blob: 587413da15c476fb6abbd9d47df9ec52986bb7d6 [file] [log] [blame]
/*
* iplink_can.c CAN device support
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Wolfgang Grandegger <wg@grandegger.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <linux/can/netlink.h>
#include "rt_names.h"
#include "utils.h"
#include "ip_common.h"
static void print_usage(FILE *f)
{
fprintf(f,
"Usage: ip link set DEVICE type can\n"
"\t[ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |\n"
"\t[ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1\n \t phase-seg2 PHASE-SEG2 [ sjw SJW ] ]\n"
"\n"
"\t[ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] |\n"
"\t[ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1\n \t dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ]\n"
"\n"
"\t[ loopback { on | off } ]\n"
"\t[ listen-only { on | off } ]\n"
"\t[ triple-sampling { on | off } ]\n"
"\t[ one-shot { on | off } ]\n"
"\t[ berr-reporting { on | off } ]\n"
"\t[ fd { on | off } ]\n"
"\t[ fd-non-iso { on | off } ]\n"
"\t[ presume-ack { on | off } ]\n"
"\n"
"\t[ restart-ms TIME-MS ]\n"
"\t[ restart ]\n"
"\n"
"\t[ termination { 0..65535 } ]\n"
"\n"
"\tWhere: BITRATE := { 1..1000000 }\n"
"\t SAMPLE-POINT := { 0.000..0.999 }\n"
"\t TQ := { NUMBER }\n"
"\t PROP-SEG := { 1..8 }\n"
"\t PHASE-SEG1 := { 1..8 }\n"
"\t PHASE-SEG2 := { 1..8 }\n"
"\t SJW := { 1..4 }\n"
"\t RESTART-MS := { 0 | NUMBER }\n"
);
}
static void usage(void)
{
print_usage(stderr);
}
static int get_float(float *val, const char *arg)
{
float res;
char *ptr;
if (!arg || !*arg)
return -1;
res = strtof(arg, &ptr);
if (!ptr || ptr == arg || *ptr)
return -1;
*val = res;
return 0;
}
static void set_ctrlmode(char *name, char *arg,
struct can_ctrlmode *cm, __u32 flags)
{
if (strcmp(arg, "on") == 0) {
cm->flags |= flags;
} else if (strcmp(arg, "off") != 0) {
fprintf(stderr,
"Error: argument of \"%s\" must be \"on\" or \"off\", not \"%s\"\n",
name, arg);
exit(-1);
}
cm->mask |= flags;
}
static void print_ctrlmode(FILE *f, __u32 cm)
{
open_json_array(PRINT_ANY, is_json_context() ? "ctrlmode" : "<");
#define _PF(cmflag, cmname) \
if (cm & cmflag) { \
cm &= ~cmflag; \
print_string(PRINT_ANY, NULL, cm ? "%s," : "%s", cmname); \
}
_PF(CAN_CTRLMODE_LOOPBACK, "LOOPBACK");
_PF(CAN_CTRLMODE_LISTENONLY, "LISTEN-ONLY");
_PF(CAN_CTRLMODE_3_SAMPLES, "TRIPLE-SAMPLING");
_PF(CAN_CTRLMODE_ONE_SHOT, "ONE-SHOT");
_PF(CAN_CTRLMODE_BERR_REPORTING, "BERR-REPORTING");
_PF(CAN_CTRLMODE_FD, "FD");
_PF(CAN_CTRLMODE_FD_NON_ISO, "FD-NON-ISO");
_PF(CAN_CTRLMODE_PRESUME_ACK, "PRESUME-ACK");
