blob: 1842655fc457a8de16da4a30d84ff9592953ab06 [file] [log] [blame]
#include <net/if.h>
#include <errno.h>
#include <string.h>
#include <ctype.h>
#include <stdbool.h>
#include <netlink/genl/genl.h>
#include <netlink/genl/family.h>
#include <netlink/genl/ctrl.h>
#include <netlink/msg.h>
#include <netlink/attr.h>
#include "nl80211.h"
#include "iw.h"
#define WLAN_CAPABILITY_ESS (1<<0)
#define WLAN_CAPABILITY_IBSS (1<<1)
#define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
#define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
#define WLAN_CAPABILITY_PRIVACY (1<<4)
#define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
#define WLAN_CAPABILITY_PBCC (1<<6)
#define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
#define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
#define WLAN_CAPABILITY_QOS (1<<9)
#define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
#define WLAN_CAPABILITY_APSD (1<<11)
#define WLAN_CAPABILITY_RADIO_MEASURE (1<<12)
#define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
#define WLAN_CAPABILITY_DEL_BACK (1<<14)
#define WLAN_CAPABILITY_IMM_BACK (1<<15)
/* DMG (60gHz) 802.11ad */
/* type - bits 0..1 */
#define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0)
#define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */
#define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */
#define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */
#define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2)
#define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3)
#define WLAN_CAPABILITY_DMG_PRIVACY (1<<4)
#define WLAN_CAPABILITY_DMG_ECPAC (1<<5)
#define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8)
#define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12)
static unsigned char ms_oui[3] = { 0x00, 0x50, 0xf2 };
static unsigned char ieee80211_oui[3] = { 0x00, 0x0f, 0xac };
static unsigned char wfa_oui[3] = { 0x50, 0x6f, 0x9a };
struct scan_params {
bool unknown;
enum print_ie_type type;
bool show_both_ie_sets;
};
#define IEEE80211_COUNTRY_EXTENSION_ID 201
union ieee80211_country_ie_triplet {
struct {
__u8 first_channel;
__u8 num_channels;
__s8 max_power;
} __attribute__ ((packed)) chans;
struct {
__u8 reg_extension_id;
__u8 reg_class;
__u8 coverage_class;
} __attribute__ ((packed)) ext;
} __attribute__ ((packed));
static int handle_scan(struct nl80211_state *state,
struct nl_cb *cb,
struct nl_msg *msg,
int argc, char **argv,
enum id_input id)
{
struct nl_msg *ssids = NULL, *freqs = NULL;
char *eptr;
int err = -ENOBUFS;
int i;
enum {
NONE,
FREQ,
IES,
SSID,
DONE,
} parse = NONE;
int freq;
bool passive = false, have_ssids = false, have_freqs = false;
size_t tmp;
unsigned char *ies;
int flags = 0;
ssids = nlmsg_alloc();
if (!ssids)
return -ENOMEM;
freqs = nlmsg_alloc();
if (!freqs) {
nlmsg_free(ssids);
return -ENOMEM;
}
for (i = 0; i < argc; i++) {
switch (parse) {
case NONE:
if (strcmp(argv[i], "freq") == 0) {
parse = FREQ;
have_freqs = true;
break;
} else if (strcmp(argv[i], "ies") == 0) {
parse = IES;
break;
} else if (strcmp(argv[i], "lowpri") == 0) {
parse = NONE;
flags |= NL80211_SCAN_FLAG_LOW_PRIORITY;
break;
} else if (strcmp(argv[i], "flush") == 0) {
parse = NONE;
flags |= NL80211_SCAN_FLAG_FLUSH;
break;
} else if (strcmp(argv[i], "ap-force") == 0) {
parse = NONE;
flags |= NL80211_SCAN_FLAG_AP;
break;
} else if (strcmp(argv[i], "ssid") == 0) {
parse = SSID;
have_ssids = true;
break;
} else if (strcmp(argv[i], "passive") == 0) {
parse = DONE;
passive = true;
break;
}
case DONE:
return 1;
case FREQ:
freq = strtoul(argv[i], &eptr, 10);
if (eptr != argv[i] + strlen(argv[i])) {
/* failed to parse as number -- maybe a tag? */
i--;
parse = NONE;
continue;
}
NLA_PUT_U32(freqs, i, freq);
break;
case IES:
ies = parse_hex(argv[i], &tmp);
if (!ies)
goto nla_put_failure;
NLA_PUT(msg, NL80211_ATTR_IE, tmp, ies);
free(ies);
parse = NONE;
break;
case SSID:
NLA_PUT(ssids, i, strlen(argv[i]), argv[i]);
break;
}
}
if (!have_ssids)
NLA_PUT(ssids, 1, 0, "");
if (!passive)
nla_put_nested(msg, NL80211_ATTR_SCAN_SSIDS, ssids);
if (have_freqs)
nla_put_nested(msg, NL80211_ATTR_SCAN_FREQUENCIES, freqs);
if (flags)
NLA_PUT_U32(msg, NL80211_ATTR_SCAN_FLAGS, flags);
err = 0;
nla_put_failure:
nlmsg_free(ssids);
nlmsg_free(freqs);
return err;
}
static void tab_on_first(bool *first)
{
if (!*first)
printf("\t");
else
*first = false;
}
static void print_ssid(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf(" ");
print_ssid_escaped(len, data);
printf("\n");
}
