbuf));
execbuf.buffers_ptr = to_user_pointer(obj);
execbuf.buffer_count = ARRAY_SIZE(obj);
execbuf.flags = 0;
if (gen < 6)
execbuf.flags |= I915_EXEC_SECURE;
memset(obj, 0, sizeof(obj));
obj[0].handle = target;
obj[1].handle = gem_create(fd, 4096);
memset(&reloc, 0, sizeof(reloc));
reloc.target_handle = obj[0].handle;
reloc.presumed_offset = 0;
reloc.offset = sizeof(uint32_t);
reloc.delta = offset;
reloc.read_domains = I915_GEM_DOMAIN_RENDER;
reloc.write_domain = I915_GEM_DOMAIN_RENDER;
obj[1].relocs_ptr = to_user_pointer(&reloc);
obj[1].relocation_count = 1;
i = 0;
batch[i] = MI_STORE_DWORD_IMM | (gen < 6 ? 1 << 22 : 0);
if (gen >= 8) {
batch[++i] = offset;
batch[++i] = 0;
} else if (gen >= 4) {
batch[++i] = 0;
batch[++i] = offset;
reloc.offset += sizeof(uint32_t);
} else {
batch[i]--;
batch[++i] = offset;
}
batch[++i] = value;
batch[++i] = MI_BATCH_BUFFER_END;
gem_write(fd, obj[1].handle, 0, batch, sizeof(batch));
gem_execbuf(fd, &execbuf);
gem_close(fd, obj[1].handle);
}
static uint32_t
create_userptr(int fd, uint32_t val, uint32_t *ptr)
{
uint32_t handle;
int i;
gem_userptr(fd, ptr, sizeof(linear), 0, userptr_flags, &handle);
igt_assert(handle != 0);
/* Fill the BO with dwords starting at val */
for (i = 0; i < WIDTH*HEIGHT; i++)
ptr[i] = val++;
return handle;
}
static void **handle_ptr_map;
static unsigned *handle_size_map;
static unsigned int num_handle_map;
static void reset_handle_ptr(void)
{
if (num_handle_map == 0)
return;
free(handle_ptr_map);
handle_ptr_map = NULL;
free(handle_size_map);
handle_size_map = NULL;
num_handle_map = 0;
}
static void add_handle_ptr(uint32_t handle, void *ptr, int size)
{
if (handle >= num_handle_map) {
int max = (4096 + handle) & -4096;
handle_ptr_map = realloc(handle_ptr_map,
max * sizeof(void*));
igt_assert(handle_ptr_map);
memset(handle_ptr_map + num_handle_map, 0,
(max - num_handle_map) * sizeof(void*));
handle_size_map = realloc(handle_size_map,
max * sizeof(unsigned));
igt_assert(handle_size_map);
memset(handle_ptr_map + num_handle_map, 0,
(max - num_handle_map) * sizeof(unsigned));
num_handle_map = max;
}
handle_ptr_map[handle] = ptr;
handle_size_map[handle] = size;
}
static void *get_handle_ptr(uint32_t handle)
{
igt_assert(handle < num_handle_map);
return handle_ptr_map[handle];
}
static void free_handle_ptr(uint32_t handle)
{
igt_assert(handle < num_handle_map);
igt_assert(handle_ptr_map[handle]);
munmap(handle_ptr_map[handle], handle_size_map[handle]);
handle_ptr_map[handle] = NULL;
}
static uint32_t create_userptr_bo(int fd, uint64_t size)
{
void *ptr;
uint32_t handle;
ptr = mmap(NULL, size,
PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED,
-1, 0);
igt_assert(ptr != MAP_FAILED);
gem_userptr(fd, (uint32_t *)ptr, size, 0, userptr_flags, &handle);
add_handle_ptr(handle, ptr, size);
return handle;
}
static void flink_userptr_bo(uint32_t old_handle, uint32_t new_handle)
{
igt_assert(old_handle < num_handle_map);
igt_assert(handle_ptr_map[old_handle]);
add_handle_ptr(new_handle,
handle_ptr_map[old_handle],
handle_size_map[old_handle]);
}
static void clear(int fd, uint32_t handle, uint64_t size)
{
void *ptr = get_handle_ptr(handle);
igt_assert(ptr != NULL);
memset(ptr, 0, size);
}
static void free_userptr_bo(int fd, uint32_t handle)
{
gem_close(fd, handle);
free_handle_ptr(handle);
}
static uint32_t
create_bo(int fd, uint32_t val)
{
uint32_t handle;
int i;
handle = gem_create(fd, sizeof(linear));
/* Fill the BO with dwords starting at val */
for (i = 0; i < WIDTH*HEIGHT; i++)
linear[i] = val++;
gem_write(fd, handle, 0, linear, sizeof(linear));
return handle;
}
static void
check_cpu(uint32_t *ptr, uint32_t val)
{
int i;
for (i = 0; i < WIDTH*HEIGHT; i++) {
igt_assert_f(ptr[i] == val,
"Expected 0x%08x, found 0x%08x "
"at offset 0x%08x\n",
val, ptr[i], i * 4);
val++;
}
}
static void
check_gpu(int fd, uint32_t handle, uint32_t val)
{
gem_read(fd, handle, 0, linear, sizeof(linear));
check_cpu(linear, val);
}
static int has_userptr(int fd)
{
uint32_t handle = 0;
void *ptr;
uint32_t oldflags;
int ret;
igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0);
oldflags = userptr_flags;
gem_userptr_test_unsynchronized();
ret = __gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle);
userptr_flags = oldflags;
if (ret != 0) {
free(ptr);
return 0;
}
gem_close(fd, handle);
free(ptr);
return handle != 0;
}
static int test_input_checking(int fd)
{
struct local_i915_gem_userptr userptr;
int ret;
/* Invalid flags. */
memset(&userptr, 0, sizeof(userptr));
userptr.user_ptr = 0;
userptr.user_size = 0;
userptr.flags = ~0;
ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr);
igt_assert_neq(ret, 0);
/* Too big. */
memset(&userptr, 0, sizeof(userptr));
userptr.user_ptr = 0;
userptr.user_size = ~0;
userptr.flags = 0;
ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr);
igt_assert_neq(ret, 0);
/* Both wrong. */
memset(&userptr, 0, sizeof(userptr));
userptr.user_ptr = 0;
userptr.user_size = ~0;
userptr.flags = ~0;
ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr);