#undef _PF
if (cm)
print_hex(PRINT_ANY, NULL, "%x", cm);
close_json_array(PRINT_ANY, "> ");
}
static int can_parse_opt(struct link_util *lu, int argc, char **argv,
struct nlmsghdr *n)
{
struct can_bittiming bt = {}, dbt = {};
struct can_ctrlmode cm = {0, 0};
while (argc > 0) {
if (matches(*argv, "bitrate") == 0) {
NEXT_ARG();
if (get_u32(&bt.bitrate, *argv, 0))
invarg("invalid \"bitrate\" value\n", *argv);
} else if (matches(*argv, "sample-point") == 0) {
float sp;
NEXT_ARG();
if (get_float(&sp, *argv))
invarg("invalid \"sample-point\" value\n",
*argv);
bt.sample_point = (__u32)(sp * 1000);
} else if (matches(*argv, "tq") == 0) {
NEXT_ARG();
if (get_u32(&bt.tq, *argv, 0))
invarg("invalid \"tq\" value\n", *argv);
} else if (matches(*argv, "prop-seg") == 0) {
NEXT_ARG();
if (get_u32(&bt.prop_seg, *argv, 0))
invarg("invalid \"prop-seg\" value\n", *argv);
} else if (matches(*argv, "phase-seg1") == 0) {
NEXT_ARG();
if (get_u32(&bt.phase_seg1, *argv, 0))
invarg("invalid \"phase-seg1\" value\n", *argv);
} else if (matches(*argv, "phase-seg2") == 0) {
NEXT_ARG();
if (get_u32(&bt.phase_seg2, *argv, 0))
invarg("invalid \"phase-seg2\" value\n", *argv);
} else if (matches(*argv, "sjw") == 0) {
NEXT_ARG();
if (get_u32(&bt.sjw, *argv, 0))
invarg("invalid \"sjw\" value\n", *argv);
} else if (matches(*argv, "dbitrate") == 0) {
NEXT_ARG();
if (get_u32(&dbt.bitrate, *argv, 0))
invarg("invalid \"dbitrate\" value\n", *argv);
} else if (matches(*argv, "dsample-point") == 0) {
float sp;
NEXT_ARG();
if (get_float(&sp, *argv))
invarg("invalid \"dsample-point\" value\n", *argv);
dbt.sample_point = (__u32)(sp * 1000);
} else if (matches(*argv, "dtq") == 0) {
NEXT_ARG();
if (get_u32(&dbt.tq, *argv, 0))
invarg("invalid \"dtq\" value\n", *argv);
} else if (matches(*argv, "dprop-seg") == 0) {
NEXT_ARG();
if (get_u32(&dbt.prop_seg, *argv, 0))
invarg("invalid \"dprop-seg\" value\n", *argv);
} else if (matches(*argv, "dphase-seg1") == 0) {
NEXT_ARG();
if (get_u32(&dbt.phase_seg1, *argv, 0))
invarg("invalid \"dphase-seg1\" value\n", *argv);
} else if (matches(*argv, "dphase-seg2") == 0) {
NEXT_ARG();
if (get_u32(&dbt.phase_seg2, *argv, 0))
invarg("invalid \"dphase-seg2\" value\n", *argv);
} else if (matches(*argv, "dsjw") == 0) {
NEXT_ARG();
if (get_u32(&dbt.sjw, *argv, 0))
invarg("invalid \"dsjw\" value\n", *argv);
} else if (matches(*argv, "loopback") == 0) {
NEXT_ARG();
set_ctrlmode("loopback", *argv, &cm,
CAN_CTRLMODE_LOOPBACK);
} else if (matches(*argv, "listen-only") == 0) {
NEXT_ARG();
set_ctrlmode("listen-only", *argv, &cm,
