blob: 173772bf91d9078a73232680ad3bd98eccd3ff6e [file] [log] [blame]
/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "intel_bios.h"
#include "intel_io.h"
#include "intel_chipset.h"
#include "drmtest.h"
static uint32_t devid = -1;
/* no bother to include "edid.h" */
#define _H_ACTIVE(x) (x[2] + ((x[4] & 0xF0) << 4))
#define _H_SYNC_OFF(x) (x[8] + ((x[11] & 0xC0) << 2))
#define _H_SYNC_WIDTH(x) (x[9] + ((x[11] & 0x30) << 4))
#define _H_BLANK(x) (x[3] + ((x[4] & 0x0F) << 8))
#define _V_ACTIVE(x) (x[5] + ((x[7] & 0xF0) << 4))
#define _V_SYNC_OFF(x) ((x[10] >> 4) + ((x[11] & 0x0C) << 2))
#define _V_SYNC_WIDTH(x) ((x[10] & 0x0F) + ((x[11] & 0x03) << 4))
#define _V_BLANK(x) (x[6] + ((x[7] & 0x0F) << 8))
#define _PIXEL_CLOCK(x) (x[0] + (x[1] << 8)) * 10000
uint8_t *VBIOS;
#define INTEL_BIOS_8(_addr) (VBIOS[_addr])
#define INTEL_BIOS_16(_addr) (VBIOS[_addr] | \
(VBIOS[_addr + 1] << 8))
#define INTEL_BIOS_32(_addr) (VBIOS[_addr] | \
(VBIOS[_addr + 1] << 8) | \
(VBIOS[_addr + 2] << 16) | \
(VBIOS[_addr + 3] << 24))
#define YESNO(val) ((val) ? "yes" : "no")
struct bdb_block {
uint8_t id;
uint16_t size;
void *data;
};
struct bdb_header *bdb;
struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
static int tv_present;
static int lvds_present;
static int panel_type;
static struct bdb_block *find_section(int section_id, int length)
{
struct bdb_block *block;
unsigned char *base = (unsigned char *)bdb;
int idx = 0;
uint16_t total, current_size;
unsigned char current_id;
/* skip to first section */
idx += bdb->header_size;
total = bdb->bdb_size;
if (total > length)
total = length;
block = malloc(sizeof(*block));
if (!block) {
fprintf(stderr, "out of memory\n");
exit(-1);
}
/* walk the sections looking for section_id */
while (idx + 3 < total) {
current_id = *(base + idx);
current_size = *(uint16_t *)(base + idx + 1);
if (idx + current_size > total)
return NULL;
if (current_id == section_id) {
block->id = current_id;
block->size = current_size;
block->data = base + idx + 3;
return block;
}
idx += current_size + 3;
}
free(block);
return NULL;
}
static void dump_general_features(const struct bdb_block *block)
{
struct bdb_general_features *features = block->data;
printf("\tPanel fitting: ");
switch (features->panel_fitting) {
case 0:
printf("disabled\n");
break;
case 1:
printf("text only\n");
break;
case 2:
printf("graphics only\n");
break;
case 3:
printf("text & graphics\n");
break;
}
printf("\tFlexaim: %s\n", YESNO(features->flexaim));
printf("\tMessage: %s\n", YESNO(features->msg_enable));
printf("\tClear screen: %d\n", features->clear_screen);
printf("\tDVO color flip required: %s\n", YESNO(features->color_flip));
printf("\tExternal VBT: %s\n", YESNO(features->download_ext_vbt));
printf("\tEnable SSC: %s\n", YESNO(features->enable_ssc));
if (features->enable_ssc) {
if (HAS_PCH_SPLIT(devid))
printf("\tSSC frequency: %s\n", features->ssc_freq ?
"100 MHz" : "120 MHz");
else
printf("\tSSC frequency: %s\n", features->ssc_freq ?