igt_assert_neq(ret, 0);
/* Zero user_size. */
memset(&userptr, 0, sizeof(userptr));
userptr.user_ptr = 0;
userptr.user_size = 0;
userptr.flags = 0;
ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr);
igt_assert_neq(ret, 0);
return 0;
}
static int test_access_control(int fd)
{
/* CAP_SYS_ADMIN is needed for UNSYNCHRONIZED mappings. */
gem_userptr_test_unsynchronized();
igt_require(has_userptr(fd));
igt_fork(child, 1) {
void *ptr;
int ret;
uint32_t handle;
igt_drop_root();
igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0);
ret = __gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle);
if (ret == 0)
gem_close(fd, handle);
free(ptr);
igt_assert_eq(ret, -EPERM);
}
igt_waitchildren();
return 0;
}
static int test_invalid_null_pointer(int fd)
{
uint32_t handle;
/* NULL pointer. */
gem_userptr(fd, NULL, PAGE_SIZE, 0, userptr_flags, &handle);
igt_assert_neq(copy(fd, handle, handle), 0); /* QQQ Precise errno? */
gem_close(fd, handle);
return 0;
}
static int test_invalid_gtt_mapping(int fd)
{
struct drm_i915_gem_mmap_gtt arg;
uint32_t handle;
char *gtt, *map;
/* Anonymous mapping to find a hole */
map = mmap(NULL, sizeof(linear) + 2 * PAGE_SIZE,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
igt_assert(map != MAP_FAILED);
gem_userptr(fd, map, sizeof(linear) + 2 * PAGE_SIZE, 0, userptr_flags, &handle);
igt_assert_eq(copy(fd, handle, handle), 0);
gem_close(fd, handle);
gem_userptr(fd, map, PAGE_SIZE, 0, userptr_flags, &handle);
igt_assert_eq(copy(fd, handle, handle), 0);
gem_close(fd, handle);
gem_userptr(fd, map + sizeof(linear) + PAGE_SIZE, PAGE_SIZE, 0, userptr_flags, &handle);
igt_assert_eq(copy(fd, handle, handle), 0);
gem_close(fd, handle);
/* GTT mapping */
memset(&arg, 0, sizeof(arg));
arg.handle = create_bo(fd, 0);
do_ioctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &arg);
gtt = mmap(map + PAGE_SIZE, sizeof(linear),
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED,
fd, arg.offset);
igt_assert(gtt == map + PAGE_SIZE);
gem_close(fd, arg.handle);
igt_assert(((unsigned long)gtt & (PAGE_SIZE - 1)) == 0);
igt_assert((sizeof(linear) & (PAGE_SIZE - 1)) == 0);
gem_userptr(fd, gtt, sizeof(linear), 0, userptr_flags, &handle);
igt_assert_eq(copy(fd, handle, handle), -EFAULT);
gem_close(fd, handle);
gem_userptr(fd, gtt, PAGE_SIZE, 0, userptr_flags, &handle);
igt_assert_eq(copy(fd, handle, handle), -EFAULT);
gem_close(fd, handle);
gem_userptr(fd, gtt + sizeof(linear) - PAGE_SIZE, PAGE_SIZE, 0, userptr_flags, &handle);
igt_assert_eq(copy(fd, handle, handle), -EFAULT);
gem_close(fd, handle);
/* boundaries */
gem_userptr(fd, map, 2*PAGE_SIZE, 0, userptr_flags, &handle);
igt_assert_eq(copy(fd, handle, handle), -EFAULT);
gem_close(fd, handle);
gem_userptr(fd, map + sizeof(linear), 2*PAGE_SIZE, 0, userptr_flags, &handle);
igt_assert_eq(copy(fd, handle, handle), -EFAULT);
gem_close(fd, handle);
munmap(map, sizeof(linear) + 2*PAGE_SIZE);
return 0;
}
#define PE_GTT_MAP 0x1
#define PE_BUSY 0x2
static void test_process_exit(int fd, int flags)
{
if (flags & PE_GTT_MAP)
igt_require(gem_has_llc(fd));
igt_fork(child, 1) {
uint32_t handle;
handle = create_userptr_bo(fd, sizeof(linear));
if (flags & PE_GTT_MAP) {
uint32_t *ptr = __gem_mmap__gtt(fd, handle, sizeof(linear), PROT_READ | PROT_WRITE);
if (ptr)
*ptr = 0;
}
if (flags & PE_BUSY)
igt_assert_eq(copy(fd, handle, handle), 0);
}
igt_waitchildren();
}
static void test_forked_access(int fd)
{
uint32_t handle1 = 0, handle2 = 0;
void *ptr1 = NULL, *ptr2 = NULL;
int ret;
ret = posix_memalign(&ptr1, PAGE_SIZE, sizeof(linear));
#ifdef MADV_DONTFORK
ret |= madvise(ptr1, sizeof(linear), MADV_DONTFORK);
#endif
gem_userptr(fd, ptr1, sizeof(linear), 0, userptr_flags, &handle1);
igt_assert(ptr1);
igt_assert(handle1);
ret = posix_memalign(&ptr2, PAGE_SIZE, sizeof(linear));
#ifdef MADV_DONTFORK
ret |= madvise(ptr2, sizeof(linear), MADV_DONTFORK);
#endif
gem_userptr(fd, ptr2, sizeof(linear), 0, userptr_flags, &handle2);
igt_assert(ptr2);
igt_assert(handle2);
memset(ptr1, 0x1, sizeof(linear));
memset(ptr2, 0x2, sizeof(linear));
igt_fork(child, 1)
igt_assert_eq(copy(fd, handle1, handle2), 0);
igt_waitchildren();
gem_userptr_sync(fd, handle1);
gem_userptr_sync(fd, handle2);
gem_close(fd, handle1);
gem_close(fd, handle2);
igt_assert(memcmp(ptr1, ptr2, sizeof(linear)) == 0);
#ifdef MADV_DOFORK
ret = madvise(ptr1, sizeof(linear), MADV_DOFORK);
igt_assert_eq(ret, 0);
#endif
free(ptr1);
#ifdef MADV_DOFORK
ret = madvise(ptr2, sizeof(linear), MADV_DOFORK);
igt_assert_eq(ret, 0);
#endif
free(ptr2);
}
#define MAP_FIXED_INVALIDATE_OVERLAP (1<<0)
#define MAP_FIXED_INVALIDATE_BUSY (1<<1)
#define MAP_FIXED_INVALIDATE_GET_PAGES (1<<2)
#define ALL_MAP_FIXED_INVALIDATE (MAP_FIXED_INVALIDATE_OVERLAP | \
MAP_FIXED_INVALIDATE_BUSY | \
MAP_FIXED_INVALIDATE_GET_PAGES)
static int test_map_fixed_invalidate(int fd, uint32_t flags)
{
const size_t ptr_size = sizeof(linear) + 2*PAGE_SIZE;
const int num_handles = (flags & MAP_FIXED_INVALIDATE_OVERLAP) ? 2 : 1;