#define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126
#define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127
static void print_supprates(const uint8_t type, uint8_t len, const uint8_t *data)
{
int i;
printf(" ");
for (i = 0; i < len; i++) {
int r = data[i] & 0x7f;
if (r == BSS_MEMBERSHIP_SELECTOR_VHT_PHY && data[i] & 0x80)
printf("VHT");
else if (r == BSS_MEMBERSHIP_SELECTOR_HT_PHY && data[i] & 0x80)
printf("HT");
else
printf("%d.%d", r/2, 5*(r&1));
printf("%s ", data[i] & 0x80 ? "*" : "");
}
printf("\n");
}
static void print_ds(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf(" channel %d\n", data[0]);
}
static const char *country_env_str(char environment)
{
switch (environment) {
case 'I':
return "Indoor only";
case 'O':
return "Outdoor only";
case ' ':
return "Indoor/Outdoor";
default:
return "bogus";
}
}
static void print_country(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf(" %.*s", 2, data);
printf("\tEnvironment: %s\n", country_env_str(data[2]));
data += 3;
len -= 3;
if (len < 3) {
printf("\t\tNo country IE triplets present\n");
return;
}
while (len >= 3) {
int end_channel;
union ieee80211_country_ie_triplet *triplet = (void *) data;
if (triplet->ext.reg_extension_id >= IEEE80211_COUNTRY_EXTENSION_ID) {
printf("\t\tExtension ID: %d Regulatory Class: %d Coverage class: %d (up to %dm)\n",
triplet->ext.reg_extension_id,
triplet->ext.reg_class,
triplet->ext.coverage_class,
triplet->ext.coverage_class * 450);
data += 3;
len -= 3;
continue;
}
/* 2 GHz */
if (triplet->chans.first_channel <= 14)
end_channel = triplet->chans.first_channel + (triplet->chans.num_channels - 1);
else
end_channel = triplet->chans.first_channel + (4 * (triplet->chans.num_channels - 1));
printf("\t\tChannels [%d - %d] @ %d dBm\n", triplet->chans.first_channel, end_channel, triplet->chans.max_power);
data += 3;
len -= 3;
}
return;
}
static void print_powerconstraint(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf(" %d dB\n", data[0]);
}
static void print_tpcreport(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf(" TX power: %d dBm\n", data[0]);
/* printf(" Link Margin (%d dB) is reserved in Beacons\n", data[1]); */
}
static void print_erp(const uint8_t type, uint8_t len, const uint8_t *data)
{
if (data[0] == 0x00)
printf(" <no flags>");
if (data[0] & 0x01)
printf(" NonERP_Present");
if (data[0] & 0x02)
printf(" Use_Protection");
if (data[0] & 0x04)
printf(" Barker_Preamble_Mode");
printf("\n");
}
static void print_cipher(const uint8_t *data)
{
if (memcmp(data, ms_oui, 3) == 0) {
switch (data[3]) {
case 0:
printf("Use group cipher suite");
break;
case 1:
printf("WEP-40");
break;
case 2:
printf("TKIP");
break;
case 4:
printf("CCMP");
break;
case 5:
printf("WEP-104");
break;
default:
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
break;
}
} else if (memcmp(data, ieee80211_oui, 3) == 0) {
switch (data[3]) {
case 0:
printf("Use group cipher suite");
break;
case 1:
printf("WEP-40");
break;
case 2:
printf("TKIP");
break;
case 4:
printf("CCMP");
break;
case 5:
printf("WEP-104");
break;
case 6:
printf("AES-128-CMAC");
break;
case 8:
printf("GCMP");
break;
default:
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
break;
}
} else
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
}
static void print_auth(const uint8_t *data)
{
if (memcmp(data, ms_oui, 3) == 0) {
switch (data[3]) {
case 1:
printf("IEEE 802.1X");
break;
case 2:
printf("PSK");
break;
default:
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
break;
}
} else if (memcmp(data, ieee80211_oui, 3) == 0) {
switch (data[3]) {
case 1:
printf("IEEE 802.1X");
break;
case 2:
printf("PSK");
break;
case 3:
printf("FT/IEEE 802.1X");
break;
case 4:
printf("FT/PSK");
break;
case 5:
printf("IEEE 802.1X/SHA-256");
break;
case 6:
printf("PSK/SHA-256");
break;
default:
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
break;
}
} else
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
}
static void print_rsn_ie(const char *defcipher, const char *defauth,
uint8_t len, const uint8_t *data)
{
bool first = true;
__u16 version, count, capa;
int i;
version = data[0] + (data[1] << 8);
tab_on_first(&first);
printf("\t * Version: %d\n", version);
data += 2;
len -= 2;
if (len < 4) {
tab_on_first(&first);
printf("\t * Group cipher: %s\n", defcipher);
printf("\t * Pairwise ciphers: %s\n", defcipher);
return;
}
tab_on_first(&first);
printf("\t * Group cipher: ");
print_cipher(data);
printf("\n");
data += 4;
len -= 4;
if (len < 2) {
tab_on_first(&first);
printf("\t * Pairwise ciphers: %s\n", defcipher);