"100 MHz (66 MHz on 855)" : "96 MHz (48 MHz on 855)");
}
printf("\tLFP on override: %s\n",
YESNO(features->enable_lfp_on_override));
printf("\tDisable SSC on clone: %s\n",
YESNO(features->disable_ssc_ddt));
printf("\tDisable smooth vision: %s\n",
YESNO(features->disable_smooth_vision));
printf("\tSingle DVI for CRT/DVI: %s\n", YESNO(features->single_dvi));
printf("\tLegacy monitor detect: %s\n",
YESNO(features->legacy_monitor_detect));
printf("\tIntegrated CRT: %s\n", YESNO(features->int_crt_support));
printf("\tIntegrated TV: %s\n", YESNO(features->int_tv_support));
tv_present = 1; /* should be based on whether TV DAC exists */
lvds_present = 1; /* should be based on IS_MOBILE() */
}
static void dump_backlight_info(const struct bdb_block *block)
{
struct bdb_lvds_backlight *backlight = block->data;
struct blc_struct *blc;
if (sizeof(struct blc_struct) != backlight->blcstruct_size) {
printf("\tBacklight struct sizes don't match (expected %zu, got %u), skipping\n",
sizeof(struct blc_struct), backlight->blcstruct_size);
return;
}
blc = &backlight->panels[panel_type];
printf("\tInverter type: %d\n", blc->inverter_type);
printf("\t polarity: %d\n", blc->inverter_polarity);
printf("\t GPIO pins: %d\n", blc->gpio_pins);
printf("\t GMBUS speed: %d\n", blc->gmbus_speed);
printf("\t PWM freq: %d\n", blc->pwm_freq);
printf("\tMinimum brightness: %d\n", blc->min_brightness);
printf("\tI2C slave addr: 0x%02x\n", blc->i2c_slave_addr);
printf("\tI2C command: 0x%02x\n", blc->i2c_cmd);
}
static const struct {
unsigned short type;
const char *name;
} child_device_types[] = {
{ DEVICE_TYPE_NONE, "none" },
{ DEVICE_TYPE_CRT, "CRT" },
{ DEVICE_TYPE_TV, "TV" },
{ DEVICE_TYPE_EFP, "EFP" },
{ DEVICE_TYPE_LFP, "LFP" },
{ DEVICE_TYPE_CRT_DPMS, "CRT" },
{ DEVICE_TYPE_CRT_DPMS_HOTPLUG, "CRT" },
{ DEVICE_TYPE_TV_COMPOSITE, "TV composite" },
{ DEVICE_TYPE_TV_MACROVISION, "TV" },
{ DEVICE_TYPE_TV_RF_COMPOSITE, "TV" },
{ DEVICE_TYPE_TV_SVIDEO_COMPOSITE, "TV S-Video" },
{ DEVICE_TYPE_TV_SCART, "TV SCART" },
{ DEVICE_TYPE_TV_CODEC_HOTPLUG_PWR, "TV" },
{ DEVICE_TYPE_EFP_HOTPLUG_PWR, "EFP" },
{ DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR, "DVI" },
{ DEVICE_TYPE_EFP_DVI_I, "DVI-I" },
{ DEVICE_TYPE_EFP_DVI_D_DUAL, "DL-DVI-D" },
{ DEVICE_TYPE_EFP_DVI_D_HDCP, "DVI-D" },
{ DEVICE_TYPE_OPENLDI_HOTPLUG_PWR, "OpenLDI" },
{ DEVICE_TYPE_OPENLDI_DUALPIX, "OpenLDI" },
{ DEVICE_TYPE_LFP_PANELLINK, "PanelLink" },
{ DEVICE_TYPE_LFP_CMOS_PWR, "CMOS LFP" },
{ DEVICE_TYPE_LFP_LVDS_PWR, "LVDS" },
{ DEVICE_TYPE_LFP_LVDS_DUAL, "LVDS" },
{ DEVICE_TYPE_LFP_LVDS_DUAL_HDCP, "LVDS" },
{ DEVICE_TYPE_INT_LFP, "LFP" },
{ DEVICE_TYPE_INT_TV, "TV" },
{ DEVICE_TYPE_DP, "DisplayPort" },
{ DEVICE_TYPE_DP_HDMI_DVI, "DisplayPort/HDMI/DVI" },
{ DEVICE_TYPE_DP_DVI, "DisplayPort/DVI" },
{ DEVICE_TYPE_HDMI_DVI, "HDMI/DVI" },
{ DEVICE_TYPE_DVI, "DVI" },
{ DEVICE_TYPE_eDP, "eDP" },
};
static const int num_child_device_types =
sizeof(child_device_types) / sizeof(child_device_types[0]);
static const char *child_device_type(unsigned short type)
{
int i;