CAN_CTRLMODE_LISTENONLY);
} else if (matches(*argv, "triple-sampling") == 0) {
NEXT_ARG();
set_ctrlmode("triple-sampling", *argv, &cm,
CAN_CTRLMODE_3_SAMPLES);
} else if (matches(*argv, "one-shot") == 0) {
NEXT_ARG();
set_ctrlmode("one-shot", *argv, &cm,
CAN_CTRLMODE_ONE_SHOT);
} else if (matches(*argv, "berr-reporting") == 0) {
NEXT_ARG();
set_ctrlmode("berr-reporting", *argv, &cm,
CAN_CTRLMODE_BERR_REPORTING);
} else if (matches(*argv, "fd") == 0) {
NEXT_ARG();
set_ctrlmode("fd", *argv, &cm,
CAN_CTRLMODE_FD);
} else if (matches(*argv, "fd-non-iso") == 0) {
NEXT_ARG();
set_ctrlmode("fd-non-iso", *argv, &cm,
CAN_CTRLMODE_FD_NON_ISO);
} else if (matches(*argv, "presume-ack") == 0) {
NEXT_ARG();
set_ctrlmode("presume-ack", *argv, &cm,
CAN_CTRLMODE_PRESUME_ACK);
} else if (matches(*argv, "restart") == 0) {
__u32 val = 1;
addattr32(n, 1024, IFLA_CAN_RESTART, val);
} else if (matches(*argv, "restart-ms") == 0) {
__u32 val;
NEXT_ARG();
if (get_u32(&val, *argv, 0))
invarg("invalid \"restart-ms\" value\n", *argv);
addattr32(n, 1024, IFLA_CAN_RESTART_MS, val);
} else if (matches(*argv, "termination") == 0) {
__u16 val;
NEXT_ARG();
if (get_u16(&val, *argv, 0))
invarg("invalid \"termination\" value\n",
*argv);
addattr16(n, 1024, IFLA_CAN_TERMINATION, val);
} else if (matches(*argv, "help") == 0) {
usage();
return -1;
} else {
fprintf(stderr, "can: unknown option \"%s\"\n", *argv);
usage();
return -1;
}
argc--, argv++;
}
if (bt.bitrate || bt.tq)
addattr_l(n, 1024, IFLA_CAN_BITTIMING, &bt, sizeof(bt));
if (dbt.bitrate || dbt.tq)
addattr_l(n, 1024, IFLA_CAN_DATA_BITTIMING, &dbt, sizeof(dbt));
if (cm.mask)
addattr_l(n, 1024, IFLA_CAN_CTRLMODE, &cm, sizeof(cm));
return 0;
}
static const char *can_state_names[CAN_STATE_MAX] = {
[CAN_STATE_ERROR_ACTIVE] = "ERROR-ACTIVE",
[CAN_STATE_ERROR_WARNING] = "ERROR-WARNING",
[CAN_STATE_ERROR_PASSIVE] = "ERROR-PASSIVE",
[CAN_STATE_BUS_OFF] = "BUS-OFF",
[CAN_STATE_STOPPED] = "STOPPED",
[CAN_STATE_SLEEPING] = "SLEEPING"
};
static void can_print_json_timing_min_max(const char *attr, int min, int max)
{
open_json_object(attr);
print_int(PRINT_JSON, "min", NULL, min);
print_int(PRINT_JSON, "max", NULL, max);
close_json_object();
}
static void can_print_opt(struct link_util *lu, FILE *f, struct rtattr *tb[])
{
if (!tb)
return;
if (tb[IFLA_CAN_CTRLMODE]) {
struct can_ctrlmode *cm = RTA_DATA(tb[IFLA_CAN_CTRLMODE]);
if (cm->flags)
print_ctrlmode(f, cm->flags);
}
if (tb[IFLA_CAN_STATE]) {
uint32_t state = rta_getattr_u32(tb[IFLA_CAN_STATE]);
fprintf(f, "state %s ", state < CAN_STATE_MAX ?