return;
}
count = data[0] | (data[1] << 8);
if (2 + (count * 4) > len)
goto invalid;
tab_on_first(&first);
printf("\t * Pairwise ciphers:");
for (i = 0; i < count; i++) {
printf(" ");
print_cipher(data + 2 + (i * 4));
}
printf("\n");
data += 2 + (count * 4);
len -= 2 + (count * 4);
if (len < 2) {
tab_on_first(&first);
printf("\t * Authentication suites: %s\n", defauth);
return;
}
count = data[0] | (data[1] << 8);
if (2 + (count * 4) > len)
goto invalid;
tab_on_first(&first);
printf("\t * Authentication suites:");
for (i = 0; i < count; i++) {
printf(" ");
print_auth(data + 2 + (i * 4));
}
printf("\n");
data += 2 + (count * 4);
len -= 2 + (count * 4);
if (len >= 2) {
capa = data[0] | (data[1] << 8);
tab_on_first(&first);
printf("\t * Capabilities:");
if (capa & 0x0001)
printf(" PreAuth");
if (capa & 0x0002)
printf(" NoPairwise");
switch ((capa & 0x000c) >> 2) {
case 0:
break;
case 1:
printf(" 2-PTKSA-RC");
break;
case 2:
printf(" 4-PTKSA-RC");
break;
case 3:
printf(" 16-PTKSA-RC");
break;
}
switch ((capa & 0x0030) >> 4) {
case 0:
break;
case 1:
printf(" 2-GTKSA-RC");
break;
case 2:
printf(" 4-GTKSA-RC");
break;
case 3:
printf(" 16-GTKSA-RC");
break;
}
if (capa & 0x0040)
printf(" MFP-required");
if (capa & 0x0080)
printf(" MFP-capable");
if (capa & 0x0200)
printf(" Peerkey-enabled");
if (capa & 0x0400)
printf(" SPP-AMSDU-capable");
if (capa & 0x0800)
printf(" SPP-AMSDU-required");
printf(" (0x%.4x)\n", capa);
data += 2;
len -= 2;
}
if (len >= 2) {
int pmkid_count = data[0] | (data[1] << 8);
if (len >= 2 + 16 * pmkid_count) {
tab_on_first(&first);
printf("\t * %d PMKIDs\n", pmkid_count);
/* not printing PMKID values */
data += 2 + 16 * pmkid_count;
len -= 2 + 16 * pmkid_count;
} else
goto invalid;
}
if (len >= 4) {
tab_on_first(&first);
printf("\t * Group mgmt cipher suite: ");
print_cipher(data);
printf("\n");
data += 4;
len -= 4;
}
invalid:
if (len != 0) {
printf("\t\t * bogus tail data (%d):", len);
while (len) {
printf(" %.2x", *data);
data++;
len--;
}
printf("\n");
}
}
static void print_rsn(const uint8_t type, uint8_t len, const uint8_t *data)
{
print_rsn_ie("CCMP", "IEEE 802.1X", len, data);
}
static void print_ht_capa(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf("\n");
print_ht_capability(data[0] | (data[1] << 8));
print_ampdu_length(data[2] & 3);
print_ampdu_spacing((data[2] >> 2) & 7);
print_ht_mcs(data + 3);
}
static const char *ht_secondary_offset[4] = {
"no secondary",
"above",
"[reserved!]",
"below",
};
static void print_ht_op(const uint8_t type, uint8_t len, const uint8_t *data)
{
static const char *protection[4] = {
"no",
"nonmember",
"20 MHz",
"non-HT mixed",
};
static const char *sta_chan_width[2] = {
"20 MHz",
"any",
};
printf("\n");
printf("\t\t * primary channel: %d\n", data[0]);
printf("\t\t * secondary channel offset: %s\n",
ht_secondary_offset[data[1] & 0x3]);
printf("\t\t * STA channel width: %s\n", sta_chan_width[(data[1] & 0x4)>>2]);
printf("\t\t * RIFS: %d\n", (data[1] & 0x8)>>3);
printf("\t\t * HT protection: %s\n", protection[data[2] & 0x3]);
printf("\t\t * non-GF present: %d\n", (data[2] & 0x4) >> 2);
printf("\t\t * OBSS non-GF present: %d\n", (data[2] & 0x10) >> 4);
printf("\t\t * dual beacon: %d\n", (data[4] & 0x40) >> 6);
printf("\t\t * dual CTS protection: %d\n", (data[4] & 0x80) >> 7);
printf("\t\t * STBC beacon: %d\n", data[5] & 0x1);
printf("\t\t * L-SIG TXOP Prot: %d\n", (data[5] & 0x2) >> 1);
printf("\t\t * PCO active: %d\n", (data[5] & 0x4) >> 2);
printf("\t\t * PCO phase: %d\n", (data[5] & 0x8) >> 3);
}
static void print_capabilities(const uint8_t type, uint8_t len, const uint8_t *data)
{
int i, base, bit;
bool first = true;
for (i = 0; i < len; i++) {
base = i * 8;
for (bit = 0; bit < 8; bit++) {
if (!(data[i] & (1 << bit)))
continue;
if (!first)
printf(",");
else
first = false;
#define CAPA(bit, name) case bit: printf(" " name); break
switch (bit + base) {
CAPA(0, "HT Information Exchange Supported");
CAPA(1, "reserved (On-demand Beacon)");
CAPA(2, "Extended Channel Switching");
CAPA(3, "reserved (Wave Indication)");
CAPA(4, "PSMP Capability");
CAPA(5, "reserved (Service Interval Granularity)");
CAPA(6, "S-PSMP Capability");
CAPA(7, "Event");
CAPA(8, "Diagnostics");
CAPA(9, "Multicast Diagnostics");
CAPA(10, "Location Tracking");
CAPA(11, "FMS");
CAPA(12, "Proxy ARP Service");
CAPA(13, "Collocated Interference Reporting");
CAPA(14, "Civic Location");
CAPA(15, "Geospatial Location");
CAPA(16, "TFS");
CAPA(17, "WNM-Sleep Mode");
CAPA(18, "TIM Broadcast");
CAPA(19, "BSS Transition");