for (i = 0; i < num_child_device_types; i++)
if (child_device_types[i].type == type)
return child_device_types[i].name;
return "unknown";
}
static const struct {
unsigned short type;
const char *name;
} efp_ports[] = {
{ DEVICE_PORT_NONE, "N/A" },
{ DEVICE_PORT_HDMIB, "HDMI-B" },
{ DEVICE_PORT_HDMIC, "HDMI-C" },
{ DEVICE_PORT_HDMID, "HDMI-D" },
{ DEVICE_PORT_DPB, "DP-B" },
{ DEVICE_PORT_DPC, "DP-C" },
{ DEVICE_PORT_DPD, "DP-D" },
};
static const int num_efp_ports = sizeof(efp_ports) / sizeof(efp_ports[0]);
static const char *efp_port(uint8_t type)
{
int i;
for (i = 0; i < num_efp_ports; i++)
if (efp_ports[i].type == type)
return efp_ports[i].name;
return "unknown";
}
static const struct {
unsigned short type;
const char *name;
} efp_conn_info[] = {
{ DEVICE_INFO_NONE, "N/A" },
{ DEVICE_INFO_HDMI_CERT, "HDMI certified" },
{ DEVICE_INFO_DP, "DisplayPort" },
{ DEVICE_INFO_DVI, "DVI" },
};
static const int num_efp_conn_info = sizeof(efp_conn_info) / sizeof(efp_conn_info[0]);
static const char *efp_conn(uint8_t type)
{
int i;
for (i = 0; i < num_efp_conn_info; i++)
if (efp_conn_info[i].type == type)
return efp_conn_info[i].name;
return "unknown";
}
static void dump_child_device(struct child_device_config *child)
{
char child_id[11];
if (!child->device_type)
return;
if (bdb->version < 152) {
strncpy(child_id, (char *)child->device_id, 10);
child_id[10] = 0;
printf("\tChild device info:\n");
printf("\t\tDevice type: %04x (%s)\n", child->device_type,
child_device_type(child->device_type));
printf("\t\tSignature: %s\n", child_id);
printf("\t\tAIM offset: %d\n", child->addin_offset);
printf("\t\tDVO port: 0x%02x\n", child->dvo_port);
} else { /* 152+ have EFP blocks here */
struct efp_child_device_config *efp =
(struct efp_child_device_config *)child;
printf("\tEFP device info:\n");
printf("\t\tDevice type: 0x%04x (%s)\n", efp->device_type,
child_device_type(efp->device_type));
printf("\t\tPort: 0x%02x (%s)\n", efp->port,
efp_port(efp->port));
printf("\t\tDDC pin: 0x%02x\n", efp->ddc_pin);
printf("\t\tDock port: 0x%02x (%s)\n", efp->docked_port,
efp_port(efp->docked_port));
printf("\t\tHDMI compatible? %s\n", efp->hdmi_compat ? "Yes" : "No");
printf("\t\tInfo: %s\n", efp_conn(efp->conn_info));
printf("\t\tAux channel: 0x%02x\n", efp->aux_chan);
printf("\t\tDongle detect: 0x%02x\n", efp->dongle_detect);
}
}
static void dump_general_definitions(const struct bdb_block *block)
{
struct bdb_general_definitions *defs = block->data;
struct child_device_config *child;
int i;
int child_device_num;
printf("\tCRT DDC GMBUS addr: 0x%02x\n", defs->crt_ddc_gmbus_pin);
printf("\tUse ACPI DPMS CRT power states: %s\n",
YESNO(defs->dpms_acpi));
printf("\tSkip CRT detect at boot: %s\n",
YESNO(defs->skip_boot_crt_detect));
printf("\tUse DPMS on AIM devices: %s\n", YESNO(defs->dpms_aim));
printf("\tBoot display type: 0x%02x%02x\n", defs->boot_display[1],
defs->boot_display[0]);
printf("\tTV data block present: %s\n", YESNO(tv_present));
child_device_num = (block->size - sizeof(*defs)) / sizeof(*child);
for (i = 0; i < child_device_num; i++)