can_state_names[state] : "UNKNOWN");
}
if (tb[IFLA_CAN_BERR_COUNTER]) {
struct can_berr_counter *bc =
RTA_DATA(tb[IFLA_CAN_BERR_COUNTER]);
if (is_json_context()) {
open_json_object("berr_counter");
print_int(PRINT_JSON, "tx", NULL, bc->txerr);
print_int(PRINT_JSON, "rx", NULL, bc->rxerr);
close_json_object();
} else {
fprintf(f, "(berr-counter tx %d rx %d) ",
bc->txerr, bc->rxerr);
}
}
if (tb[IFLA_CAN_RESTART_MS]) {
__u32 *restart_ms = RTA_DATA(tb[IFLA_CAN_RESTART_MS]);
print_int(PRINT_ANY,
"restart_ms",
"restart-ms %d ",
*restart_ms);
}
/* bittiming is irrelevant if fixed bitrate is defined */
if (tb[IFLA_CAN_BITTIMING] && !tb[IFLA_CAN_BITRATE_CONST]) {
struct can_bittiming *bt = RTA_DATA(tb[IFLA_CAN_BITTIMING]);
if (is_json_context()) {
open_json_object("bittiming");
print_int(PRINT_ANY, "bitrate", NULL, bt->bitrate);
jsonw_float_field_fmt(get_json_writer(),
"sample_point", "%.3f",
(float) bt->sample_point / 1000.);
print_int(PRINT_ANY, "tq", NULL, bt->tq);
print_int(PRINT_ANY, "prop_seg", NULL, bt->prop_seg);
print_int(PRINT_ANY, "phase_seg1",
NULL, bt->phase_seg1);
print_int(PRINT_ANY, "phase_seg2",
NULL, bt->phase_seg2);
print_int(PRINT_ANY, "sjw", NULL, bt->sjw);
close_json_object();
} else {
fprintf(f, "\n bitrate %d sample-point %.3f ",
bt->bitrate, (float) bt->sample_point / 1000.);
fprintf(f,
"\n tq %d prop-seg %d phase-seg1 %d phase-seg2 %d sjw %d",
bt->tq, bt->prop_seg,
bt->phase_seg1, bt->phase_seg2,
bt->sjw);
}
}
/* bittiming const is irrelevant if fixed bitrate is defined */
if (tb[IFLA_CAN_BITTIMING_CONST] && !tb[IFLA_CAN_BITRATE_CONST]) {
struct can_bittiming_const *btc =
RTA_DATA(tb[IFLA_CAN_BITTIMING_CONST]);
if (is_json_context()) {
open_json_object("bittiming_const");
print_string(PRINT_JSON, "name", NULL, btc->name);
can_print_json_timing_min_max("tseg1",
btc->tseg1_min,
btc->tseg1_max);
can_print_json_timing_min_max("tseg2",
btc->tseg2_min,
btc->tseg2_max);
can_print_json_timing_min_max("sjw", 1, btc->sjw_max);
can_print_json_timing_min_max("brp",
btc->brp_min,
btc->brp_max);
print_int(PRINT_JSON, "brp_inc", NULL, btc->brp_inc);
close_json_object();
} else {
fprintf(f, "\n %s: tseg1 %d..%d tseg2 %d..%d "
"sjw 1..%d brp %d..%d brp-inc %d",
btc->name, btc->tseg1_min, btc->tseg1_max,
btc->tseg2_min, btc->tseg2_max, btc->sjw_max,
btc->brp_min, btc->brp_max, btc->brp_inc);
}
}
if (tb[IFLA_CAN_BITRATE_CONST]) {
__u32 *bitrate_const = RTA_DATA(tb[IFLA_CAN_BITRATE_CONST]);
int bitrate_cnt = RTA_PAYLOAD(tb[IFLA_CAN_BITRATE_CONST]) /
sizeof(*bitrate_const);
int i;
__u32 bitrate = 0;
if (tb[IFLA_CAN_BITTIMING]) {
struct can_bittiming *bt =
RTA_DATA(tb[IFLA_CAN_BITTIMING]);
bitrate = bt->bitrate;
}
if (is_json_context()) {
print_uint(PRINT_JSON,
