blob: 697a154f4b774e344ca05dbe93914bba0116ccce [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Jeff McGee <jeff.mcgee@intel.com>
*
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>
#include <time.h>
#include <sys/wait.h>
#include "drmtest.h"
#include "intel_io.h"
#include "intel_bufmgr.h"
#include "intel_batchbuffer.h"
#include "intel_chipset.h"
#include "igt_gt.h"
#include "ioctl_wrappers.h"
static int drm_fd;
static const char sysfs_base_path[] = "/sys/class/drm/card%d/gt_%s_freq_mhz";
enum {
CUR,
MIN,
MAX,
RP0,
RP1,
RPn,
NUMFREQ
};
static int origfreqs[NUMFREQ];
struct junk {
const char *name;
const char *mode;
FILE *filp;
} stuff[] = {
{ "cur", "r", NULL }, { "min", "rb+", NULL }, { "max", "rb+", NULL }, { "RP0", "r", NULL }, { "RP1", "r", NULL }, { "RPn", "r", NULL }, { NULL, NULL, NULL }
};
static int readval(FILE *filp)
{
int val;
int scanned;
rewind(filp);
scanned = fscanf(filp, "%d", &val);
igt_assert_eq(scanned, 1);
return val;
}
static void read_freqs(int *freqs)
{
int i;
for (i = 0; i < NUMFREQ; i++)
freqs[i] = readval(stuff[i].filp);
}
static void nsleep(unsigned long ns)
{
struct timespec ts;
int ret;
ts.tv_sec = 0;
ts.tv_nsec = ns;
do {
struct timespec rem;
ret = nanosleep(&ts, &rem);
igt_assert(ret == 0 || errno == EINTR);
ts = rem;
} while (ret && errno == EINTR);
}
static void wait_freq_settle(void)
{
int timeout = 10;
while (1) {
int freqs[NUMFREQ];
read_freqs(freqs);
if (freqs[CUR] >= freqs[MIN] && freqs[CUR] <= freqs[MAX])
break;
nsleep(1000000);
if (!timeout--)
break;
}
}
static int do_writeval(FILE *filp, int val, int lerrno, bool readback_check)
{
int ret, orig;
orig = readval(filp);
rewind(filp);
ret = fprintf(filp, "%d", val);
if (lerrno) {
/* Expecting specific error */
igt_assert(ret == EOF && errno == lerrno);
if (readback_check)
igt_assert_eq(readval(filp), orig);
} else {
/* Expecting no error */
igt_assert_neq(ret, 0);
wait_freq_settle();
if (readback_check)
igt_assert_eq(readval(filp), val);
}
return ret;
}
#define writeval(filp, val) do_writeval(filp, val, 0, true)
#define writeval_inval(filp, val) do_writeval(filp, val, EINVAL, true)
#define writeval_nocheck(filp, val) do_writeval(filp, val, 0, false)
static void checkit(const int *freqs)
{
igt_assert_lte(freqs[MIN], freqs[MAX]);
igt_assert_lte(freqs[CUR], freqs[MAX]);
igt_assert_lte(freqs[MIN], freqs[CUR]);
igt_assert_lte(freqs[RPn], freqs[MIN]);
igt_assert_lte(freqs[MAX], freqs[RP0]);
igt_assert_lte(freqs[RP1], freqs[RP0]);
igt_assert_lte(freqs[RPn], freqs[RP1]);
igt_assert_neq(freqs[RP0], 0);
igt_assert_neq(freqs[RP1], 0);
}
static void matchit(const int *freqs1, const int *freqs2)
{
igt_assert_eq(freqs1[CUR], freqs2[CUR]);
igt_assert_eq(freqs1[MIN], freqs2[MIN]);
igt_assert_eq(freqs1[MAX], freqs2[MAX]);
igt_assert_eq(freqs1[RP0], freqs2[RP0]);
igt_assert_eq(freqs1[RP1], freqs2[RP1]);
igt_assert_eq(freqs1[RPn], freqs2[RPn]);