uint32_t handle[num_handles];
uint32_t *ptr;
ptr = mmap(NULL, ptr_size,
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS,
-1, 0);
igt_assert(ptr != MAP_FAILED);
for (int i = 0; i < num_handles; i++)
handle[i] = create_userptr(fd, 0, ptr + PAGE_SIZE/sizeof(*ptr));
for (char *fixed = (char *)ptr, *end = fixed + ptr_size;
fixed + 2*PAGE_SIZE <= end;
fixed += PAGE_SIZE) {
struct drm_i915_gem_mmap_gtt mmap_gtt;
uint32_t *map;
map = mmap(ptr, ptr_size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED,
-1, 0);
igt_assert(map != MAP_FAILED);
igt_assert(map == ptr);
memset(&mmap_gtt, 0, sizeof(mmap_gtt));
mmap_gtt.handle = gem_create(fd, 2*PAGE_SIZE);
do_ioctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_gtt);
if (flags & MAP_FIXED_INVALIDATE_GET_PAGES)
igt_assert_eq(__gem_set_domain(fd, handle[0],
I915_GEM_DOMAIN_GTT,
I915_GEM_DOMAIN_GTT),
0);
if (flags & MAP_FIXED_INVALIDATE_BUSY)
igt_assert_eq(copy(fd, handle[0], handle[num_handles-1]), 0);
map = mmap(fixed, 2*PAGE_SIZE,
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED,
fd, mmap_gtt.offset);
igt_assert(map != MAP_FAILED);
igt_assert(map == (uint32_t *)fixed);
gem_set_tiling(fd, mmap_gtt.handle, I915_TILING_NONE, 0);
*map = 0xdead;
if (flags & MAP_FIXED_INVALIDATE_GET_PAGES) {
igt_assert_eq(__gem_set_domain(fd, handle[0],
I915_GEM_DOMAIN_GTT,
I915_GEM_DOMAIN_GTT),
-EFAULT);
/* Errors are permanent, so we have to recreate */
gem_close(fd, handle[0]);
handle[0] = create_userptr(fd, 0, ptr + PAGE_SIZE/sizeof(*ptr));
}
gem_set_tiling(fd, mmap_gtt.handle, I915_TILING_Y, 512 * 4);
*(uint32_t*)map = 0xbeef;
gem_close(fd, mmap_gtt.handle);
}
for (int i = 0; i < num_handles; i++)
gem_close(fd, handle[i]);
munmap(ptr, ptr_size);
return 0;
}
static int test_forbidden_ops(int fd)
{
struct drm_i915_gem_pread gem_pread;
struct drm_i915_gem_pwrite gem_pwrite;
uint32_t handle;
void *ptr;
igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0);
gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle);
/* pread/pwrite are not always forbidden, but when they
* are they should fail with EINVAL.
*/
memset(&gem_pread, 0, sizeof(gem_pread));
gem_pread.handle = handle;
gem_pread.offset = 0;
gem_pread.size = PAGE_SIZE;
gem_pread.data_ptr = to_user_pointer(ptr);
if (drmIoctl(fd, DRM_IOCTL_I915_GEM_PREAD, &gem_pread))
igt_assert_eq(errno, EINVAL);
memset(&gem_pwrite, 0, sizeof(gem_pwrite));
gem_pwrite.handle = handle;
gem_pwrite.offset = 0;
gem_pwrite.size = PAGE_SIZE;
gem_pwrite.data_ptr = to_user_pointer(ptr);
if (drmIoctl(fd, DRM_IOCTL_I915_GEM_PWRITE, &gem_pwrite))
igt_assert_eq(errno, EINVAL);
gem_close(fd, handle);
free(ptr);
return 0;
}
static void test_relocations(int fd)
{
struct drm_i915_gem_relocation_entry *reloc;
struct drm_i915_gem_exec_object2 obj;
struct drm_i915_gem_execbuffer2 exec;
unsigned size;
void *ptr;
int i;
size = PAGE_SIZE + ALIGN(sizeof(*reloc)*256, PAGE_SIZE);
memset(&obj, 0, sizeof(obj));
igt_assert(posix_memalign(&ptr, PAGE_SIZE, size) == 0);
gem_userptr(fd, ptr, size, 0, userptr_flags, &obj.handle);
if (!gem_has_llc(fd))
gem_set_caching(fd, obj.handle, 0);
*(uint32_t *)ptr = MI_BATCH_BUFFER_END;
reloc = (typeof(reloc))((char *)ptr + PAGE_SIZE);
obj.relocs_ptr = to_user_pointer(reloc);
obj.relocation_count = 256;
memset(reloc, 0, 256*sizeof(*reloc));
for (i = 0; i < 256; i++) {
reloc[i].offset = 2048 - 4*i;
reloc[i].target_handle = obj.handle;
reloc[i].read_domains = I915_GEM_DOMAIN_INSTRUCTION;
}
memset(&exec, 0, sizeof(exec));
exec.buffers_ptr = to_user_pointer(&obj);
exec.buffer_count = 1;
gem_execbuf(fd, &exec);
gem_sync(fd, obj.handle);
gem_close(fd, obj.handle);
free(ptr);
}
static unsigned char counter;
static void (* volatile orig_sigbus)(int sig, siginfo_t *info, void *param);
static volatile unsigned long sigbus_start;
static volatile long sigbus_cnt = -1;
static void *umap(int fd, uint32_t handle)
{
void *ptr;
if (gem_has_llc(fd)) {
ptr = gem_mmap__gtt(fd, handle, sizeof(linear),
PROT_READ | PROT_WRITE);
} else {
uint32_t tmp = gem_create(fd, sizeof(linear));
igt_assert_eq(copy(fd, tmp, handle), 0);
ptr = gem_mmap__cpu(fd, tmp, 0, sizeof(linear), PROT_READ);
gem_close(fd, tmp);
}
return ptr;
}
static void
check_bo(int fd1, uint32_t handle1, int is_userptr, int fd2, uint32_t handle2)
{
unsigned char *ptr1, *ptr2;
unsigned long size = sizeof(linear);
ptr2 = umap(fd2, handle2);
if (is_userptr)
ptr1 = is_userptr > 0 ? get_handle_ptr(handle1) : ptr2;
else
ptr1 = umap(fd1, handle1);
igt_assert(ptr1);
igt_assert(ptr2);
sigbus_start = (unsigned long)ptr2;
igt_assert(memcmp(ptr1, ptr2, sizeof(linear)) == 0);
if (gem_has_llc(fd1)) {
counter++;
memset(ptr1, counter, size);
memset(ptr2, counter, size);
}
if (!is_userptr)
munmap(ptr1, sizeof(linear));
munmap(ptr2, sizeof(linear));
}
static int export_handle(int fd, uint32_t handle, int *outfd)
{
struct drm_prime_handle args;
int ret;
args.handle = handle;
args.flags = DRM_CLOEXEC;
args.fd = -1;
ret = drmIoctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args);