"bittiming_bitrate",
NULL, bitrate);
open_json_array(PRINT_JSON, "bitrate_const");
for (i = 0; i < bitrate_cnt; ++i)
print_uint(PRINT_JSON, NULL, NULL,
bitrate_const[i]);
close_json_array(PRINT_JSON, NULL);
} else {
fprintf(f, "\n bitrate %u", bitrate);
fprintf(f, "\n [");
for (i = 0; i < bitrate_cnt - 1; ++i) {
/* This will keep lines below 80 signs */
if (!(i % 6) && i)
fprintf(f, "\n ");
fprintf(f, "%8u, ", bitrate_const[i]);
}
if (!(i % 6) && i)
fprintf(f, "\n ");
fprintf(f, "%8u ]", bitrate_const[i]);
}
}
/* data bittiming is irrelevant if fixed bitrate is defined */
if (tb[IFLA_CAN_DATA_BITTIMING] && !tb[IFLA_CAN_DATA_BITRATE_CONST]) {
struct can_bittiming *dbt =
RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);
if (is_json_context()) {
open_json_object("data_bittiming");
print_int(PRINT_JSON, "bitrate", NULL, dbt->bitrate);
jsonw_float_field_fmt(get_json_writer(),
"sample_point",
"%.3f",
(float) dbt->sample_point / 1000.);
print_int(PRINT_JSON, "tq", NULL, dbt->tq);
print_int(PRINT_JSON, "prop_seg", NULL, dbt->prop_seg);
print_int(PRINT_JSON, "phase_seg1",
NULL, dbt->phase_seg1);
print_int(PRINT_JSON, "phase_seg2",
NULL, dbt->phase_seg2);
print_int(PRINT_JSON, "sjw", NULL, dbt->sjw);
close_json_object();
} else {
fprintf(f, "\n dbitrate %d dsample-point %.3f ",
dbt->bitrate,
(float) dbt->sample_point / 1000.);
fprintf(f, "\n dtq %d dprop-seg %d dphase-seg1 %d "
"dphase-seg2 %d dsjw %d",
dbt->tq, dbt->prop_seg, dbt->phase_seg1,
dbt->phase_seg2, dbt->sjw);
}
}
/* data bittiming const is irrelevant if fixed bitrate is defined */
if (tb[IFLA_CAN_DATA_BITTIMING_CONST] &&
!tb[IFLA_CAN_DATA_BITRATE_CONST]) {
struct can_bittiming_const *dbtc =
RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING_CONST]);
if (is_json_context()) {
open_json_object("data_bittiming_const");
print_string(PRINT_JSON, "name", NULL, dbtc->name);
can_print_json_timing_min_max("tseg1",
dbtc->tseg1_min,
dbtc->tseg1_max);
can_print_json_timing_min_max("tseg2",
dbtc->tseg2_min,
dbtc->tseg2_max);
can_print_json_timing_min_max("sjw", 1, dbtc->sjw_max);
can_print_json_timing_min_max("brp",
dbtc->brp_min,
dbtc->brp_max);
print_int(PRINT_JSON, "brp_inc", NULL, dbtc->brp_inc);
close_json_object();
} else {
fprintf(f, "\n %s: dtseg1 %d..%d dtseg2 %d..%d "
"dsjw 1..%d dbrp %d..%d dbrp-inc %d",
dbtc->name, dbtc->tseg1_min, dbtc->tseg1_max,
dbtc->tseg2_min, dbtc->tseg2_max, dbtc->sjw_max,
dbtc->brp_min, dbtc->brp_max, dbtc->brp_inc);
}
}
if (tb[IFLA_CAN_DATA_BITRATE_CONST]) {
__u32 *dbitrate_const =
RTA_DATA(tb[IFLA_CAN_DATA_BITRATE_CONST]);
int dbitrate_cnt =
RTA_PAYLOAD(tb[IFLA_CAN_DATA_BITRATE_CONST]) /
sizeof(*dbitrate_const);
int i;
__u32 dbitrate = 0;
if (tb[IFLA_CAN_DATA_BITTIMING]) {