}
static void dump(const int *freqs)
{
int i;
igt_debug("gt freq (MHz):");
for (i = 0; i < NUMFREQ; i++)
igt_debug(" %s=%d", stuff[i].name, freqs[i]);
igt_debug("\n");
}
enum load {
LOW,
HIGH
};
static struct load_helper {
int devid;
int has_ppgtt;
drm_intel_bufmgr *bufmgr;
struct intel_batchbuffer *batch;
drm_intel_bo *target_buffer;
enum load load;
bool exit;
struct igt_helper_process igt_proc;
drm_intel_bo *src, *dst;
} lh;
static void load_helper_signal_handler(int sig)
{
if (sig == SIGUSR2)
lh.load = lh.load == LOW ? HIGH : LOW;
else
lh.exit = true;
}
static void emit_store_dword_imm(uint32_t val)
{
int cmd;
struct intel_batchbuffer *batch = lh.batch;
cmd = MI_STORE_DWORD_IMM;
if (!lh.has_ppgtt)
cmd |= MI_MEM_VIRTUAL;
BEGIN_BATCH(4, 0); /* just ignore the reloc we emit and count dwords */
OUT_BATCH(cmd);
if (batch->gen >= 8) {
OUT_RELOC(lh.target_buffer, I915_GEM_DOMAIN_INSTRUCTION,
I915_GEM_DOMAIN_INSTRUCTION, 0);
} else {
OUT_BATCH(0); /* reserved */
OUT_RELOC(lh.target_buffer, I915_GEM_DOMAIN_INSTRUCTION,
I915_GEM_DOMAIN_INSTRUCTION, 0);
}
OUT_BATCH(val);
ADVANCE_BATCH();
}
#define LOAD_HELPER_PAUSE_USEC 500
#define LOAD_HELPER_BO_SIZE (16*1024*1024)
static void load_helper_set_load(enum load load)
{
igt_assert(lh.igt_proc.running);
if (lh.load == load)
return;
lh.load = load;
kill(lh.igt_proc.pid, SIGUSR2);
}
static void load_helper_run(enum load load)
{
/*
* FIXME fork helpers won't get cleaned up when started from within a
* subtest, so handle the case where it sticks around a bit too long.
*/
if (lh.igt_proc.running) {
load_helper_set_load(load);
return;
}
lh.load = load;
igt_fork_helper(&lh.igt_proc) {
uint32_t val = 0;
signal(SIGUSR1, load_helper_signal_handler);
signal(SIGUSR2, load_helper_signal_handler);
while (!lh.exit) {
if (lh.load == HIGH)
intel_copy_bo(lh.batch, lh.dst, lh.src,
LOAD_HELPER_BO_SIZE);
emit_store_dword_imm(val);
intel_batchbuffer_flush_on_ring(lh.batch, 0);
val++;
/* Lower the load by pausing after every submitted
* write. */
if (lh.load == LOW)
usleep(LOAD_HELPER_PAUSE_USEC);
}
/* Map buffer to stall for write completion */
drm_intel_bo_map(lh.target_buffer, 0);
drm_intel_bo_unmap(lh.target_buffer);
igt_debug("load helper sent %u dword writes\n", val);
}
}
static void load_helper_stop(void)
{
kill(lh.igt_proc.pid, SIGUSR1);
igt_assert(igt_wait_helper(&lh.igt_proc) == 0);
}
static void load_helper_init(void)
{
lh.devid = intel_get_drm_devid(drm_fd);
lh.has_ppgtt = gem_uses_aliasing_ppgtt(drm_fd);
/* MI_STORE_DATA can only use GTT address on gen4+/g33 and needs
* snoopable mem on pre-gen6. Hence load-helper only works on gen6+, but
* that's also all we care about for the rps testcase*/
igt_assert(intel_gen(lh.devid) >= 6);
lh.bufmgr = drm_intel_bufmgr_gem_init(drm_fd, 4096);
igt_assert(lh.bufmgr);
drm_intel_bufmgr_gem_enable_reuse(lh.bufmgr);