if (ret)
ret = errno;
*outfd = args.fd;
return ret;
}
static void sigbus(int sig, siginfo_t *info, void *param)
{
unsigned long ptr = (unsigned long)info->si_addr;
void *addr;
if (ptr >= sigbus_start &&
ptr < sigbus_start + sizeof(linear)) {
/* replace mapping to allow progress */
munmap((void *)sigbus_start, sizeof(linear));
addr = mmap((void *)sigbus_start, sizeof(linear),
PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
igt_assert((unsigned long)addr == sigbus_start);
memset(addr, counter, sizeof(linear));
sigbus_cnt++;
return;
}
if (orig_sigbus)
orig_sigbus(sig, info, param);
igt_assert(0);
}
static int test_dmabuf(void)
{
int fd1, fd2;
uint32_t handle, handle_import;
int dma_buf_fd = -1;
int ret;
fd1 = drm_open_driver(DRIVER_INTEL);
handle = create_userptr_bo(fd1, sizeof(linear));
memset(get_handle_ptr(handle), counter, sizeof(linear));
ret = export_handle(fd1, handle, &dma_buf_fd);
if (userptr_flags & LOCAL_I915_USERPTR_UNSYNCHRONIZED && ret) {
igt_assert(ret == EINVAL || ret == ENODEV);
free_userptr_bo(fd1, handle);
close(fd1);
return 0;
} else {
igt_assert_eq(ret, 0);
igt_assert_lte(0, dma_buf_fd);
}
fd2 = drm_open_driver(DRIVER_INTEL);
handle_import = prime_fd_to_handle(fd2, dma_buf_fd);
check_bo(fd1, handle, 1, fd2, handle_import);
/* close dma_buf, check whether nothing disappears. */
close(dma_buf_fd);
check_bo(fd1, handle, 1, fd2, handle_import);
/* destroy userptr object and expect SIGBUS */
free_userptr_bo(fd1, handle);
close(fd1);
if (gem_has_llc(fd2)) {
struct sigaction sigact, orig_sigact;
memset(&sigact, 0, sizeof(sigact));
sigact.sa_sigaction = sigbus;
sigact.sa_flags = SA_SIGINFO;
ret = sigaction(SIGBUS, &sigact, &orig_sigact);
igt_assert_eq(ret, 0);
orig_sigbus = orig_sigact.sa_sigaction;
sigbus_cnt = 0;
check_bo(fd2, handle_import, -1, fd2, handle_import);
igt_assert(sigbus_cnt > 0);
ret = sigaction(SIGBUS, &orig_sigact, NULL);
igt_assert_eq(ret, 0);
}
close(fd2);
reset_handle_ptr();
return 0;
}
static void store_dword_rand(int i915, unsigned int engine,
uint32_t target, uint64_t sz,
int count)
{
const int gen = intel_gen(intel_get_drm_devid(i915));
struct drm_i915_gem_relocation_entry *reloc;
struct drm_i915_gem_exec_object2 obj[2];
struct drm_i915_gem_execbuffer2 exec;
unsigned int batchsz;
uint32_t *batch;
int i;
batchsz = count * 16 + 4;
batchsz = ALIGN(batchsz, 4096);
reloc = calloc(sizeof(*reloc), count);
memset(obj, 0, sizeof(obj));
obj[0].handle = target;
obj[0].flags = LOCAL_EXEC_OBJECT_SUPPORTS_48B;
obj[1].handle = gem_create(i915, batchsz);
obj[1].relocation_count = count;
obj[1].relocs_ptr = to_user_pointer(reloc);
batch = gem_mmap__wc(i915, obj[1].handle, 0, batchsz, PROT_WRITE);
memset(&exec, 0, sizeof(exec));
exec.buffer_count = 2;
exec.buffers_ptr = to_user_pointer(obj);
exec.flags = engine;
if (gen < 6)
exec.flags |= I915_EXEC_SECURE;
i = 0;
for (int n = 0; n < count; n++) {
uint64_t offset;
reloc[n].target_handle = obj[0].handle;
reloc[n].delta = rand() % (sz / 4) * 4;
reloc[n].offset = (i + 1) * sizeof(uint32_t);
reloc[n].presumed_offset = obj[0].offset;
reloc[n].read_domains = I915_GEM_DOMAIN_RENDER;
reloc[n].write_domain = I915_GEM_DOMAIN_RENDER;
offset = reloc[n].presumed_offset + reloc[n].delta;
batch[i] = MI_STORE_DWORD_IMM | (gen < 6 ? 1 << 22 : 0);
if (gen >= 8) {
batch[++i] = offset;
batch[++i] = offset >> 32;
} else if (gen >= 4) {
batch[++i] = 0;
batch[++i] = offset;
reloc[n].offset += sizeof(uint32_t);
} else {
batch[i]--;
batch[++i] = offset;
}
batch[++i] = rand();
i++;
}
batch[i] = MI_BATCH_BUFFER_END;
igt_assert(i * sizeof(uint32_t) < batchsz);
munmap(batch, batchsz);
gem_execbuf(i915, &exec);
gem_close(i915, obj[1].handle);
free(reloc);
}
static void test_readonly(int i915)
{
unsigned char orig[SHA_DIGEST_LENGTH];
uint64_t aperture_size;
uint32_t whandle, rhandle;
size_t sz, total;
void *pages, *space;
int memfd;
/*
* A small batch of pages; small enough to cheaply check for stray
* writes but large enough that we don't create too many VMA pointing
* back to this set from the large arena. The limit on total number
* of VMA for a process is 65,536 (at least on this kernel).
*
* We then write from the GPU through the large arena into the smaller
* backing storage, which we can cheaply check to see if those writes
* have landed (using a SHA1sum). Repeating the same random GPU writes
* though a read-only handle to confirm that this time the writes are
* discarded and the backing store unchanged.
*/
sz = 16 << 12;
memfd = memfd_create("pages", 0);
igt_require(memfd != -1);
igt_require(ftruncate(memfd, sz) == 0);
pages = mmap(NULL, sz, PROT_WRITE, MAP_SHARED, memfd, 0);
igt_assert(pages != MAP_FAILED);
igt_require(__gem_userptr(i915, pages, sz, true, userptr_flags, &rhandle) == 0);
gem_close(i915, rhandle);
gem_userptr(i915, pages, sz, false, userptr_flags, &whandle);
/*
* We have only a 31bit delta which we use for generating
* the target address for MI_STORE_DWORD_IMM, so our maximum
* usuable object size is only 2GiB. For now.
