blob: c349c29199db85c8044f818283e66127534c44a2 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <sched.h>
#include <signal.h>
#include <sys/ioctl.h>
#include "igt.h"
#include "igt_rand.h"
#include "igt_vgem.h"
#define LOCAL_EXEC_NO_RELOC (1<<11)
#define PAGE_ALIGN(x) ALIGN(x, 4096)
/* Exercise the busy-ioctl, ensuring the ABI is never broken */
IGT_TEST_DESCRIPTION("Basic check of busy-ioctl ABI.");
enum { TEST = 0, BUSY, BATCH };
static bool gem_busy(int fd, uint32_t handle)
{
struct drm_i915_gem_busy busy;
memset(&busy, 0, sizeof(busy));
busy.handle = handle;
do_ioctl(fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
return busy.busy != 0;
}
static void __gem_busy(int fd,
uint32_t handle,
uint32_t *read,
uint32_t *write)
{
struct drm_i915_gem_busy busy;
memset(&busy, 0, sizeof(busy));
busy.handle = handle;
do_ioctl(fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
*write = busy.busy & 0xffff;
*read = busy.busy >> 16;
}
static bool exec_noop(int fd,
uint32_t *handles,
unsigned ring,
bool write)
{
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 exec[3];
memset(exec, 0, sizeof(exec));
exec[0].handle = handles[BUSY];
exec[1].handle = handles[TEST];
if (write)
exec[1].flags |= EXEC_OBJECT_WRITE;
exec[2].handle = handles[BATCH];
memset(&execbuf, 0, sizeof(execbuf));
execbuf.buffers_ptr = to_user_pointer(exec);
execbuf.buffer_count = 3;
execbuf.flags = ring;
igt_debug("Queuing handle for %s on ring %d\n",
write ? "writing" : "reading", ring & 0x7);
return __gem_execbuf(fd, &execbuf) == 0;
}
static bool still_busy(int fd, uint32_t handle)
{
uint32_t read, write;
__gem_busy(fd, handle, &read, &write);
return write;
}
static void semaphore(int fd, unsigned ring, uint32_t flags)
{
uint32_t bbe = MI_BATCH_BUFFER_END;
igt_spin_t *spin;
uint32_t handle[3];
uint32_t read, write;
uint32_t active;
unsigned i;
gem_require_ring(fd, ring | flags);
handle[TEST] = gem_create(fd, 4096);
handle[BATCH] = gem_create(fd, 4096);
gem_write(fd, handle[BATCH], 0, &bbe, sizeof(bbe));
/* Create a long running batch which we can use to hog the GPU */
handle[BUSY] = gem_create(fd, 4096);
spin = igt_spin_batch_new(fd, 0, ring, handle[BUSY]);
/* Queue a batch after the busy, it should block and remain "busy" */
igt_assert(exec_noop(fd, handle, ring | flags, false));
igt_assert(still_busy(fd, handle[BUSY]));
__gem_busy(fd, handle[TEST], &read, &write);
igt_assert_eq(read, 1 << ring);
igt_assert_eq(write, 0);
/* Requeue with a write */
igt_assert(exec_noop(fd, handle, ring | flags, true));
igt_assert(still_busy(fd, handle[BUSY]));
__gem_busy(fd, handle[TEST], &read, &write);
igt_assert_eq(read, 1 << ring);
igt_assert_eq(write, ring);
/* Now queue it for a read across all available rings */
active = 0;
for (i = I915_EXEC_RENDER; i <= I915_EXEC_VEBOX; i++) {
if (exec_noop(fd, handle, i | flags, false))
active |= 1 << i;
}
igt_assert(still_busy(fd, handle[BUSY]));
__gem_busy(fd, handle[TEST], &read, &write);
igt_assert_eq(read, active);
igt_assert_eq(write, ring); /* from the earlier write */
/* Check that our long batch was long enough */
igt_assert(still_busy(fd, handle[BUSY]));