dump_child_device(&defs->devices[i]);
}
static void dump_child_devices(const struct bdb_block *block)
{
struct bdb_child_devices *child_devs = block->data;
struct child_device_config *child;
int i;
for (i = 0; i < DEVICE_CHILD_SIZE; i++) {
child = &child_devs->children[i];
/* Skip nonexistent children */
if (!child->device_type)
continue;
printf("\tChild device %d\n", i);
printf("\t\tType: 0x%04x (%s)\n", child->device_type,
child_device_type(child->device_type));
printf("\t\tDVO port: 0x%02x\n", child->dvo_port);
printf("\t\tI2C pin: 0x%02x\n", child->i2c_pin);
printf("\t\tSlave addr: 0x%02x\n", child->slave_addr);
printf("\t\tDDC pin: 0x%02x\n", child->ddc_pin);
printf("\t\tDVO config: 0x%02x\n", child->dvo_cfg);
printf("\t\tDVO wiring: 0x%02x\n", child->dvo_wiring);
}
}
static void dump_lvds_options(const struct bdb_block *block)
{
struct bdb_lvds_options *options = block->data;
panel_type = options->panel_type;
printf("\tPanel type: %d\n", panel_type);
printf("\tLVDS EDID available: %s\n", YESNO(options->lvds_edid));
printf("\tPixel dither: %s\n", YESNO(options->pixel_dither));
printf("\tPFIT auto ratio: %s\n", YESNO(options->pfit_ratio_auto));
printf("\tPFIT enhanced graphics mode: %s\n",
YESNO(options->pfit_gfx_mode_enhanced));
printf("\tPFIT enhanced text mode: %s\n",
YESNO(options->pfit_text_mode_enhanced));
printf("\tPFIT mode: %d\n", options->pfit_mode);
}
static void dump_lvds_ptr_data(const struct bdb_block *block)
{
struct bdb_lvds_lfp_data_ptrs *ptrs = block->data;
printf("\tNumber of entries: %d\n", ptrs->lvds_entries);
/* save for use by dump_lvds_data() */
lvds_lfp_data_ptrs = ptrs;
}
static void dump_lvds_data(const struct bdb_block *block)
{
struct bdb_lvds_lfp_data *lvds_data = block->data;
struct bdb_lvds_lfp_data_ptrs *ptrs = lvds_lfp_data_ptrs;
int num_entries;
int i;
int hdisplay, hsyncstart, hsyncend, htotal;
int vdisplay, vsyncstart, vsyncend, vtotal;
float clock;
int lfp_data_size, dvo_offset;
if (!ptrs) {
printf("No LVDS ptr block\n");
return;
}
lfp_data_size =
ptrs->ptr[1].fp_timing_offset - ptrs->ptr[0].fp_timing_offset;
dvo_offset =
ptrs->ptr[0].dvo_timing_offset - ptrs->ptr[0].fp_timing_offset;
num_entries = block->size / lfp_data_size;
printf(" Number of entries: %d (preferred block marked with '*')\n",
num_entries);
for (i = 0; i < num_entries; i++) {
uint8_t *lfp_data_ptr =
(uint8_t *) lvds_data->data + lfp_data_size * i;
uint8_t *timing_data = lfp_data_ptr + dvo_offset;
struct bdb_lvds_lfp_data_entry *lfp_data =
(struct bdb_lvds_lfp_data_entry *)lfp_data_ptr;
char marker;
if (i == panel_type)
marker = '*';
else
marker = ' ';
hdisplay = _H_ACTIVE(timing_data);
hsyncstart = hdisplay + _H_SYNC_OFF(timing_data);
hsyncend = hsyncstart + _H_SYNC_WIDTH(timing_data);
htotal = hdisplay + _H_BLANK(timing_data);
vdisplay = _V_ACTIVE(timing_data);
vsyncstart = vdisplay + _V_SYNC_OFF(timing_data);
vsyncend = vsyncstart + _V_SYNC_WIDTH(timing_data);
vtotal = vdisplay + _V_BLANK(timing_data);
clock = _PIXEL_CLOCK(timing_data) / 1000;
printf("%c\tpanel type %02i: %dx%d clock %d\n", marker,