*/
total = 2048ull << 20;
aperture_size = gem_aperture_size(i915) / 2;
if (aperture_size < total)
total = aperture_size;
total = total / sz * sz;
igt_info("Using a %'zuB (%'zu pages) arena onto %zu pages\n",
total, total >> 12, sz >> 12);
/* Create an arena all pointing to the same set of pages */
space = mmap(NULL, total, PROT_READ, MAP_ANON | MAP_SHARED, -1, 0);
igt_require(space != MAP_FAILED);
for (size_t offset = 0; offset < total; offset += sz) {
igt_assert(mmap(space + offset, sz,
PROT_WRITE, MAP_SHARED | MAP_FIXED,
memfd, 0) != MAP_FAILED);
*(uint32_t *)(space + offset) = offset;
}
igt_assert_eq_u32(*(uint32_t *)pages, (uint32_t)(total - sz));
igt_assert(mlock(space, total) == 0);
close(memfd);
/* Check we can create a normal userptr bo wrapping the wrapper */
gem_userptr(i915, space, total, false, userptr_flags, &rhandle);
gem_set_domain(i915, rhandle, I915_GEM_DOMAIN_CPU, 0);
for (size_t offset = 0; offset < total; offset += sz)
store_dword(i915, rhandle, offset + 4, offset / sz);
gem_sync(i915, rhandle);
igt_assert_eq_u32(*(uint32_t *)(pages + 0), (uint32_t)(total - sz));
igt_assert_eq_u32(*(uint32_t *)(pages + 4), (uint32_t)(total / sz - 1));
gem_close(i915, rhandle);
/* Now enforce read-only henceforth */
igt_assert(mprotect(space, total, PROT_READ) == 0);
SHA1(pages, sz, orig);
igt_fork(child, 1) {
unsigned int engine;
gem_userptr(i915, space, total, true, userptr_flags, &rhandle);
for_each_engine(i915, engine) {
unsigned char ref[SHA_DIGEST_LENGTH];
unsigned char result[SHA_DIGEST_LENGTH];
/* First tweak the backing store through the write */
store_dword_rand(i915, engine, whandle, sz, 1024);
gem_sync(i915, whandle);
SHA1(pages, sz, ref);
/* Check some writes did land */
igt_assert(memcmp(ref, orig, sizeof(ref)));
memcpy(orig, ref, sizeof(orig));
/* Now try the same through the read-only handle */
store_dword_rand(i915, engine, rhandle, total, 1024);
gem_sync(i915, rhandle);
SHA1(pages, sz, result);
/*
* As the writes into the read-only GPU bo should fail,
* the SHA1 hash of the backing store should be
* unaffected.
*/
igt_assert(memcmp(ref, result, SHA_DIGEST_LENGTH) == 0);
}
gem_close(i915, rhandle);
}
igt_waitchildren();
munmap(space, total);
munmap(pages, sz);
}
static jmp_buf sigjmp;
static void sigjmp_handler(int sig)
{
siglongjmp(sigjmp, sig);
}
static void test_readonly_mmap(int i915)
{
unsigned char original[SHA_DIGEST_LENGTH];
unsigned char result[SHA_DIGEST_LENGTH];
uint32_t handle;
uint32_t sz;
void *pages;
void *ptr;
int sig;
/*
* A quick check to ensure that we cannot circumvent the
* read-only nature of our memory by creating a GTT mmap into
* the pages. Imagine receiving a readonly SHM segment from
* another process, or a readonly file mmap, it must remain readonly
* on the GPU as well.
*/
igt_require(igt_setup_clflush());
sz = 16 << 12;
pages = mmap(NULL, sz, PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
igt_assert(pages != MAP_FAILED);
igt_require(__gem_userptr(i915, pages, sz, true, userptr_flags, &handle) == 0);
gem_set_caching(i915, handle, 0);
memset(pages, 0xa5, sz);
igt_clflush_range(pages, sz);
SHA1(pages, sz, original);
ptr = __gem_mmap__gtt(i915, handle, sz, PROT_WRITE);
igt_assert(ptr == NULL);
ptr = gem_mmap__gtt(i915, handle, sz, PROT_READ);
gem_close(i915, handle);
/* Check that a write into the GTT readonly map fails */
if (!(sig = sigsetjmp(sigjmp, 1))) {
signal(SIGBUS, sigjmp_handler);
signal(SIGSEGV, sigjmp_handler);
memset(ptr, 0x5a, sz);
igt_assert(0);
}
igt_assert_eq(sig, SIGSEGV);
/* Check that we disallow removing the readonly protection */
igt_assert(mprotect(ptr, sz, PROT_WRITE));
if (!(sig = sigsetjmp(sigjmp, 1))) {
signal(SIGBUS, sigjmp_handler);
signal(SIGSEGV, sigjmp_handler);
memset(ptr, 0x5a, sz);
igt_assert(0);
}
igt_assert_eq(sig, SIGSEGV);
/* A single read from the GTT pointer to prove that works */
igt_assert_eq_u32(*(uint8_t *)ptr, 0xa5);
munmap(ptr, sz);
/* Double check that the kernel did indeed not let any writes through */
igt_clflush_range(pages, sz);
SHA1(pages, sz, result);
igt_assert(!memcmp(original, result, sizeof(original)));
munmap(pages, sz);
}
static void test_readonly_pwrite(int i915)
{
unsigned char original[SHA_DIGEST_LENGTH];
unsigned char result[SHA_DIGEST_LENGTH];
uint32_t handle;
uint32_t sz;
void *pages;
/*
* Same as for GTT mmapings, we cannot alone ourselves to
* circumvent readonly protection on a piece of memory via the
* pwrite ioctl.