lh.batch = intel_batchbuffer_alloc(lh.bufmgr, lh.devid);
igt_assert(lh.batch);
lh.target_buffer = drm_intel_bo_alloc(lh.bufmgr, "target bo",
4096, 4096);
igt_assert(lh.target_buffer);
lh.dst = drm_intel_bo_alloc(lh.bufmgr, "dst bo",
LOAD_HELPER_BO_SIZE, 4096);
igt_assert(lh.dst);
lh.src = drm_intel_bo_alloc(lh.bufmgr, "src bo",
LOAD_HELPER_BO_SIZE, 4096);
igt_assert(lh.src);
}
static void load_helper_deinit(void)
{
if (lh.igt_proc.running)
load_helper_stop();
if (lh.target_buffer)
drm_intel_bo_unreference(lh.target_buffer);
if (lh.src)
drm_intel_bo_unreference(lh.src);
if (lh.dst)
drm_intel_bo_unreference(lh.dst);
if (lh.batch)
intel_batchbuffer_free(lh.batch);
if (lh.bufmgr)
drm_intel_bufmgr_destroy(lh.bufmgr);
}
static void do_load_gpu(void)
{
load_helper_run(LOW);
nsleep(10000000);
load_helper_stop();
}
/* Return a frequency rounded by HW to the nearest supported value */
static int get_hw_rounded_freq(int target)
{
int freqs[NUMFREQ];
int old_freq;
int idx;
int ret;
read_freqs(freqs);
if (freqs[MIN] > target)
idx = MIN;
else
idx = MAX;
old_freq = freqs[idx];
writeval_nocheck(stuff[idx].filp, target);
read_freqs(freqs);
ret = freqs[idx];
writeval_nocheck(stuff[idx].filp, old_freq);
return ret;
}
static void min_max_config(void (*check)(void), bool load_gpu)
{
int fmid = (origfreqs[RPn] + origfreqs[RP0]) / 2;
/*
* hw (and so kernel) rounds to the nearest value supported by
* the given platform.
*/
fmid = get_hw_rounded_freq(fmid);
igt_debug("\nCheck original min and max...\n");
if (load_gpu)
do_load_gpu();
check();
igt_debug("\nSet min=RPn and max=RP0...\n");
writeval(stuff[MIN].filp, origfreqs[RPn]);
writeval(stuff[MAX].filp, origfreqs[RP0]);
if (load_gpu)
do_load_gpu();
check();
igt_debug("\nIncrease min to midpoint...\n");
writeval(stuff[MIN].filp, fmid);
check();
igt_debug("\nIncrease min to RP0...\n");
writeval(stuff[MIN].filp, origfreqs[RP0]);
check();
igt_debug("\nIncrease min above RP0 (invalid)...\n");
writeval_inval(stuff[MIN].filp, origfreqs[RP0] + 1000);
check();
igt_debug("\nDecrease max to RPn (invalid)...\n");
writeval_inval(stuff[MAX].filp, origfreqs[RPn]);
check();
igt_debug("\nDecrease min to midpoint...\n");
writeval(stuff[MIN].filp, fmid);
if (load_gpu)
do_load_gpu();
check();
igt_debug("\nDecrease min to RPn...\n");
writeval(stuff[MIN].filp, origfreqs[RPn]);
if (load_gpu)
do_load_gpu();
check();
igt_debug("\nDecrease min below RPn (invalid)...\n");
writeval_inval(stuff[MIN].filp, 0);
check();
igt_debug("\nDecrease max to midpoint...\n");
writeval(stuff[MAX].filp, fmid);
check();
igt_debug("\nDecrease max to RPn...\n");
writeval(stuff[MAX].filp, origfreqs[RPn]);
check();
igt_debug("\nDecrease max below RPn (invalid)...\n");
writeval_inval(stuff[MAX].filp, 0);
check();
igt_debug("\nIncrease min to RP0 (invalid)...\n");
writeval_inval(stuff[MIN].filp, origfreqs[RP0]);
check();