igt_spin_batch_free(fd, spin);
/* And make sure it becomes idle again */
gem_sync(fd, handle[TEST]);
__gem_busy(fd, handle[TEST], &read, &write);
igt_assert_eq(read, 0);
igt_assert_eq(write, 0);
for (i = TEST; i <= BATCH; i++)
gem_close(fd, handle[i]);
}
#define PARALLEL 1
#define HANG 2
static void one(int fd, unsigned ring, uint32_t flags, unsigned test_flags)
{
const int gen = intel_gen(intel_get_drm_devid(fd));
struct drm_i915_gem_exec_object2 obj[2];
#define SCRATCH 0
#define BATCH 1
struct drm_i915_gem_relocation_entry store[1024+1];
struct drm_i915_gem_execbuffer2 execbuf;
unsigned size = ALIGN(ARRAY_SIZE(store)*16 + 4, 4096);
uint32_t read[2], write[2];
struct timespec tv;
uint32_t *batch, *bbe;
int i, count, timeout;
memset(&execbuf, 0, sizeof(execbuf));
execbuf.buffers_ptr = to_user_pointer(obj);
execbuf.buffer_count = 2;
execbuf.flags = ring | flags;
if (gen < 6)
execbuf.flags |= I915_EXEC_SECURE;
memset(obj, 0, sizeof(obj));
obj[SCRATCH].handle = gem_create(fd, 4096);
obj[BATCH].handle = gem_create(fd, size);
obj[BATCH].relocs_ptr = to_user_pointer(store);
obj[BATCH].relocation_count = ARRAY_SIZE(store);
memset(store, 0, sizeof(store));
batch = gem_mmap__wc(fd, obj[BATCH].handle, 0, size, PROT_WRITE);
gem_set_domain(fd, obj[BATCH].handle,
I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
i = 0;
for (count = 0; count < 1024; count++) {
store[count].target_handle = obj[SCRATCH].handle;
store[count].presumed_offset = -1;
store[count].offset = sizeof(uint32_t) * (i + 1);
store[count].delta = sizeof(uint32_t) * count;
store[count].read_domains = I915_GEM_DOMAIN_INSTRUCTION;
store[count].write_domain = I915_GEM_DOMAIN_INSTRUCTION;
batch[i] = MI_STORE_DWORD_IMM | (gen < 6 ? 1 << 22 : 0);
if (gen >= 8) {
batch[++i] = 0;
batch[++i] = 0;
} else if (gen >= 4) {
batch[++i] = 0;
batch[++i] = 0;
store[count].offset += sizeof(uint32_t);
} else {
batch[i]--;
batch[++i] = 0;
}
batch[++i] = count;
i++;
}
bbe = &batch[i];
store[count].target_handle = obj[BATCH].handle; /* recurse */
store[count].presumed_offset = 0;
store[count].offset = sizeof(uint32_t) * (i + 1);
store[count].delta = 0;
store[count].read_domains = I915_GEM_DOMAIN_COMMAND;
store[count].write_domain = 0;
batch[i] = MI_BATCH_BUFFER_START;
if (gen >= 8) {
batch[i] |= 1 << 8 | 1;
batch[++i] = 0;
batch[++i] = 0;
} else if (gen >= 6) {
batch[i] |= 1 << 8;
batch[++i] = 0;
} else {
batch[i] |= 2 << 6;
batch[++i] = 0;
if (gen < 4) {
batch[i] |= 1;
store[count].delta = 1;
}
}
i++;
igt_assert(i < size/sizeof(*batch));
igt_require(__gem_execbuf(fd, &execbuf) == 0);
__gem_busy(fd, obj[SCRATCH].handle, &read[SCRATCH], &write[SCRATCH]);
__gem_busy(fd, obj[BATCH].handle, &read[BATCH], &write[BATCH]);
if (test_flags & PARALLEL) {
const struct intel_execution_engine *e;
for (e = intel_execution_engines; e->name; e++) {
if (e->exec_id == 0 || e->exec_id == ring)
continue;
if (!gem_has_ring(fd, e->exec_id | e->flags))
continue;
if (!gem_can_store_dword(fd, e->exec_id | e->flags))
continue;
igt_debug("Testing %s in parallel\n", e->name);
one(fd, e->exec_id, e->flags, 0);
}
}