*/
igt_require(igt_setup_clflush());
sz = 16 << 12;
pages = mmap(NULL, sz, PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
igt_assert(pages != MAP_FAILED);
igt_require(__gem_userptr(i915, pages, sz, true, userptr_flags, &handle) == 0);
memset(pages, 0xa5, sz);
SHA1(pages, sz, original);
for (int page = 0; page < 16; page++) {
char data[4096];
memset(data, page, sizeof(data));
igt_assert_eq(__gem_write(i915, handle, page << 12, data, sizeof(data)), -EINVAL);
}
gem_close(i915, handle);
SHA1(pages, sz, result);
igt_assert(!memcmp(original, result, sizeof(original)));
munmap(pages, sz);
}
static int test_usage_restrictions(int fd)
{
void *ptr;
int ret;
uint32_t handle;
igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE * 2) == 0);
/* Address not aligned. */
ret = __gem_userptr(fd, (char *)ptr + 1, PAGE_SIZE, 0, userptr_flags, &handle);
igt_assert_neq(ret, 0);
/* Size not rounded to page size. */
ret = __gem_userptr(fd, ptr, PAGE_SIZE - 1, 0, userptr_flags, &handle);
igt_assert_neq(ret, 0);
/* Both wrong. */
ret = __gem_userptr(fd, (char *)ptr + 1, PAGE_SIZE - 1, 0, userptr_flags, &handle);
igt_assert_neq(ret, 0);
free(ptr);
return 0;
}
static int test_create_destroy(int fd, int time)
{
struct timespec start, now;
uint32_t handle;
void *ptr;
int n;
igt_fork_signal_helper();
clock_gettime(CLOCK_MONOTONIC, &start);
do {
for (n = 0; n < 1000; n++) {
igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0);
gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle);
gem_close(fd, handle);
free(ptr);
}
clock_gettime(CLOCK_MONOTONIC, &now);
now.tv_sec -= time;
} while (now.tv_sec < start.tv_sec ||
(now.tv_sec == start.tv_sec && now.tv_nsec < start.tv_nsec));
igt_stop_signal_helper();
return 0;
}
static int test_coherency(int fd, int count)
{
uint32_t *memory;
uint32_t *cpu, *cpu_val;
uint32_t *gpu, *gpu_val;
uint32_t start = 0;
int i, ret;
igt_info("Using 2x%d 1MiB buffers\n", count);
intel_require_memory(2*count, sizeof(linear), CHECK_RAM);
ret = posix_memalign((void **)&memory, PAGE_SIZE, count*sizeof(linear));
igt_assert(ret == 0 && memory);
gpu = malloc(sizeof(uint32_t)*count*4);
gpu_val = gpu + count;
cpu = gpu_val + count;
cpu_val = cpu + count;
for (i = 0; i < count; i++) {
gpu[i] = create_bo(fd, start);
gpu_val[i] = start;
start += WIDTH*HEIGHT;
}
for (i = 0; i < count; i++) {
cpu[i] = create_userptr(fd, start, memory+i*WIDTH*HEIGHT);
cpu_val[i] = start;
start += WIDTH*HEIGHT;
}
igt_info("Verifying initialisation...\n");
for (i = 0; i < count; i++) {
check_gpu(fd, gpu[i], gpu_val[i]);
check_cpu(memory+i*WIDTH*HEIGHT, cpu_val[i]);
}
igt_info("Cyclic blits cpu->gpu, forward...\n");
for (i = 0; i < count * 4; i++) {
int src = i % count;
int dst = (i + 1) % count;
igt_assert_eq(copy(fd, gpu[dst], cpu[src]), 0);
gpu_val[dst] = cpu_val[src];
}
for (i = 0; i < count; i++)
check_gpu(fd, gpu[i], gpu_val[i]);
igt_info("Cyclic blits gpu->cpu, backward...\n");
for (i = 0; i < count * 4; i++) {
int src = (i + 1) % count;
int dst = i % count;
igt_assert_eq(copy(fd, cpu[dst], gpu[src]), 0);
cpu_val[dst] = gpu_val[src];
}
for (i = 0; i < count; i++) {
gem_userptr_sync(fd, cpu[i]);
check_cpu(memory+i*WIDTH*HEIGHT, cpu_val[i]);
}
igt_info("Random blits...\n");
for (i = 0; i < count * 4; i++) {
int src = random() % count;
int dst = random() % count;
if (random() & 1) {
igt_assert_eq(copy(fd, gpu[dst], cpu[src]), 0);
gpu_val[dst] = cpu_val[src];
} else {
igt_assert_eq(copy(fd, cpu[dst], gpu[src]), 0);
cpu_val[dst] = gpu_val[src];
}
}
for (i = 0; i < count; i++) {
check_gpu(fd, gpu[i], gpu_val[i]);
gem_close(fd, gpu[i]);
gem_userptr_sync(fd, cpu[i]);
check_cpu(memory+i*WIDTH*HEIGHT, cpu_val[i]);
gem_close(fd, cpu[i]);
}
free(gpu);
free(memory);
return 0;
}
static struct igt_eviction_test_ops fault_ops = {
.create = create_userptr_bo,
.flink = flink_userptr_bo,
.close = free_userptr_bo,
.copy = blit,
.clear = clear,
};
static int can_swap(void)
{
unsigned long as, ram;
/* Cannot swap if not enough address space */
/* FIXME: Improve check criteria. */
if (sizeof(void*) < 8)
as = 3 * 1024;
else
as = 256 * 1024; /* Just a big number */
ram = intel_get_total_ram_mb();
if ((as - 128) < (ram - 256))
return 0;
return 1;
}
static void test_forking_evictions(int fd, int size, int count,
unsigned flags)
{
int trash_count;
int num_threads;
trash_count = intel_get_total_ram_mb() * 11 / 10;
/* Use the fact test will spawn a number of child
* processes meaning swapping will be triggered system
* wide even if one process on it's own can't do it.
*/
num_threads = min(sysconf(_SC_NPROCESSORS_ONLN) * 4, 12);
trash_count /= num_threads;
if (count > trash_count)
count = trash_count;
forking_evictions(fd, &fault_ops, size, count, trash_count, flags);
reset_handle_ptr();
}
static void test_mlocked_evictions(int fd, int size, int count)
{
count = min(256, count/2);
mlocked_evictions(fd, &fault_ops, size, count);
reset_handle_ptr();
}
static void test_swapping_evictions(int fd, int size, int count)
{
int trash_count;
igt_skip_on_f(!can_swap(),
"Not enough process address space for swapping tests.\n");
trash_count = intel_get_total_ram_mb() * 11 / 10;
swapping_evictions(fd, &fault_ops, size, count, trash_count);
reset_handle_ptr();
}
static void test_minor_evictions(int fd, int size, int count)
{
minor_evictions(fd, &fault_ops, size, count);
reset_handle_ptr();
}
static void test_major_evictions(int fd, int size, int count)
{
major_evictions(fd, &fault_ops, size, count);
reset_handle_ptr();
}
static void test_overlap(int fd, int expected)
{
char *ptr;
int ret;
uint32_t handle, handle2;
igt_assert(posix_memalign((void *)&ptr, PAGE_SIZE, PAGE_SIZE * 3) == 0);
gem_userptr(fd, ptr + PAGE_SIZE, PAGE_SIZE, 0, userptr_flags, &handle);
/* before, no overlap */
ret = __gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle2);
if (ret == 0)
gem_close(fd, handle2);
igt_assert_eq(ret, 0);
/* after, no overlap */
ret = __gem_userptr(fd, ptr + PAGE_SIZE * 2, PAGE_SIZE, 0, userptr_flags, &handle2);
if (ret == 0)
gem_close(fd, handle2);
igt_assert_eq(ret, 0);
/* exactly overlapping */
ret = __gem_userptr(fd, ptr + PAGE_SIZE, PAGE_SIZE, 0, userptr_flags, &handle2);
if (ret == 0)
gem_close(fd, handle2);
igt_assert(ret == 0 || ret == expected);
/* start overlaps */
ret = __gem_userptr(fd, ptr, PAGE_SIZE * 2, 0, userptr_flags, &handle2);
if (ret == 0)
gem_close(fd, handle2);
igt_assert(ret == 0 || ret == expected);
/* end overlaps */
ret = __gem_userptr(fd, ptr + PAGE_SIZE, PAGE_SIZE * 2, 0, userptr_flags, &handle2);
if (ret == 0)
gem_close(fd, handle2);