igt_debug("\nIncrease max to midpoint...\n");
writeval(stuff[MAX].filp, fmid);
check();
igt_debug("\nIncrease max to RP0...\n");
writeval(stuff[MAX].filp, origfreqs[RP0]);
check();
igt_debug("\nIncrease max above RP0 (invalid)...\n");
writeval_inval(stuff[MAX].filp, origfreqs[RP0] + 1000);
check();
writeval(stuff[MIN].filp, origfreqs[MIN]);
writeval(stuff[MAX].filp, origfreqs[MAX]);
}
static void basic_check(void)
{
int freqs[NUMFREQ];
read_freqs(freqs);
dump(freqs);
checkit(freqs);
}
#define IDLE_WAIT_TIMESTEP_MSEC 100
#define IDLE_WAIT_TIMEOUT_MSEC 10000
static void idle_check(void)
{
int freqs[NUMFREQ];
int wait = 0;
/* Monitor frequencies until cur settles down to min, which should
* happen within the allotted time */
do {
read_freqs(freqs);
dump(freqs);
checkit(freqs);
if (freqs[CUR] == freqs[MIN])
break;
usleep(1000 * IDLE_WAIT_TIMESTEP_MSEC);
wait += IDLE_WAIT_TIMESTEP_MSEC;
} while (wait < IDLE_WAIT_TIMEOUT_MSEC);
igt_assert_eq(freqs[CUR], freqs[MIN]);
igt_debug("Required %d msec to reach cur=min\n", wait);
}
#define LOADED_WAIT_TIMESTEP_MSEC 100
#define LOADED_WAIT_TIMEOUT_MSEC 3000
static void loaded_check(void)
{
int freqs[NUMFREQ];
int wait = 0;
/* Monitor frequencies until cur increases to max, which should
* happen within the allotted time */
do {
read_freqs(freqs);
dump(freqs);
checkit(freqs);
if (freqs[CUR] == freqs[MAX])
break;
usleep(1000 * LOADED_WAIT_TIMESTEP_MSEC);
wait += LOADED_WAIT_TIMESTEP_MSEC;
} while (wait < LOADED_WAIT_TIMEOUT_MSEC);
igt_assert_eq(freqs[CUR], freqs[MAX]);
igt_debug("Required %d msec to reach cur=max\n", wait);
}
#define STABILIZE_WAIT_TIMESTEP_MSEC 100
#define STABILIZE_WAIT_TIMEOUT_MSEC 10000
static void stabilize_check(int *freqs)
{
int wait = 0;
do {
read_freqs(freqs);
dump(freqs);
usleep(1000 * STABILIZE_WAIT_TIMESTEP_MSEC);
wait += STABILIZE_WAIT_TIMESTEP_MSEC;
} while (wait < STABILIZE_WAIT_TIMEOUT_MSEC);
igt_debug("Waited %d msec to stabilize cur\n", wait);
}
/*
* reset - test that turbo works across a ring stop
*
* METHOD
* Apply a low GPU load, collect the resulting frequencies, then stop
* the GPU by stopping the rings. Apply alternating high and low loads
* following the restart, comparing against the previous low load freqs
* and whether the GPU ramped to max freq successfully. Finally check
* that we return to idle at the end.
*
* EXPECTED RESULTS
* Low load freqs match, high load freqs reach max, and GPU returns to
* idle at the end.
*
* FAILURES
* Failures here could indicate turbo doesn't work across a ring stop
* or that load generation routines don't successfully generate stable
* or maximal GPU loads. It could also indicate a thermal limit if the
* GPU isn't able to reach its maximum frequency.
*/
static void reset(void)
{
int pre_freqs[NUMFREQ];
int post_freqs[NUMFREQ];
/*
* quiescent_gpu upsets the gpu and makes it get pegged to max somehow.
* Don't ask.