i, lfp_data->fp_timing.x_res, lfp_data->fp_timing.y_res,
_PIXEL_CLOCK(timing_data));
printf("\t\tinfo:\n");
printf("\t\t LVDS: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.lvds_reg_val);
printf("\t\t PP_ON_DELAYS: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pp_on_reg_val);
printf("\t\t PP_OFF_DELAYS: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pp_off_reg_val);
printf("\t\t PP_DIVISOR: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pp_cycle_reg_val);
printf("\t\t PFIT: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pfit_reg_val);
printf("\t\ttimings: %d %d %d %d %d %d %d %d %.2f (%s)\n",
hdisplay, hsyncstart, hsyncend, htotal,
vdisplay, vsyncstart, vsyncend, vtotal, clock,
(hsyncend > htotal || vsyncend > vtotal) ?
"BAD!" : "good");
}
}
static void dump_driver_feature(const struct bdb_block *block)
{
struct bdb_driver_feature *feature = block->data;
printf("\tBoot Device Algorithm: %s\n", feature->boot_dev_algorithm ?
"driver default" : "os default");
printf("\tBlock display switching when DVD active: %s\n",
YESNO(feature->block_display_switch));
printf("\tAllow display switching when in Full Screen DOS: %s\n",
YESNO(feature->allow_display_switch));
printf("\tHot Plug DVO: %s\n", YESNO(feature->hotplug_dvo));
printf("\tDual View Zoom: %s\n", YESNO(feature->dual_view_zoom));
printf("\tDriver INT 15h hook: %s\n", YESNO(feature->int15h_hook));
printf("\tEnable Sprite in Clone Mode: %s\n",
YESNO(feature->sprite_in_clone));
printf("\tUse 00000110h ID for Primary LFP: %s\n",
YESNO(feature->primary_lfp_id));
printf("\tBoot Mode X: %u\n", feature->boot_mode_x);
printf("\tBoot Mode Y: %u\n", feature->boot_mode_y);
printf("\tBoot Mode Bpp: %u\n", feature->boot_mode_bpp);
printf("\tBoot Mode Refresh: %u\n", feature->boot_mode_refresh);
printf("\tEnable LFP as primary: %s\n",
YESNO(feature->enable_lfp_primary));
printf("\tSelective Mode Pruning: %s\n",
YESNO(feature->selective_mode_pruning));
printf("\tDual-Frequency Graphics Technology: %s\n",
YESNO(feature->dual_frequency));
printf("\tDefault Render Clock Frequency: %s\n",
feature->render_clock_freq ? "low" : "high");
printf("\tNT 4.0 Dual Display Clone Support: %s\n",
YESNO(feature->nt_clone_support));
printf("\tDefault Power Scheme user interface: %s\n",
feature->power_scheme_ui ? "3rd party" : "CUI");
printf
("\tSprite Display Assignment when Overlay is Active in Clone Mode: %s\n",
feature->sprite_display_assign ? "primary" : "secondary");
printf("\tDisplay Maintain Aspect Scaling via CUI: %s\n",
YESNO(feature->cui_aspect_scaling));
printf("\tPreserve Aspect Ratio: %s\n",
YESNO(feature->preserve_aspect_ratio));
printf("\tEnable SDVO device power down: %s\n",
YESNO(feature->sdvo_device_power_down));
printf("\tCRT hotplug: %s\n", YESNO(feature->crt_hotplug));
printf("\tLVDS config: ");
switch (feature->lvds_config) {
case BDB_DRIVER_NO_LVDS:
printf("No LVDS\n");
break;
case BDB_DRIVER_INT_LVDS:
printf("Integrated LVDS\n");
break;
case BDB_DRIVER_SDVO_LVDS:
printf("SDVO LVDS\n");
break;
case BDB_DRIVER_EDP:
printf("Embedded DisplayPort\n");
break;
}
printf("\tDefine Display statically: %s\n",
YESNO(feature->static_display));
printf("\tLegacy CRT max X: %d\n", feature->legacy_crt_max_x);
printf("\tLegacy CRT max Y: %d\n", feature->legacy_crt_max_y);
printf("\tLegacy CRT max refresh: %d\n",
feature->legacy_crt_max_refresh);
}
static void dump_edp(const struct bdb_block *block)
{
struct bdb_edp *edp = block->data;
int bpp, msa;
int i;
for (i = 0; i < 16; i++) {
printf("\tPanel %d%s\n", i, panel_type == i ? " *" : "");
printf("\t\tPower Sequence: T3 %d T7 %d T9 %d T10 %d T12 %d\n",
edp->power_seqs[i].t3,
edp->power_seqs[i].t7,
edp->power_seqs[i].t9,
edp->power_seqs[i].t10,
edp->power_seqs[i].t12);
bpp = (edp->color_depth >> (i * 2)) & 3;
printf("\t\tPanel color depth: ");
switch (bpp) {
case EDP_18BPP:
printf("18 bpp\n");
break;
case EDP_24BPP:
printf("24 bpp\n");
break;
case EDP_30BPP:
printf("30 bpp\n");
break;
default:
printf("(unknown value %d)\n", bpp);
break;
}
msa = (edp->sdrrs_msa_timing_delay >> (i * 2)) & 3;
printf("\t\teDP sDRRS MSA Delay: Lane %d\n", msa + 1);
printf("\t\tLink params:\n");
printf("\t\t\trate: ");
if (edp->link_params[i].rate == EDP_RATE_1_62)
printf("1.62G\n");
else if (edp->link_params[i].rate == EDP_RATE_2_7)
printf("2.7G\n");
printf("\t\t\tlanes: ");
switch (edp->link_params[i].lanes) {
case EDP_LANE_1:
printf("x1 mode\n");
break;
case EDP_LANE_2:
printf("x2 mode\n");
break;
case EDP_LANE_4:
printf("x4 mode\n");
break;
default:
printf("(unknown value %d)\n",
edp->link_params[i].lanes);
break;
}
printf("\t\t\tpre-emphasis: ");
switch (edp->link_params[i].preemphasis) {
case EDP_PREEMPHASIS_NONE:
printf("none\n");
break;
case EDP_PREEMPHASIS_3_5dB:
printf("3.5dB\n");
break;
case EDP_PREEMPHASIS_6dB:
printf("6dB\n");
break;
case EDP_PREEMPHASIS_9_5dB:
printf("9.5dB\n");
break;
default:
printf("(unknown value %d)\n",
edp->link_params[i].preemphasis);
break;
}
printf("\t\t\tvswing: ");
switch (edp->link_params[i].vswing) {
case EDP_VSWING_0_4V:
printf("0.4V\n");
break;
case EDP_VSWING_0_6V:
printf("0.6V\n");
break;
case EDP_VSWING_0_8V:
printf("0.8V\n");
break;
case EDP_VSWING_1_2V:
printf("1.2V\n");
break;
default:
printf("(unknown value %d)\n",
edp->link_params[i].vswing);
break;
}
}
}
static void
print_detail_timing_data(struct lvds_dvo_timing2 *dvo_timing)
{
int display, sync_start, sync_end, total;
display = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo;
sync_start = display +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
sync_end = sync_start + dvo_timing->hsync_pulse_width;
total = display +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
printf("\thdisplay: %d\n", display);
printf("\thsync [%d, %d] %s\n", sync_start, sync_end,
dvo_timing->hsync_positive ? "+sync" : "-sync");
printf("\thtotal: %d\n", total);
display = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo;
sync_start = display + dvo_timing->vsync_off;
sync_end = sync_start + dvo_timing->vsync_pulse_width;
total = display +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
printf("\tvdisplay: %d\n", display);