igt_assert(ret == 0 || ret == expected);
/* subsumes */
ret = __gem_userptr(fd, ptr, PAGE_SIZE * 3, 0, userptr_flags, &handle2);
if (ret == 0)
gem_close(fd, handle2);
igt_assert(ret == 0 || ret == expected);
gem_close(fd, handle);
free(ptr);
}
static void test_unmap(int fd, int expected)
{
char *ptr, *bo_ptr;
const unsigned int num_obj = 3;
unsigned int i;
uint32_t bo[num_obj + 1];
size_t map_size = sizeof(linear) * num_obj + (PAGE_SIZE - 1);
int ret;
ptr = mmap(NULL, map_size, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
igt_assert(ptr != MAP_FAILED);
bo_ptr = (char *)ALIGN((unsigned long)ptr, PAGE_SIZE);
for (i = 0; i < num_obj; i++, bo_ptr += sizeof(linear)) {
gem_userptr(fd, bo_ptr, sizeof(linear), 0, userptr_flags, &bo[i]);
}
bo[num_obj] = create_bo(fd, 0);
for (i = 0; i < num_obj; i++)
igt_assert_eq(copy(fd, bo[num_obj], bo[i]), 0);
ret = munmap(ptr, map_size);
igt_assert_eq(ret, 0);
for (i = 0; i < num_obj; i++)
igt_assert_eq(copy(fd, bo[num_obj], bo[i]), -expected);
for (i = 0; i < (num_obj + 1); i++)
gem_close(fd, bo[i]);
}
static void test_unmap_after_close(int fd)
{
char *ptr, *bo_ptr;
const unsigned int num_obj = 3;
unsigned int i;
uint32_t bo[num_obj + 1];
size_t map_size = sizeof(linear) * num_obj + (PAGE_SIZE - 1);
int ret;
ptr = mmap(NULL, map_size, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
igt_assert(ptr != MAP_FAILED);
bo_ptr = (char *)ALIGN((unsigned long)ptr, PAGE_SIZE);
for (i = 0; i < num_obj; i++, bo_ptr += sizeof(linear)) {
gem_userptr(fd, bo_ptr, sizeof(linear), 0, userptr_flags, &bo[i]);
}
bo[num_obj] = create_bo(fd, 0);
for (i = 0; i < num_obj; i++)
igt_assert_eq(copy(fd, bo[num_obj], bo[i]), 0);
for (i = 0; i < (num_obj + 1); i++)
gem_close(fd, bo[i]);
ret = munmap(ptr, map_size);
igt_assert_eq(ret, 0);
}
static void test_unmap_cycles(int fd, int expected)
{
int i;
for (i = 0; i < 1000; i++)
test_unmap(fd, expected);
}
#define MM_STRESS_LOOPS 100000
struct stress_thread_data {
unsigned int stop;
int exit_code;
};
static void *mm_stress_thread(void *data)
{
struct stress_thread_data *stdata = (struct stress_thread_data *)data;
void *ptr;
int ret;
while (!stdata->stop) {
ptr = mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (ptr == MAP_FAILED) {
stdata->exit_code = -EFAULT;
break;
}
ret = munmap(ptr, PAGE_SIZE);
if (ret) {
stdata->exit_code = errno;
break;
}
}
return NULL;
}
static void test_stress_mm(int fd)
{
int ret;
pthread_t t;
unsigned int loops = MM_STRESS_LOOPS;
uint32_t handle;
void *ptr;
struct stress_thread_data stdata;
memset(&stdata, 0, sizeof(stdata));
igt_assert(posix_memalign(&ptr, PAGE_SIZE, PAGE_SIZE) == 0);
ret = pthread_create(&t, NULL, mm_stress_thread, &stdata);
igt_assert_eq(ret, 0);
while (loops--) {
gem_userptr(fd, ptr, PAGE_SIZE, 0, userptr_flags, &handle);
gem_close(fd, handle);
}
free(ptr);
stdata.stop = 1;
ret = pthread_join(t, NULL);
igt_assert_eq(ret, 0);
igt_assert_eq(stdata.exit_code, 0);
}
struct userptr_close_thread_data {
int fd;
void *ptr;
bool overlap;
bool stop;
pthread_mutex_t mutex;
};
static void *mm_userptr_close_thread(void *data)
{
struct userptr_close_thread_data *t = (struct userptr_close_thread_data *)data;
int num_handles = t->overlap ? 2 : 1;
uint32_t handle[num_handles];
/* Be pedantic and enforce the required memory barriers */
pthread_mutex_lock(&t->mutex);
while (!t->stop) {
pthread_mutex_unlock(&t->mutex);
for (int i = 0; i < num_handles; i++)
gem_userptr(t->fd, t->ptr, PAGE_SIZE, 0, userptr_flags, &handle[i]);
for (int i = 0; i < num_handles; i++)
gem_close(t->fd, handle[i]);
pthread_mutex_lock(&t->mutex);
}
pthread_mutex_unlock(&t->mutex);
return NULL;
}
static void test_invalidate_close_race(int fd, bool overlap)
{
pthread_t t;
unsigned int loops = MM_STRESS_LOOPS;
struct userptr_close_thread_data t_data;
memset(&t_data, 0, sizeof(t_data));
t_data.fd = fd;
t_data.overlap = overlap;
igt_assert(posix_memalign(&t_data.ptr, PAGE_SIZE, PAGE_SIZE) == 0);
pthread_mutex_init(&t_data.mutex, NULL);
igt_assert(pthread_create(&t, NULL, mm_userptr_close_thread, &t_data) == 0);
while (loops--) {
mprotect(t_data.ptr, PAGE_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC);
mprotect(t_data.ptr, PAGE_SIZE, PROT_READ | PROT_WRITE);
}
pthread_mutex_lock(&t_data.mutex);
t_data.stop = 1;
pthread_mutex_unlock(&t_data.mutex);
pthread_join(t, NULL);
pthread_mutex_destroy(&t_data.mutex);
free(t_data.ptr);
}
uint64_t total_ram;
uint64_t aperture_size;
int fd, count;
int main(int argc, char **argv)
{
int size = sizeof(linear);
igt_subtest_init(argc, argv);
igt_fixture {
fd = drm_open_driver(DRIVER_INTEL);
igt_assert(fd >= 0);
igt_require_gem(fd);
size = sizeof(linear);
aperture_size = gem_aperture_size(fd);
igt_info("Aperture size is %lu MiB\n", (long)(aperture_size / (1024*1024)));
if (argc > 1)
count = atoi(argv[1]);
if (count == 0)
count = 2 * aperture_size / (1024*1024) / 3;
total_ram = intel_get_total_ram_mb();
igt_info("Total RAM is %'llu MiB\n", (long long)total_ram);
if (count > total_ram * 3 / 4) {
count = intel_get_total_ram_mb() * 3 / 4;
igt_info("Not enough RAM to run test, reducing buffer count.\n");
}
}
igt_subtest_group {
igt_fixture {
igt_require(has_userptr(fd));
}
igt_subtest("input-checking")
test_input_checking(fd);
igt_subtest("usage-restrictions")
test_usage_restrictions(fd);
igt_subtest("invalid-null-pointer")
test_invalid_null_pointer(fd);
igt_subtest("invalid-gtt-mapping")
test_invalid_gtt_mapping(fd);
igt_subtest("forked-access")
test_forked_access(fd);
igt_subtest("forbidden-operations")
test_forbidden_ops(fd);
igt_subtest("relocations")
test_relocations(fd);
}
igt_subtest_group {
gem_userptr_test_unsynchronized();
igt_fixture {
igt_require(has_userptr(fd));
}
igt_subtest("create-destroy-unsync")
test_create_destroy(fd, 5);
igt_subtest("unsync-overlap")
test_overlap(fd, 0);
igt_subtest("unsync-unmap")
test_unmap(fd, 0);
igt_subtest("unsync-unmap-cycles")
test_unmap_cycles(fd, 0);
igt_subtest("unsync-unmap-after-close")
test_unmap_after_close(fd);
igt_subtest("coherency-unsync")
test_coherency(fd, count);
igt_subtest("dmabuf-unsync")
test_dmabuf();
igt_subtest("readonly-unsync")
test_readonly(fd);
igt_subtest("readonly-mmap-unsync")
test_readonly_mmap(fd);
igt_subtest("readonly-pwrite-unsync")
test_readonly_pwrite(fd);
for (unsigned flags = 0; flags < ALL_FORKING_EVICTIONS + 1; flags++) {
igt_subtest_f("forked-unsync%s%s%s-%s",
flags & FORKING_EVICTIONS_SWAPPING ? "-swapping" : "",
flags & FORKING_EVICTIONS_DUP_DRMFD ? "-multifd" : "",
flags & FORKING_EVICTIONS_MEMORY_PRESSURE ?