*/
sleep(10);
igt_debug("Apply low load...\n");
load_helper_run(LOW);
stabilize_check(pre_freqs);
igt_debug("Stop rings...\n");
igt_set_stop_rings(STOP_RING_DEFAULTS);
while (igt_get_stop_rings())
usleep(1000 * 100);
igt_debug("Ring stop cleared\n");
igt_debug("Apply high load...\n");
load_helper_set_load(HIGH);
loaded_check();
igt_debug("Apply low load...\n");
load_helper_set_load(LOW);
stabilize_check(post_freqs);
matchit(pre_freqs, post_freqs);
igt_debug("Apply high load...\n");
load_helper_set_load(HIGH);
loaded_check();
igt_debug("Removing load...\n");
load_helper_stop();
idle_check();
}
/*
* blocking - test that GPU returns to idle after a forced blocking boost
* and a low GPU load. Frequencies resulting from the low load are also
* expected to match.o
*
* METHOD
* Collect frequencies resulting from a low GPU load and compare with
* frequencies collected after a quiesce and a second low load, then
* verify idle.
*
* EXPECTED RESULTS
* Frequencies match and GPU successfully returns to idle afterward.
*
* FAILURES
* Failures in this test could be due to several possible bugs:
* - load generation creates unstable frequencies, though stabilize_check()
* is supposed to catch this
* - quiescent_gpu() call does not boost GPU to max freq
* - frequency ramp down is too slow, causing second set of collected
* frequencies to be higher than the first
*/
static void blocking(void)
{
int pre_freqs[NUMFREQ];
int post_freqs[NUMFREQ];
int fd = drm_open_any();
igt_assert_lte(0, fd);
/*
* quiescent_gpu upsets the gpu and makes it get pegged to max somehow.
* Don't ask.
*/
sleep(10);
igt_debug("Apply low load...\n");
load_helper_run(LOW);
stabilize_check(pre_freqs);
load_helper_stop();
sleep(5);
igt_debug("Kick gpu hard ...\n");
/* This relies on the blocking waits in quiescent_gpu and the kernel
* boost logic to ramp the gpu to full load. */
gem_quiescent_gpu(fd);
gem_quiescent_gpu(fd);
igt_debug("Apply low load again...\n");
load_helper_run(LOW);
stabilize_check(post_freqs);
load_helper_stop();
matchit(pre_freqs, post_freqs);
igt_debug("Removing load...\n");
idle_check();
}
static void pm_rps_exit_handler(int sig)
{
if (origfreqs[MIN] > readval(stuff[MAX].filp)) {
writeval(stuff[MAX].filp, origfreqs[MAX]);
writeval(stuff[MIN].filp, origfreqs[MIN]);
} else {
writeval(stuff[MIN].filp, origfreqs[MIN]);
writeval(stuff[MAX].filp, origfreqs[MAX]);
}
load_helper_deinit();
close(drm_fd);
}
igt_main
{
igt_skip_on_simulation();
igt_fixture {
const int device = drm_get_card();
struct junk *junk = stuff;
int ret;
/* Use drm_open_any to verify device existence */
drm_fd = drm_open_any();
do {
int val = -1;
char *path;
ret = asprintf(&path, sysfs_base_path, device, junk->name);
igt_assert(ret != -1);
junk->filp = fopen(path, junk->mode);
igt_require(junk->filp);
setbuf(junk->filp, NULL);
val = readval(junk->filp);
igt_assert(val >= 0);
junk++;
} while(junk->name != NULL);
read_freqs(origfreqs);
igt_install_exit_handler(pm_rps_exit_handler);
load_helper_init();
}
igt_subtest("basic-api")
min_max_config(basic_check, false);
igt_subtest("min-max-config-idle")
min_max_config(idle_check, true);
igt_subtest("min-max-config-loaded") {
load_helper_run(HIGH);
min_max_config(loaded_check, false);
load_helper_stop();
}
igt_subtest("reset")
reset();
igt_subtest("blocking")
blocking();
}