struct can_bittiming *dbt =
RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);
dbitrate = dbt->bitrate;
}
if (is_json_context()) {
print_uint(PRINT_JSON, "data_bittiming_bitrate",
NULL, dbitrate);
open_json_array(PRINT_JSON, "data_bitrate_const");
for (i = 0; i < dbitrate_cnt; ++i)
print_uint(PRINT_JSON, NULL, NULL,
dbitrate_const[i]);
close_json_array(PRINT_JSON, NULL);
} else {
fprintf(f, "\n dbitrate %u", dbitrate);
fprintf(f, "\n [");
for (i = 0; i < dbitrate_cnt - 1; ++i) {
/* This will keep lines below 80 signs */
if (!(i % 6) && i)
fprintf(f, "\n ");
fprintf(f, "%8u, ", dbitrate_const[i]);
}
if (!(i % 6) && i)
fprintf(f, "\n ");
fprintf(f, "%8u ]", dbitrate_const[i]);
}
}
if (tb[IFLA_CAN_TERMINATION_CONST] && tb[IFLA_CAN_TERMINATION]) {
__u16 *trm = RTA_DATA(tb[IFLA_CAN_TERMINATION]);
__u16 *trm_const = RTA_DATA(tb[IFLA_CAN_TERMINATION_CONST]);
int trm_cnt = RTA_PAYLOAD(tb[IFLA_CAN_TERMINATION_CONST]) /
sizeof(*trm_const);
int i;
if (is_json_context()) {
print_hu(PRINT_JSON, "termination", NULL, *trm);
open_json_array(PRINT_JSON, "termination_const");
for (i = 0; i < trm_cnt; ++i)
print_hu(PRINT_JSON, NULL, NULL, trm_const[i]);
close_json_array(PRINT_JSON, NULL);
} else {
fprintf(f, "\n termination %hu [ ", *trm);
for (i = 0; i < trm_cnt - 1; ++i)
fprintf(f, "%hu, ", trm_const[i]);
fprintf(f, "%hu ]", trm_const[i]);
}
}
if (tb[IFLA_CAN_CLOCK]) {
struct can_clock *clock = RTA_DATA(tb[IFLA_CAN_CLOCK]);
print_int(PRINT_ANY,
"clock",
"\n clock %d",
clock->freq);
}
}
static void can_print_xstats(struct link_util *lu,
FILE *f, struct rtattr *xstats)
{
struct can_device_stats *stats;
if (xstats && RTA_PAYLOAD(xstats) == sizeof(*stats)) {
stats = RTA_DATA(xstats);
if (is_json_context()) {
print_int(PRINT_JSON, "restarts",
NULL, stats->restarts);
print_int(PRINT_JSON, "bus_error",
NULL, stats->bus_error);
print_int(PRINT_JSON, "arbitration_lost",
NULL, stats->arbitration_lost);
print_int(PRINT_JSON, "error_warning",
NULL, stats->error_warning);
print_int(PRINT_JSON, "error_passive",
NULL, stats->error_passive);
print_int(PRINT_JSON, "bus_off", NULL, stats->bus_off);
} else {
fprintf(f, "\n re-started bus-errors arbit-lost "
"error-warn error-pass bus-off");
fprintf(f, "\n %-10d %-10d %-10d %-10d %-10d %-10d",
stats->restarts, stats->bus_error,
stats->arbitration_lost, stats->error_warning,
stats->error_passive, stats->bus_off);
}
}
}
static void can_print_help(struct link_util *lu, int argc, char **argv,
FILE *f)
{
print_usage(f);
}
struct link_util can_link_util = {
.id = "can",
.maxattr = IFLA_CAN_MAX,
.parse_opt = can_parse_opt,
.print_opt = can_print_opt,
.print_xstats = can_print_xstats,
.print_help = can_print_help,
};