timeout = 120;
if ((test_flags & HANG) == 0) {
*bbe = MI_BATCH_BUFFER_END;
__sync_synchronize();
timeout = 1;
}
igt_assert_eq(write[SCRATCH], ring);
igt_assert_eq_u32(read[SCRATCH], 1 << ring);
igt_assert_eq(write[BATCH], 0);
igt_assert_eq_u32(read[BATCH], 1 << ring);
/* Calling busy in a loop should be enough to flush the rendering */
memset(&tv, 0, sizeof(tv));
while (gem_busy(fd, obj[BATCH].handle))
igt_assert(igt_seconds_elapsed(&tv) < timeout);
igt_assert(!gem_busy(fd, obj[SCRATCH].handle));
munmap(batch, size);
batch = gem_mmap__wc(fd, obj[SCRATCH].handle, 0, 4096, PROT_READ);
for (i = 0; i < 1024; i++)
igt_assert_eq_u32(batch[i], i);
munmap(batch, 4096);
gem_close(fd, obj[BATCH].handle);
gem_close(fd, obj[SCRATCH].handle);
}
static void xchg_u32(void *array, unsigned i, unsigned j)
{
uint32_t *u32 = array;
uint32_t tmp = u32[i];
u32[i] = u32[j];
u32[j] = tmp;
}
struct cork {
int device;
uint32_t handle;
uint32_t fence;
};
static void plug(int fd, struct cork *c)
{
struct vgem_bo bo;
int dmabuf;
c->device = drm_open_driver(DRIVER_VGEM);
bo.width = bo.height = 1;
bo.bpp = 4;
vgem_create(c->device, &bo);
c->fence = vgem_fence_attach(c->device, &bo, VGEM_FENCE_WRITE);
dmabuf = prime_handle_to_fd(c->device, bo.handle);
c->handle = prime_fd_to_handle(fd, dmabuf);
close(dmabuf);
}
static void unplug(struct cork *c)
{
vgem_fence_signal(c->device, c->fence);
close(c->device);
}
static void alarm_handler(int sig)
{
}
static int __execbuf(int fd, struct drm_i915_gem_execbuffer2 *execbuf)
{
return ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, execbuf);
}
static unsigned int measure_ring_size(int fd)
{
struct sigaction sa = { .sa_handler = alarm_handler };
struct drm_i915_gem_exec_object2 obj[2];
struct drm_i915_gem_execbuffer2 execbuf;
const uint32_t bbe = MI_BATCH_BUFFER_END;
unsigned int count, last;
struct itimerval itv;
struct cork c;
memset(obj, 0, sizeof(obj));
obj[1].handle = gem_create(fd, 4096);
gem_write(fd, obj[1].handle, 0, &bbe, sizeof(bbe));
memset(&execbuf, 0, sizeof(execbuf));
execbuf.buffers_ptr = to_user_pointer(obj + 1);
execbuf.buffer_count = 1;
gem_execbuf(fd, &execbuf);
gem_sync(fd, obj[1].handle);
plug(fd, &c);
obj[0].handle = c.handle;
execbuf.buffers_ptr = to_user_pointer(obj);
execbuf.buffer_count = 2;
sigaction(SIGALRM, &sa, NULL);
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 100;
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 1000;
setitimer(ITIMER_REAL, &itv, NULL);
last = -1;
count = 0;
do {
if (__execbuf(fd, &execbuf) == 0) {
count++;
continue;
}
if (last == count)
break;
last = count;
} while (1);
memset(&itv, 0, sizeof(itv));
setitimer(ITIMER_REAL, &itv, NULL);
unplug(&c);
gem_close(fd, obj[1].handle);
gem_quiescent_gpu(fd);
return count;
}
static void close_race(int fd)
{
const unsigned int ncpus = sysconf(_SC_NPROCESSORS_ONLN);
const unsigned int nhandles = measure_ring_size(fd) / 2;
unsigned int engines[16], nengine;
unsigned long *control;
uint32_t *handles;
int i;
igt_require(ncpus > 1);
intel_require_memory(nhandles, 4096, CHECK_RAM);
/*
* One thread spawning work and randomly closing handles.