CAPA(20, "QoS Traffic Capability");
CAPA(21, "AC Station Count");
CAPA(22, "Multiple BSSID");
CAPA(23, "Timing Measurement");
CAPA(24, "Channel Usage");
CAPA(25, "SSID List");
CAPA(26, "DMS");
CAPA(27, "UTC TSF Offset");
CAPA(28, "TDLS Peer U-APSD Buffer STA Support");
CAPA(29, "TDLS Peer PSM Support");
CAPA(30, "TDLS channel switching");
CAPA(31, "Interworking");
CAPA(32, "QoS Map");
CAPA(33, "EBR");
CAPA(34, "SSPN Interface");
CAPA(35, "Reserved");
CAPA(36, "MSGCF Capability");
CAPA(37, "TDLS Support");
CAPA(38, "TDLS Prohibited");
CAPA(39, "TDLS Channel Switching Prohibited");
CAPA(40, "Reject Unadmitted Frame");
CAPA(44, "Identifier Location");
CAPA(45, "U-APSD Coexistence");
CAPA(46, "WNM-Notification");
CAPA(47, "Reserved");
CAPA(48, "UTF-8 SSID");
default:
printf(" %d", bit);
break;
}
#undef CAPA
}
}
printf("\n");
}
static void print_tim(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf(" DTIM Count %u DTIM Period %u Bitmap Control 0x%x "
"Bitmap[0] 0x%x",
data[0], data[1], data[2], data[3]);
if (len - 4)
printf(" (+ %u octet%s)", len - 4, len - 4 == 1 ? "" : "s");
printf("\n");
}
static void print_ibssatim(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf(" %d TUs", (data[1] << 8) + data[0]);
}
static void print_vht_capa(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf("\n");
print_vht_info(data[0] | (data[1] << 8) |
(data[2] << 16) | (data[3] << 24),
data + 4);
}
static void print_vht_oper(const uint8_t type, uint8_t len, const uint8_t *data)
{
const char *chandwidths[] = {
[0] = "20 or 40 MHz",
[1] = "80 MHz",
[3] = "80+80 MHz",
[2] = "160 MHz",
};
printf("\n");
printf("\t\t * channel width: %d (%s)\n", data[0],
data[0] < ARRAY_SIZE(chandwidths) ? chandwidths[data[0]] : "unknown");
printf("\t\t * center freq segment 1: %d\n", data[1]);
printf("\t\t * center freq segment 2: %d\n", data[2]);
printf("\t\t * VHT basic MCS set: 0x%.2x%.2x\n", data[4], data[3]);
}
static void print_obss_scan_params(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf("\n");
printf("\t\t * passive dwell: %d TUs\n", (data[1] << 8) | data[0]);
printf("\t\t * active dwell: %d TUs\n", (data[3] << 8) | data[2]);
printf("\t\t * channel width trigger scan interval: %d s\n", (data[5] << 8) | data[4]);
printf("\t\t * scan passive total per channel: %d TUs\n", (data[7] << 8) | data[6]);
printf("\t\t * scan active total per channel: %d TUs\n", (data[9] << 8) | data[8]);
printf("\t\t * BSS width channel transition delay factor: %d\n", (data[11] << 8) | data[10]);
printf("\t\t * OBSS Scan Activity Threshold: %d.%02d %%\n",
((data[13] << 8) | data[12]) / 100, ((data[13] << 8) | data[12]) % 100);
}
static void print_secchan_offs(const uint8_t type, uint8_t len, const uint8_t *data)
{
if (data[0] < ARRAY_SIZE(ht_secondary_offset))
printf(" %s (%d)\n", ht_secondary_offset[data[0]], data[0]);
else
printf(" %d\n", data[0]);
}
static void print_bss_load(const uint8_t type, uint8_t len, const uint8_t *data)
{
printf("\n");
printf("\t\t * station count: %d\n", (data[1] << 8) | data[0]);
printf("\t\t * channel utilisation: %d/255\n", data[2]);
printf("\t\t * available admission capacity: %d [*32us]\n", (data[4] << 8) | data[3]);
}
struct ie_print {
const char *name;
void (*print)(const uint8_t type, uint8_t len, const uint8_t *data);
uint8_t minlen, maxlen;
uint8_t flags;
};
static void print_ie(const struct ie_print *p, const uint8_t type,
uint8_t len, const uint8_t *data)
{
int i;
if (!p->print)
return;
printf("\t%s:", p->name);
if (len < p->minlen || len > p->maxlen) {
if (len > 1) {
printf(" <invalid: %d bytes:", len);
for (i = 0; i < len; i++)
printf(" %.02x", data[i]);
printf(">\n");
} else if (len)
printf(" <invalid: 1 byte: %.02x>\n", data[0]);
else
printf(" <invalid: no data>\n");
return;
}
p->print(type, len, data);
}
#define PRINT_IGN { \
.name = "IGNORE", \
.print = NULL, \
.minlen = 0, \
.maxlen = 255, \
}
static const struct ie_print ieprinters[] = {
[0] = { "SSID", print_ssid, 0, 32, BIT(PRINT_SCAN) | BIT(PRINT_LINK), },
[1] = { "Supported rates", print_supprates, 0, 255, BIT(PRINT_SCAN), },
[3] = { "DS Parameter set", print_ds, 1, 1, BIT(PRINT_SCAN), },
[5] = { "TIM", print_tim, 4, 255, BIT(PRINT_SCAN), },
[6] = { "IBSS ATIM window", print_ibssatim, 2, 2, BIT(PRINT_SCAN), },
[7] = { "Country", print_country, 3, 255, BIT(PRINT_SCAN), },
[11] = { "BSS Load", print_bss_load, 5, 5, BIT(PRINT_SCAN), },
[32] = { "Power constraint", print_powerconstraint, 1, 1, BIT(PRINT_SCAN), },
[35] = { "TPC report", print_tpcreport, 2, 2, BIT(PRINT_SCAN), },