printf("\tvsync [%d, %d] %s\n", sync_start, sync_end,
dvo_timing->vsync_positive ? "+sync" : "-sync");
printf("\tvtotal: %d\n", total);
printf("\tclock: %d\n", dvo_timing->clock * 10);
}
static void dump_sdvo_panel_dtds(const struct bdb_block *block)
{
struct lvds_dvo_timing2 *dvo_timing = block->data;
int n, count;
count = block->size / sizeof(struct lvds_dvo_timing2);
for (n = 0; n < count; n++) {
printf("%d:\n", n);
print_detail_timing_data(dvo_timing++);
}
}
static void dump_sdvo_lvds_options(const struct bdb_block *block)
{
struct bdb_sdvo_lvds_options *options = block->data;
printf("\tbacklight: %d\n", options->panel_backlight);
printf("\th40 type: %d\n", options->h40_set_panel_type);
printf("\ttype: %d\n", options->panel_type);
printf("\tssc_clk_freq: %d\n", options->ssc_clk_freq);
printf("\tals_low_trip: %d\n", options->als_low_trip);
printf("\tals_high_trip: %d\n", options->als_high_trip);
/*
u8 sclalarcoeff_tab_row_num;
u8 sclalarcoeff_tab_row_size;
u8 coefficient[8];
*/
printf("\tmisc[0]: %x\n", options->panel_misc_bits_1);
printf("\tmisc[1]: %x\n", options->panel_misc_bits_2);
printf("\tmisc[2]: %x\n", options->panel_misc_bits_3);
printf("\tmisc[3]: %x\n", options->panel_misc_bits_4);
}
static int
get_device_id(unsigned char *bios)
{
int device;
int offset = (bios[0x19] << 8) + bios[0x18];
if (bios[offset] != 'P' ||
bios[offset+1] != 'C' ||
bios[offset+2] != 'I' ||
bios[offset+3] != 'R')
return -1;
device = (bios[offset+7] << 8) + bios[offset+6];
return device;
}
struct dumper {
uint8_t id;
const char *name;
void (*dump)(const struct bdb_block *block);
};
struct dumper dumpers[] = {
{
.id = BDB_GENERAL_FEATURES,
.name = "General features block",
.dump = dump_general_features,
},
{
.id = BDB_GENERAL_DEFINITIONS,
.name = "General definitions block",
.dump = dump_general_definitions,
},
{
.id = BDB_CHILD_DEVICE_TABLE,
.name = "Child devices block",
.dump = dump_child_devices,
},
{
.id = BDB_LVDS_OPTIONS,
.name = "LVDS options block",
.dump = dump_lvds_options,
},
{
.id = BDB_LVDS_LFP_DATA_PTRS,
.name = "LVDS timing pointer data",
.dump = dump_lvds_ptr_data,
},
{
.id = BDB_LVDS_LFP_DATA,
.name = "LVDS panel data block",
.dump = dump_lvds_data,
},
{
.id = BDB_LVDS_BACKLIGHT,
.name = "Backlight info block",
.dump = dump_backlight_info,
},
{
.id = BDB_SDVO_LVDS_OPTIONS,
.name = "SDVO LVDS options block",
.dump = dump_sdvo_lvds_options,
},
{
.id = BDB_SDVO_PANEL_DTDS,
.name = "SDVO panel dtds",
.dump = dump_sdvo_panel_dtds,
},
{
.id = BDB_DRIVER_FEATURES,
.name = "Driver feature data block",
.dump = dump_driver_feature,
},
{
.id = BDB_EDP,
.name = "eDP block",
.dump = dump_edp,
},
};
static void hex_dump(const struct bdb_block *block)
{
int i;
uint8_t *p = block->data;
for (i = 0; i < block->size; i++) {
if (i % 16 == 0)
printf("\t%04x: ", i);
printf("%02x", p[i]);
if (i % 16 == 15) {
if (i + 1 < block->size)
printf("\n");
} else if (i % 8 == 7) {
printf(" ");
} else {
printf(" ");
}
}
printf("\n\n");
}
static void dump_section(int section_id, int size)
{
struct dumper *dumper = NULL;