* One background thread per cpu checking busyness.
*/
nengine = 0;
for_each_engine(fd, i)
engines[nengine++] = i;
igt_require(nengine);
control = mmap(NULL, 4096, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
igt_assert(control != MAP_FAILED);
handles = mmap(NULL, PAGE_ALIGN(nhandles*sizeof(*handles)),
PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
igt_assert(handles != MAP_FAILED);
igt_fork(child, ncpus - 1) {
struct drm_i915_gem_busy busy;
uint32_t indirection[nhandles];
unsigned long count = 0;
for (i = 0; i < nhandles; i++)
indirection[i] = i;
hars_petruska_f54_1_random_perturb(child);
memset(&busy, 0, sizeof(busy));
do {
igt_permute_array(indirection, nhandles, xchg_u32);
__sync_synchronize();
for (i = 0; i < nhandles; i++) {
busy.handle = handles[indirection[i]];
/* Check that the busy computation doesn't
* explode in the face of random gem_close().
*/
drmIoctl(fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
}
count++;
} while(*(volatile long *)control == 0);
igt_debug("child[%d]: count = %lu\n", child, count);
control[child + 1] = count;
}
igt_fork(child, 1) {
struct sched_param rt = {.sched_priority = 99 };
igt_spin_t *spin[nhandles];
unsigned long count = 0;
igt_assert(sched_setscheduler(getpid(), SCHED_RR, &rt) == 0);
for (i = 0; i < nhandles; i++) {
spin[i] = __igt_spin_batch_new(fd, 0,
engines[rand() % nengine], 0);
handles[i] = spin[i]->handle;
}
igt_until_timeout(20) {
for (i = 0; i < nhandles; i++) {
igt_spin_batch_free(fd, spin[i]);
spin[i] = __igt_spin_batch_new(fd, 0,
engines[rand() % nengine],
0);
handles[i] = spin[i]->handle;
__sync_synchronize();
}
count += nhandles;
}
control[0] = count;
__sync_synchronize();
for (i = 0; i < nhandles; i++)
igt_spin_batch_free(fd, spin[i]);
}
igt_waitchildren();
for (i = 0; i < ncpus - 1; i++)
control[ncpus] += control[i + 1];
igt_info("Total execs %lu, busy-ioctls %lu\n",
control[0], control[ncpus] * nhandles);
munmap(handles, PAGE_ALIGN(nhandles * sizeof(*handles)));
munmap(control, 4096);
gem_quiescent_gpu(fd);
}
static bool has_semaphores(int fd)
{
struct drm_i915_getparam gp;
int val = -1;
memset(&gp, 0, sizeof(gp));
gp.param = I915_PARAM_HAS_SEMAPHORES;
gp.value = &val;
drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
errno = 0;
return val > 0;
}
static bool has_extended_busy_ioctl(int fd)
{
igt_spin_t *spin = igt_spin_batch_new(fd, 0, I915_EXEC_RENDER, 0);
uint32_t read, write;
__gem_busy(fd, spin->handle, &read, &write);
igt_spin_batch_free(fd, spin);
return read != 0;
}
static void basic(int fd, unsigned ring, unsigned flags)
{
igt_spin_t *spin = igt_spin_batch_new(fd, 0, ring, 0);
struct timespec tv;
int timeout;
bool busy;
busy = gem_bo_busy(fd, spin->handle);
timeout = 120;
if ((flags & HANG) == 0) {
igt_spin_batch_end(spin);
timeout = 1;
}
igt_assert(busy);
memset(&tv, 0, sizeof(tv));
while (gem_bo_busy(fd, spin->handle)) {
if (igt_seconds_elapsed(&tv) > timeout) {