[42] = { "ERP", print_erp, 1, 255, BIT(PRINT_SCAN), },
[45] = { "HT capabilities", print_ht_capa, 26, 26, BIT(PRINT_SCAN), },
[47] = { "ERP D4.0", print_erp, 1, 255, BIT(PRINT_SCAN), },
[74] = { "Overlapping BSS scan params", print_obss_scan_params, 14, 255, BIT(PRINT_SCAN), },
[61] = { "HT operation", print_ht_op, 22, 22, BIT(PRINT_SCAN), },
[62] = { "Secondary Channel Offset", print_secchan_offs, 1, 1, BIT(PRINT_SCAN), },
[191] = { "VHT capabilities", print_vht_capa, 12, 255, BIT(PRINT_SCAN), },
[192] = { "VHT operation", print_vht_oper, 5, 255, BIT(PRINT_SCAN), },
[48] = { "RSN", print_rsn, 2, 255, BIT(PRINT_SCAN), },
[50] = { "Extended supported rates", print_supprates, 0, 255, BIT(PRINT_SCAN), },
[114] = { "MESH ID", print_ssid, 0, 32, BIT(PRINT_SCAN) | BIT(PRINT_LINK), },
[127] = { "Extended capabilities", print_capabilities, 0, 255, BIT(PRINT_SCAN), },
};
static void print_wifi_wpa(const uint8_t type, uint8_t len, const uint8_t *data)
{
print_rsn_ie("TKIP", "IEEE 802.1X", len, data);
}
static bool print_wifi_wmm_param(const uint8_t *data, uint8_t len)
{
int i;
static const char *aci_tbl[] = { "BE", "BK", "VI", "VO" };
if (len < 19)
goto invalid;
if (data[0] != 1) {
printf("Parameter: not version 1: ");
return false;
}
printf("\t * Parameter version 1");
data++;
if (data[0] & 0x80)
printf("\n\t\t * u-APSD");
data += 2;
for (i = 0; i < 4; i++) {
printf("\n\t\t * %s:", aci_tbl[(data[0] >> 5) & 3]);
if (data[0] & 0x10)
printf(" acm");
printf(" CW %d-%d", (1 << (data[1] & 0xf)) - 1,
(1 << (data[1] >> 4)) - 1);
printf(", AIFSN %d", data[0] & 0xf);
if (data[2] | data[3])
printf(", TXOP %d usec", (data[2] + (data[3] << 8)) * 32);
data += 4;
}
printf("\n");
return true;
invalid:
printf("invalid: ");
return false;
}
static void print_wifi_wmm(const uint8_t type, uint8_t len, const uint8_t *data)
{
int i;
switch (data[0]) {
case 0x00:
printf(" information:");
break;
case 0x01:
if (print_wifi_wmm_param(data + 1, len - 1))
return;
break;
default:
printf(" type %d:", data[0]);
break;
}
for(i = 1; i < len; i++)
printf(" %.02x", data[i]);
printf("\n");
}
static const char * wifi_wps_dev_passwd_id(uint16_t id)
{
switch (id) {
case 0:
return "Default (PIN)";
case 1:
return "User-specified";
case 2:
return "Machine-specified";
case 3:
return "Rekey";
case 4:
return "PushButton";
case 5:
return "Registrar-specified";
default:
return "??";
}
}
static void print_wifi_wps(const uint8_t type, uint8_t len, const uint8_t *data)
{
bool first = true;
__u16 subtype, sublen;
while (len >= 4) {
subtype = (data[0] << 8) + data[1];
sublen = (data[2] << 8) + data[3];
if (sublen > len)
break;
switch (subtype) {
case 0x104a:
tab_on_first(&first);
printf("\t * Version: %d.%d\n", data[4] >> 4, data[4] & 0xF);
break;
case 0x1011:
tab_on_first(&first);
printf("\t * Device name: %.*s\n", sublen, data + 4);
break;
case 0x1012: {
uint16_t id;
tab_on_first(&first);
if (sublen != 2) {
printf("\t * Device Password ID: (invalid "
"length %d)\n", sublen);
break;
}
id = data[4] << 8 | data[5];
printf("\t * Device Password ID: %u (%s)\n",
id, wifi_wps_dev_passwd_id(id));
break;
}
case 0x1021:
tab_on_first(&first);
printf("\t * Manufacturer: %.*s\n", sublen, data + 4);
break;
case 0x1023:
tab_on_first(&first);
printf("\t * Model: %.*s\n", sublen, data + 4);
break;
case 0x1024:
tab_on_first(&first);
printf("\t * Model Number: %.*s\n", sublen, data + 4);
break;
case 0x103b: {
__u8 val = data[4];
tab_on_first(&first);
printf("\t * Response Type: %d%s\n",
val, val == 3 ? " (AP)" : "");
break;
}
case 0x103c: {
__u8 val = data[4];
tab_on_first(&first);
printf("\t * RF Bands: 0x%x\n", val);
break;
}
case 0x1041: {
__u8 val = data[4];
tab_on_first(&first);
printf("\t * Selected Registrar: 0x%x\n", val);
break;
}
case 0x1042:
tab_on_first(&first);
printf("\t * Serial Number: %.*s\n", sublen, data + 4);
break;
case 0x1044: {
__u8 val = data[4];
tab_on_first(&first);
printf("\t * Wi-Fi Protected Setup State: %d%s%s\n",
val,
val == 1 ? " (Unconfigured)" : "",
val == 2 ? " (Configured)" : "");
break;
}
case 0x1047:
tab_on_first(&first);
printf("\t * UUID: ");
if (sublen != 16) {
printf("(invalid, length=%d)\n", sublen);
break;
}
printf("%02x%02x%02x%02x-%02x%02x-%02x%02x-"
"%02x%02x-%02x%02x%02x%02x%02x%02x\n",
data[4], data[5], data[6], data[7],
data[8], data[9], data[10], data[11],
data[12], data[13], data[14], data[15],
data[16], data[17], data[18], data[19]);
break;
case 0x1054: {
tab_on_first(&first);
if (sublen != 8) {
printf("\t * Primary Device Type: (invalid "