"-mempressure" : "",
flags & FORKING_EVICTIONS_INTERRUPTIBLE ?
"interruptible" : "normal") {
test_forking_evictions(fd, size, count, flags);
}
}
igt_subtest("mlocked-unsync-normal")
test_mlocked_evictions(fd, size, count);
igt_subtest("swapping-unsync-normal")
test_swapping_evictions(fd, size, count);
igt_subtest("minor-unsync-normal")
test_minor_evictions(fd, size, count);
igt_subtest("major-unsync-normal") {
size = 200 * 1024 * 1024;
count = (gem_aperture_size(fd) / size) + 2;
test_major_evictions(fd, size, count);
}
igt_fixture {
size = sizeof(linear);
count = 2 * gem_aperture_size(fd) / (1024*1024) / 3;
if (count > total_ram * 3 / 4)
count = intel_get_total_ram_mb() * 3 / 4;
}
igt_fork_signal_helper();
igt_subtest("mlocked-unsync-interruptible")
test_mlocked_evictions(fd, size, count);
igt_subtest("swapping-unsync-interruptible")
test_swapping_evictions(fd, size, count);
igt_subtest("minor-unsync-interruptible")
test_minor_evictions(fd, size, count);
igt_subtest("major-unsync-interruptible") {
size = 200 * 1024 * 1024;
count = (gem_aperture_size(fd) / size) + 2;
test_major_evictions(fd, size, count);
}
igt_stop_signal_helper();
}
igt_subtest_group {
gem_userptr_test_synchronized();
igt_fixture {
igt_require(has_userptr(fd));
size = sizeof(linear);
count = 2 * gem_aperture_size(fd) / (1024*1024) / 3;
if (count > total_ram * 3 / 4)
count = intel_get_total_ram_mb() * 3 / 4;
}
igt_subtest("process-exit")
test_process_exit(fd, 0);
igt_subtest("process-exit-gtt")
test_process_exit(fd, PE_GTT_MAP);
igt_subtest("process-exit-busy")
test_process_exit(fd, PE_BUSY);
igt_subtest("process-exit-gtt-busy")
test_process_exit(fd, PE_GTT_MAP | PE_BUSY);
igt_subtest("create-destroy-sync")
test_create_destroy(fd, 5);
igt_subtest("sync-overlap")
test_overlap(fd, EINVAL);
igt_subtest("sync-unmap")
test_unmap(fd, EFAULT);
igt_subtest("sync-unmap-cycles")
test_unmap_cycles(fd, EFAULT);
igt_subtest("sync-unmap-after-close")
test_unmap_after_close(fd);
igt_subtest("stress-mm")
test_stress_mm(fd);
igt_subtest("stress-mm-invalidate-close")
test_invalidate_close_race(fd, false);
igt_subtest("stress-mm-invalidate-close-overlap")
test_invalidate_close_race(fd, true);
for (unsigned flags = 0; flags < ALL_MAP_FIXED_INVALIDATE + 1; flags++) {
igt_subtest_f("map-fixed-invalidate%s%s%s",
flags & MAP_FIXED_INVALIDATE_OVERLAP ? "-overlap" : "",
flags & MAP_FIXED_INVALIDATE_BUSY ? "-busy" : "",
flags & MAP_FIXED_INVALIDATE_GET_PAGES ? "-gup" : "") {
test_map_fixed_invalidate(fd, flags);
}
}
igt_subtest("coherency-sync")
test_coherency(fd, count);
igt_subtest("dmabuf-sync")
test_dmabuf();
for (unsigned flags = 0; flags < ALL_FORKING_EVICTIONS + 1; flags++) {
igt_subtest_f("forked-sync%s%s%s-%s",
flags & FORKING_EVICTIONS_SWAPPING ? "-swapping" : "",
flags & FORKING_EVICTIONS_DUP_DRMFD ? "-multifd" : "",
flags & FORKING_EVICTIONS_MEMORY_PRESSURE ?
"-mempressure" : "",
flags & FORKING_EVICTIONS_INTERRUPTIBLE ?
"interruptible" : "normal") {
test_forking_evictions(fd, size, count, flags);
}
}
igt_subtest("mlocked-normal-sync")
test_mlocked_evictions(fd, size, count);
igt_subtest("swapping-normal-sync")
test_swapping_evictions(fd, size, count);
igt_subtest("minor-normal-sync")
test_minor_evictions(fd, size, count);
igt_subtest("major-normal-sync") {
size = 200 * 1024 * 1024;
count = (gem_aperture_size(fd) / size) + 2;
test_major_evictions(fd, size, count);
}
igt_fixture {
size = 1024 * 1024;
count = 2 * gem_aperture_size(fd) / (1024*1024) / 3;
if (count > total_ram * 3 / 4)
count = intel_get_total_ram_mb() * 3 / 4;
}
igt_fork_signal_helper();
igt_subtest("mlocked-sync-interruptible")
test_mlocked_evictions(fd, size, count);
igt_subtest("swapping-sync-interruptible")
test_swapping_evictions(fd, size, count);
igt_subtest("minor-sync-interruptible")
test_minor_evictions(fd, size, count);
igt_subtest("major-sync-interruptible") {
size = 200 * 1024 * 1024;
count = (gem_aperture_size(fd) / size) + 2;
test_major_evictions(fd, size, count);
}
igt_stop_signal_helper();
}
igt_subtest("access-control")
test_access_control(fd);
igt_exit();
}