igt_debugfs_dump(fd, "i915_engine_info");
igt_debugfs_dump(fd, "i915_hangcheck_info");
igt_assert_f(igt_seconds_elapsed(&tv) < timeout,
"%s batch did not complete within %ds\n",
flags & HANG ? "Hanging" : "Normal",
timeout);
}
}
igt_spin_batch_free(fd, spin);
}
igt_main
{
const struct intel_execution_engine *e;
int fd = -1;
igt_fixture {
fd = drm_open_driver_master(DRIVER_INTEL);
igt_require_gem(fd);
igt_require(gem_can_store_dword(fd, 0));
}
igt_subtest_group {
igt_fixture {
igt_fork_hang_detector(fd);
}
for (e = intel_execution_engines; e->name; e++) {
igt_subtest_group {
igt_subtest_f("%sbusy-%s",
e->exec_id == 0 ? "basic-" : "",
e->name) {
igt_require(gem_has_ring(fd, e->exec_id | e->flags));
gem_quiescent_gpu(fd);
basic(fd, e->exec_id | e->flags, 0);
}
}
}
igt_subtest_group {
igt_fixture {
igt_require(has_extended_busy_ioctl(fd));
gem_require_mmap_wc(fd);
}
for (e = intel_execution_engines; e->name; e++) {
/* default exec-id is purely symbolic */
if (e->exec_id == 0)
continue;
igt_subtest_f("extended-%s", e->name) {
gem_require_ring(fd, e->exec_id | e->flags);
igt_require(gem_can_store_dword(fd, e->exec_id | e->flags));
gem_quiescent_gpu(fd);
one(fd, e->exec_id, e->flags, 0);
gem_quiescent_gpu(fd);
}
}
for (e = intel_execution_engines; e->name; e++) {
/* default exec-id is purely symbolic */
if (e->exec_id == 0)
continue;
igt_subtest_f("extended-parallel-%s", e->name) {
gem_require_ring(fd, e->exec_id | e->flags);
igt_require(gem_can_store_dword(fd, e->exec_id | e->flags));
gem_quiescent_gpu(fd);
one(fd, e->exec_id, e->flags, PARALLEL);
gem_quiescent_gpu(fd);
}
}
}
igt_subtest_group {
igt_fixture {
igt_require(has_extended_busy_ioctl(fd));
igt_require(has_semaphores(fd));
}
for (e = intel_execution_engines; e->name; e++) {
/* default exec-id is purely symbolic */
if (e->exec_id == 0)
continue;
igt_subtest_f("extended-semaphore-%s", e->name)
semaphore(fd, e->exec_id, e->flags);
}
}
igt_subtest("close-race")
close_race(fd);
igt_fixture {
igt_stop_hang_detector();
}
}
igt_subtest_group {
igt_hang_t hang;
igt_fixture {
hang = igt_allow_hang(fd, 0, 0);
}
for (e = intel_execution_engines; e->name; e++) {
igt_subtest_f("%shang-%s",
e->exec_id == 0 ? "basic-" : "",
e->name) {
igt_skip_on_simulation();
igt_require(gem_has_ring(fd, e->exec_id | e->flags));
gem_quiescent_gpu(fd);
basic(fd, e->exec_id | e->flags, HANG);
}
}
igt_subtest_group {
igt_fixture {
igt_require(has_extended_busy_ioctl(fd));
gem_require_mmap_wc(fd);
}
for (e = intel_execution_engines; e->name; e++) {
/* default exec-id is purely symbolic */
if (e->exec_id == 0)
continue;
igt_subtest_f("extended-hang-%s", e->name) {
igt_skip_on_simulation();
gem_require_ring(fd, e->exec_id | e->flags);
igt_require(gem_can_store_dword(fd, e->exec_id | e->flags));
gem_quiescent_gpu(fd);
one(fd, e->exec_id, e->flags, HANG);
gem_quiescent_gpu(fd);
}
}
}
igt_fixture {
igt_disallow_hang(fd, hang);
}
}
igt_fixture {
close(fd);
}
}