"length %d)\n", sublen);
break;
}
printf("\t * Primary Device Type: "
"%u-%02x%02x%02x%02x-%u\n",
data[4] << 8 | data[5],
data[6], data[7], data[8], data[9],
data[10] << 8 | data[11]);
break;
}
case 0x1057: {
__u8 val = data[4];
tab_on_first(&first);
printf("\t * AP setup locked: 0x%.2x\n", val);
break;
}
case 0x1008:
case 0x1053: {
__u16 meth = (data[4] << 8) + data[5];
bool comma = false;
tab_on_first(&first);
printf("\t * %sConfig methods:",
subtype == 0x1053 ? "Selected Registrar ": "");
#define T(bit, name) do { \
if (meth & (1<<bit)) { \
if (comma) \
printf(","); \
comma = true; \
printf(" " name); \
} } while (0)
T(0, "USB");
T(1, "Ethernet");
T(2, "Label");
T(3, "Display");
T(4, "Ext. NFC");
T(5, "Int. NFC");
T(6, "NFC Intf.");
T(7, "PBC");
T(8, "Keypad");
printf("\n");
break;
#undef T
}
default: {
const __u8 *subdata = data + 4;
__u16 tmplen = sublen;
tab_on_first(&first);
printf("\t * Unknown TLV (%#.4x, %d bytes):",
subtype, tmplen);
while (tmplen) {
printf(" %.2x", *subdata);
subdata++;
tmplen--;
}
printf("\n");
break;
}
}
data += sublen + 4;
len -= sublen + 4;
}
if (len != 0) {
printf("\t\t * bogus tail data (%d):", len);
while (len) {
printf(" %.2x", *data);
data++;
len--;
}
printf("\n");
}
}
static const struct ie_print wifiprinters[] = {
[1] = { "WPA", print_wifi_wpa, 2, 255, BIT(PRINT_SCAN), },
[2] = { "WMM", print_wifi_wmm, 1, 255, BIT(PRINT_SCAN), },
[4] = { "WPS", print_wifi_wps, 0, 255, BIT(PRINT_SCAN), },
};
static inline void print_p2p(const uint8_t type, uint8_t len, const uint8_t *data)
{
bool first = true;
__u8 subtype;
__u16 sublen;
while (len >= 3) {
subtype = data[0];
sublen = (data[2] << 8) + data[1];
if (sublen > len - 3)
break;
switch (subtype) {
case 0x02: /* capability */
tab_on_first(&first);
if (sublen < 2) {
printf("\t * malformed capability\n");
break;
}
printf("\t * Group capa: 0x%.2x, Device capa: 0x%.2x\n",
data[3], data[4]);
break;
case 0x0d: /* device info */
if (sublen < 6 + 2 + 8 + 1) {
printf("\t * malformed device info\n");
break;
}
/* fall through for now */
case 0x00: /* status */
case 0x01: /* minor reason */
case 0x03: /* device ID */
case 0x04: /* GO intent */
case 0x05: /* configuration timeout */
case 0x06: /* listen channel */
case 0x07: /* group BSSID */
case 0x08: /* ext listen timing */
case 0x09: /* intended interface address */
case 0x0a: /* manageability */
case 0x0b: /* channel list */
case 0x0c: /* NoA */
case 0x0e: /* group info */
case 0x0f: /* group ID */
case 0x10: /* interface */
case 0x11: /* operating channel */
case 0x12: /* invitation flags */
case 0xdd: /* vendor specific */
default: {
const __u8 *subdata = data + 4;
__u16 tmplen = sublen;
tab_on_first(&first);
printf("\t * Unknown TLV (%#.2x, %d bytes):",
subtype, tmplen);
while (tmplen) {
printf(" %.2x", *subdata);
subdata++;
tmplen--;
}
printf("\n");
break;
}
}
data += sublen + 3;
len -= sublen + 3;
}
if (len != 0) {
tab_on_first(&first);
printf("\t * bogus tail data (%d):", len);
while (len) {
printf(" %.2x", *data);
data++;
len--;
}
printf("\n");
}
}
static const struct ie_print wfa_printers[] = {
[9] = { "P2P", print_p2p, 2, 255, BIT(PRINT_SCAN), },
};
static void print_vendor(unsigned char len, unsigned char *data,
bool unknown, enum print_ie_type ptype)
{
int i;
if (len < 3) {
printf("\tVendor specific: <too short> data:");
for(i = 0; i < len; i++)
printf(" %.02x", data[i]);
printf("\n");
return;
}
if (len >= 4 && memcmp(data, ms_oui, 3) == 0) {
if (data[3] < ARRAY_SIZE(wifiprinters) &&
wifiprinters[data[3]].name &&
wifiprinters[data[3]].flags & BIT(ptype)) {
print_ie(&wifiprinters[data[3]], data[3], len - 4, data + 4);
return;
}
if (!unknown)
return;
printf("\tMS/WiFi %#.2x, data:", data[3]);
for(i = 0; i < len - 4; i++)
printf(" %.02x", data[i + 4]);
printf("\n");
return;
}
if (len >= 4 && memcmp(data, wfa_oui, 3) == 0) {
if (data[3] < ARRAY_SIZE(wfa_printers) &&
wfa_printers[data[3]].name &&
wfa_printers[data[3]].flags & BIT(ptype)) {
print_ie(&wfa_printers[data[3]], data[3], len - 4, data + 4);
return;
}
if (!unknown)
return;
printf("\tWFA %#.2x, data:", data[3]);
for(i = 0; i < len - 4; i++)
printf(" %.02x", data[i + 4]);
printf("\n");
return;
}
if (!unknown)
return;
printf("\tVendor specific: OUI %.2x:%.2x:%.2x, data:",
data[0], data[1], data[2]);
for (i = 3; i < len; i++)
printf(" %.2x", data[i]);
printf("\n");
}
void print_ies(unsigned char *ie, int ielen, bool unknown,
enum print_ie_type ptype)
{
while (ielen >= 2 && ielen >= ie[1]) {
if (ie[0] < ARRAY_SIZE(ieprinters) &&
ieprinters[ie[0]].name &&