const struct bdb_block *block;
static int done[256];
int i;
if (done[section_id])
return;
done[section_id] = 1;
block = find_section(section_id, size);
if (!block)
return;
for (i = 0; i < ARRAY_SIZE(dumpers); i++) {
if (block->id == dumpers[i].id) {
dumper = &dumpers[i];
break;
}
}
if (dumper && dumper->name)
printf("BDB block %d - %s:\n", block->id, dumper->name);
else
printf("BDB block %d:\n", block->id);
hex_dump(block);
if (dumper && dumper->dump)
dumper->dump(block);
printf("\n");
}
int main(int argc, char **argv)
{
int fd;
struct vbt_header *vbt = NULL;
int vbt_off, bdb_off, i;
const char *filename = "bios";
struct stat finfo;
int size;
struct bdb_block *block;
char signature[17];
char *devid_string;
if (argc != 2) {
printf("usage: %s <rom file>\n", argv[0]);
return 1;
}
if ((devid_string = getenv("DEVICE")))
devid = strtoul(devid_string, NULL, 0);
filename = argv[1];
fd = open(filename, O_RDONLY);
if (fd == -1) {
printf("Couldn't open \"%s\": %s\n", filename, strerror(errno));
return 1;
}
if (stat(filename, &finfo)) {
printf("failed to stat \"%s\": %s\n", filename,
strerror(errno));
return 1;
}
size = finfo.st_size;
if (size == 0) {
int len = 0, ret;
size = 8192;
VBIOS = malloc (size);
while ((ret = read(fd, VBIOS + len, size - len))) {
if (ret < 0) {
printf("failed to read \"%s\": %s\n", filename,
strerror(errno));
return 1;
}
len += ret;
if (len == size) {
size *= 2;
VBIOS = realloc(VBIOS, size);
}
}
} else {
VBIOS = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0);
if (VBIOS == MAP_FAILED) {
printf("failed to map \"%s\": %s\n", filename, strerror(errno));
return 1;
}
}
/* Scour memory looking for the VBT signature */
for (i = 0; i + 4 < size; i++) {
if (!memcmp(VBIOS + i, "$VBT", 4)) {
vbt_off = i;
vbt = (struct vbt_header *)(VBIOS + i);
break;
}
}
if (!vbt) {
printf("VBT signature missing\n");
return 1;
}
printf("VBT vers: %d.%d\n", vbt->version / 100, vbt->version % 100);
bdb_off = vbt_off + vbt->bdb_offset;
if (bdb_off >= size - sizeof(struct bdb_header)) {
printf("Invalid VBT found, BDB points beyond end of data block\n");
return 1;
}
bdb = (struct bdb_header *)(VBIOS + bdb_off);
strncpy(signature, (char *)bdb->signature, 16);
signature[16] = 0;
printf("BDB sig: %s\n", signature);
printf("BDB vers: %d\n", bdb->version);
printf("Available sections: ");
for (i = 0; i < 256; i++) {
block = find_section(i, size);
if (!block)
continue;
printf("%d ", i);
free(block);
}
printf("\n");
if (devid == -1)
devid = get_device_id(VBIOS);
if (devid == -1)
printf("Warning: could not find PCI device ID!\n");
dump_section(BDB_GENERAL_FEATURES, size);
dump_section(BDB_GENERAL_DEFINITIONS, size);
dump_section(BDB_CHILD_DEVICE_TABLE, size);
dump_section(BDB_LVDS_OPTIONS, size);
dump_section(BDB_LVDS_LFP_DATA_PTRS, size);
dump_section(BDB_LVDS_LFP_DATA, size);
dump_section(BDB_LVDS_BACKLIGHT, size);
dump_section(BDB_SDVO_LVDS_OPTIONS, size);
dump_section(BDB_SDVO_PANEL_DTDS, size);
dump_section(BDB_DRIVER_FEATURES, size);
dump_section(BDB_EDP, size);
for (i = 0; i < 256; i++)
dump_section(i, size);
return 0;
}