ieprinters[ie[0]].flags & BIT(ptype)) {
print_ie(&ieprinters[ie[0]], ie[0], ie[1], ie + 2);
} else if (ie[0] == 221 /* vendor */) {
print_vendor(ie[1], ie + 2, unknown, ptype);
} else if (unknown) {
int i;
printf("\tUnknown IE (%d):", ie[0]);
for (i=0; i<ie[1]; i++)
printf(" %.2x", ie[2+i]);
printf("\n");
}
ielen -= ie[1] + 2;
ie += ie[1] + 2;
}
}
static void print_capa_dmg(__u16 capa)
{
switch (capa & WLAN_CAPABILITY_DMG_TYPE_MASK) {
case WLAN_CAPABILITY_DMG_TYPE_AP:
printf(" DMG_ESS");
break;
case WLAN_CAPABILITY_DMG_TYPE_PBSS:
printf(" DMG_PCP");
break;
case WLAN_CAPABILITY_DMG_TYPE_IBSS:
printf(" DMG_IBSS");
break;
}
if (capa & WLAN_CAPABILITY_DMG_CBAP_ONLY)
printf(" CBAP_Only");
if (capa & WLAN_CAPABILITY_DMG_CBAP_SOURCE)
printf(" CBAP_Src");
if (capa & WLAN_CAPABILITY_DMG_PRIVACY)
printf(" Privacy");
if (capa & WLAN_CAPABILITY_DMG_ECPAC)
printf(" ECPAC");
if (capa & WLAN_CAPABILITY_DMG_SPECTRUM_MGMT)
printf(" SpectrumMgmt");
if (capa & WLAN_CAPABILITY_DMG_RADIO_MEASURE)
printf(" RadioMeasure");
}
static void print_capa_non_dmg(__u16 capa)
{
if (capa & WLAN_CAPABILITY_ESS)
printf(" ESS");
if (capa & WLAN_CAPABILITY_IBSS)
printf(" IBSS");
if (capa & WLAN_CAPABILITY_CF_POLLABLE)
printf(" CfPollable");
if (capa & WLAN_CAPABILITY_CF_POLL_REQUEST)
printf(" CfPollReq");
if (capa & WLAN_CAPABILITY_PRIVACY)
printf(" Privacy");
if (capa & WLAN_CAPABILITY_SHORT_PREAMBLE)
printf(" ShortPreamble");
if (capa & WLAN_CAPABILITY_PBCC)
printf(" PBCC");
if (capa & WLAN_CAPABILITY_CHANNEL_AGILITY)
printf(" ChannelAgility");
if (capa & WLAN_CAPABILITY_SPECTRUM_MGMT)
printf(" SpectrumMgmt");
if (capa & WLAN_CAPABILITY_QOS)
printf(" QoS");
if (capa & WLAN_CAPABILITY_SHORT_SLOT_TIME)
printf(" ShortSlotTime");
if (capa & WLAN_CAPABILITY_APSD)
printf(" APSD");
if (capa & WLAN_CAPABILITY_RADIO_MEASURE)
printf(" RadioMeasure");
if (capa & WLAN_CAPABILITY_DSSS_OFDM)
printf(" DSSS-OFDM");
if (capa & WLAN_CAPABILITY_DEL_BACK)
printf(" DelayedBACK");
if (capa & WLAN_CAPABILITY_IMM_BACK)
printf(" ImmediateBACK");
}
static int print_bss_handler(struct nl_msg *msg, void *arg)
{
struct nlattr *tb[NL80211_ATTR_MAX + 1];
struct genlmsghdr *gnlh = nlmsg_data(nlmsg_hdr(msg));
struct nlattr *bss[NL80211_BSS_MAX + 1];
char mac_addr[20], dev[20];
static struct nla_policy bss_policy[NL80211_BSS_MAX + 1] = {
[NL80211_BSS_TSF] = { .type = NLA_U64 },
[NL80211_BSS_FREQUENCY] = { .type = NLA_U32 },
[NL80211_BSS_BSSID] = { },
[NL80211_BSS_BEACON_INTERVAL] = { .type = NLA_U16 },
[NL80211_BSS_CAPABILITY] = { .type = NLA_U16 },
[NL80211_BSS_INFORMATION_ELEMENTS] = { },
[NL80211_BSS_SIGNAL_MBM] = { .type = NLA_U32 },
[NL80211_BSS_SIGNAL_UNSPEC] = { .type = NLA_U8 },
[NL80211_BSS_STATUS] = { .type = NLA_U32 },
[NL80211_BSS_SEEN_MS_AGO] = { .type = NLA_U32 },
[NL80211_BSS_BEACON_IES] = { },
};
struct scan_params *params = arg;
int show = params->show_both_ie_sets ? 2 : 1;
bool is_dmg = false;
nla_parse(tb, NL80211_ATTR_MAX, genlmsg_attrdata(gnlh, 0),
genlmsg_attrlen(gnlh, 0), NULL);
if (!tb[NL80211_ATTR_BSS]) {
fprintf(stderr, "bss info missing!\n");
return NL_SKIP;
}
if (nla_parse_nested(bss, NL80211_BSS_MAX,
tb[NL80211_ATTR_BSS],
bss_policy)) {
fprintf(stderr, "failed to parse nested attributes!\n");
return NL_SKIP;
}
if (!bss[NL80211_BSS_BSSID])
return NL_SKIP;
mac_addr_n2a(mac_addr, nla_data(bss[NL80211_BSS_BSSID]));
printf("BSS %s", mac_addr);
if (tb[NL80211_ATTR_IFINDEX]) {
if_indextoname(nla_get_u32(tb[NL80211_ATTR_IFINDEX]), dev);
printf("(on %s)", dev);
}
if (bss[NL80211_BSS_STATUS]) {
switch (nla_get_u32(bss[NL80211_BSS_STATUS])) {
case NL80211_BSS_STATUS_AUTHENTICATED:
printf(" -- authenticated");
break;
case NL80211_BSS_STATUS_ASSOCIATED:
printf(" -- associated");
break;
case NL80211_BSS_STATUS_IBSS_JOINED:
printf(" -- joined");
break;
default:
printf(" -- unknown status: %d",
nla_get_u32(bss[NL80211_BSS_STATUS]));
break;
}
}
printf("\n");
if (bss[NL80211_BSS_TSF]) {
unsigned long long tsf;
tsf = (unsigned long long)nla_get_u64(bss[NL80211_BSS_TSF]);
printf("\tTSF: %llu usec (%llud, %.2lld:%.2llu:%.2llu)\n",
tsf, tsf/1000/1000/60/60/24, (tsf/1000/1000/60/60) % 24,
(tsf/1000/1000/60) % 60, (tsf/1000/1000) % 60);
}
if (bss[NL80211_BSS_FREQUENCY]) {
int freq = nla_get_u32(bss[NL80211_BSS_FREQUENCY]);
printf("\tfreq: %d\n", freq);
if (freq > 45000)
is_dmg = true;
}
if (bss[NL80211_BSS_BEACON_INTERVAL])
printf("\tbeacon interval: %d TUs\n",
nla_get_u16(bss[NL80211_BSS_BEACON_INTERVAL]));
if (bss[NL80211_BSS_CAPABILITY]) {
__u16 capa = nla_get_u16(bss[NL80211_BSS_CAPABILITY]);
printf("\tcapability:");
if (is_dmg)
print_capa_dmg(capa);
else
print_capa_non_dmg(capa);
printf(" (0x%.4x)\n", capa);
}
if (bss[NL80211_BSS_SIGNAL_MBM]) {
int s = nla_get_u32(bss[NL80211_BSS_SIGNAL_MBM]);
printf("\tsignal: %d.%.2d dBm\n", s/100, s%100);
}
if (bss[NL80211_BSS_SIGNAL_UNSPEC]) {
unsigned char s = nla_get_u8(bss[NL80211_BSS_SIGNAL_UNSPEC]);
printf("\tsignal: %d/100\n", s);
}
if (bss[NL80211_BSS_SEEN_MS_AGO]) {
int age = nla_get_u32(bss[NL80211_BSS_SEEN_MS_AGO]);
printf("\tlast seen: %d ms ago\n", age);
}
if (bss[NL80211_BSS_INFORMATION_ELEMENTS] && show--) {
if (bss[NL80211_BSS_BEACON_IES])
printf("\tInformation elements from Probe Response "
"frame:\n");
print_ies(nla_data(bss[NL80211_BSS_INFORMATION_ELEMENTS]),
nla_len(bss[NL80211_BSS_INFORMATION_ELEMENTS]),
params->unknown, params->type);
}
if (bss[NL80211_BSS_BEACON_IES] && show--) {
printf("\tInformation elements from Beacon frame:\n");
print_ies(nla_data(bss[NL80211_BSS_BEACON_IES]),
nla_len(bss[NL80211_BSS_BEACON_IES]),
params->unknown, params->type);
}
return NL_SKIP;
}
static struct scan_params scan_params;
static int handle_scan_dump(struct nl80211_state *state,
struct nl_cb *cb,
struct nl_msg *msg,
int argc, char **argv,
enum id_input id)
{
if (argc > 1)
return 1;
memset(&scan_params, 0, sizeof(scan_params));
if (argc == 1 && !strcmp(argv[0], "-u"))
scan_params.unknown = true;
else if (argc == 1 && !strcmp(argv[0], "-b"))
scan_params.show_both_ie_sets = true;
scan_params.type = PRINT_SCAN;
nl_cb_set(cb, NL_CB_VALID, NL_CB_CUSTOM, print_bss_handler,
&scan_params);
return 0;
}
static int handle_scan_combined(struct nl80211_state *state,
struct nl_cb *cb,
struct nl_msg *msg,
int argc, char **argv,
enum id_input id)
{
char **trig_argv;
static char *dump_argv[] = {
NULL,
"scan",
"dump",
NULL,
};
static const __u32 cmds[] = {
NL80211_CMD_NEW_SCAN_RESULTS,
NL80211_CMD_SCAN_ABORTED,
};
int trig_argc, dump_argc, err;
if (argc >= 3 && !strcmp(argv[2], "-u")) {
dump_argc = 4;
dump_argv[3] = "-u";
} else if (argc >= 3 && !strcmp(argv[2], "-b")) {
dump_argc = 4;
dump_argv[3] = "-b";
} else
dump_argc = 3;
trig_argc = 3 + (argc - 2) + (3 - dump_argc);
trig_argv = calloc(trig_argc, sizeof(*trig_argv));
if (!trig_argv)
return -ENOMEM;
trig_argv[0] = argv[0];
trig_argv[1] = "scan";
trig_argv[2] = "trigger";
int i;
for (i = 0; i < argc - 2 - (dump_argc - 3); i++)
trig_argv[i + 3] = argv[i + 2 + (dump_argc - 3)];
err = handle_cmd(state, id, trig_argc, trig_argv);
free(trig_argv);
if (err)
return err;
/*
* WARNING: DO NOT COPY THIS CODE INTO YOUR APPLICATION
*
* This code has a bug, which requires creating a separate
* nl80211 socket to fix:
* It is possible for a NL80211_CMD_NEW_SCAN_RESULTS or
* NL80211_CMD_SCAN_ABORTED message to be sent by the kernel
* before (!) we listen to it, because we only start listening
* after we send our scan request.
*
* Doing it the other way around has a race condition as well,
* if you first open the events socket you may get a notification
* for a previous scan.
*
* The only proper way to fix this would be to listen to events
* before sending the command, and for the kernel to send the
* scan request along with the event, so that you can match up
* whether the scan you requested was finished or aborted (this
* may result in processing a scan that another application
* requested, but that doesn't seem to be a problem).
*
* Alas, the kernel doesn't do that (yet).
*/
if (listen_events(state, ARRAY_SIZE(cmds), cmds) ==
NL80211_CMD_SCAN_ABORTED) {
printf("scan aborted!\n");
return 0;
}
dump_argv[0] = argv[0];
return handle_cmd(state, id, dump_argc, dump_argv);
}
TOPLEVEL(scan, "[-u] [freq <freq>*] [ies <hex as 00:11:..>] [lowpri,flush,ap-force] [ssid <ssid>*|passive]", 0, 0,
CIB_NETDEV, handle_scan_combined,
"Scan on the given frequencies and probe for the given SSIDs\n"
"(or wildcard if not given) unless passive scanning is requested.\n"
"If -u is specified print unknown data in the scan results.\n"
"Specified (vendor) IEs must be well-formed.");
COMMAND(scan, dump, "[-u]",
NL80211_CMD_GET_SCAN, NLM_F_DUMP, CIB_NETDEV, handle_scan_dump,
"Dump the current scan results. If -u is specified, print unknown\n"
"data in scan results.");
COMMAND(scan, trigger, "[freq <freq>*] [ies <hex as 00:11:..>] [lowpri,flush,ap-force] [ssid <ssid>*|passive]",
NL80211_CMD_TRIGGER_SCAN, 0, CIB_NETDEV, handle_scan,
"Trigger a scan on the given frequencies with probing for the given\n"
"SSIDs (or wildcard if not given) unless passive scanning is requested.");