blob: 9f085613bc9546036d35de943d03ece84eff9f85 [file] [log] [blame]
#include <stdbool.h>
#include <errno.h>
#include <net/if.h>
#include <netlink/genl/genl.h>
#include <netlink/genl/family.h>
#include <netlink/genl/ctrl.h>
#include <netlink/msg.h>
#include <netlink/attr.h>
#include "nl80211.h"
#include "iw.h"
static void print_flag(const char *name, int *open)
{
if (!*open)
printf(" (");
else
printf(", ");
printf("%s", name);
*open = 1;
}
static char *cipher_name(__u32 c)
{
static char buf[20];
switch (c) {
case 0x000fac01:
return "WEP40 (00-0f-ac:1)";
case 0x000fac05:
return "WEP104 (00-0f-ac:5)";
case 0x000fac02:
return "TKIP (00-0f-ac:2)";
case 0x000fac04:
return "CCMP (00-0f-ac:4)";
case 0x000fac06:
return "CMAC (00-0f-ac:6)";
case 0x00147201:
return "WPI-SMS4 (00-14-72:1)";
default:
sprintf(buf, "%.2x-%.2x-%.2x:%d",
c >> 24, (c >> 16) & 0xff,
(c >> 8) & 0xff, c & 0xff);
return buf;
}
}
static int print_phy_handler(struct nl_msg *msg, void *arg)
{
struct nlattr *tb_msg[NL80211_ATTR_MAX + 1];
struct genlmsghdr *gnlh = nlmsg_data(nlmsg_hdr(msg));
struct nlattr *tb_band[NL80211_BAND_ATTR_MAX + 1];
struct nlattr *tb_freq[NL80211_FREQUENCY_ATTR_MAX + 1];
static struct nla_policy freq_policy[NL80211_FREQUENCY_ATTR_MAX + 1] = {
[NL80211_FREQUENCY_ATTR_FREQ] = { .type = NLA_U32 },
[NL80211_FREQUENCY_ATTR_DISABLED] = { .type = NLA_FLAG },
[NL80211_FREQUENCY_ATTR_PASSIVE_SCAN] = { .type = NLA_FLAG },
[NL80211_FREQUENCY_ATTR_NO_IBSS] = { .type = NLA_FLAG },
[NL80211_FREQUENCY_ATTR_RADAR] = { .type = NLA_FLAG },
[NL80211_FREQUENCY_ATTR_MAX_TX_POWER] = { .type = NLA_U32 },
};
struct nlattr *tb_rate[NL80211_BITRATE_ATTR_MAX + 1];
static struct nla_policy rate_policy[NL80211_BITRATE_ATTR_MAX + 1] = {
[NL80211_BITRATE_ATTR_RATE] = { .type = NLA_U32 },
[NL80211_BITRATE_ATTR_2GHZ_SHORTPREAMBLE] = { .type = NLA_FLAG },
};
struct nlattr *nl_band;
struct nlattr *nl_freq;
struct nlattr *nl_rate;
struct nlattr *nl_mode;
struct nlattr *nl_cmd;
struct nlattr *nl_if, *nl_ftype;
int bandidx = 1;
int rem_band, rem_freq, rem_rate, rem_mode, rem_cmd, rem_ftype, rem_if;
int open;
nla_parse(tb_msg, NL80211_ATTR_MAX, genlmsg_attrdata(gnlh, 0),
genlmsg_attrlen(gnlh, 0), NULL);
if (!tb_msg[NL80211_ATTR_WIPHY_BANDS])
return NL_SKIP;
if (tb_msg[NL80211_ATTR_WIPHY_NAME])
printf("Wiphy %s\n", nla_get_string(tb_msg[NL80211_ATTR_WIPHY_NAME]));
nla_for_each_nested(nl_band, tb_msg[NL80211_ATTR_WIPHY_BANDS], rem_band) {
printf("\tBand %d:\n", bandidx);
bandidx++;
nla_parse(tb_band, NL80211_BAND_ATTR_MAX, nla_data(nl_band),
nla_len(nl_band), NULL);
#ifdef NL80211_BAND_ATTR_HT_CAPA
if (tb_band[NL80211_BAND_ATTR_HT_CAPA]) {
__u16 cap = nla_get_u16(tb_band[NL80211_BAND_ATTR_HT_CAPA]);
print_ht_capability(cap);
}
if (tb_band[NL80211_BAND_ATTR_HT_AMPDU_FACTOR]) {
__u8 exponent = nla_get_u8(tb_band[NL80211_BAND_ATTR_HT_AMPDU_FACTOR]);
print_ampdu_length(exponent);
}
if (tb_band[NL80211_BAND_ATTR_HT_AMPDU_DENSITY]) {
__u8 spacing = nla_get_u8(tb_band[NL80211_BAND_ATTR_HT_AMPDU_DENSITY]);
print_ampdu_spacing(spacing);
}
if (tb_band[NL80211_BAND_ATTR_HT_MCS_SET] &&
nla_len(tb_band[NL80211_BAND_ATTR_HT_MCS_SET]) == 16)
print_ht_mcs(nla_data(tb_band[NL80211_BAND_ATTR_HT_MCS_SET]));
#endif
printf("\t\tFrequencies:\n");
nla_for_each_nested(nl_freq, tb_band[NL80211_BAND_ATTR_FREQS], rem_freq) {
uint32_t freq;
nla_parse(tb_freq, NL80211_FREQUENCY_ATTR_MAX, nla_data(nl_freq),
nla_len(nl_freq), freq_policy);
if (!tb_freq[NL80211_FREQUENCY_ATTR_FREQ])
continue;
freq = nla_get_u32(tb_freq[NL80211_FREQUENCY_ATTR_FREQ]);
printf("\t\t\t* %d MHz [%d]", freq, ieee80211_frequency_to_channel(freq));
if (tb_freq[NL80211_FREQUENCY_ATTR_MAX_TX_POWER] &&
!tb_freq[NL80211_FREQUENCY_ATTR_DISABLED])
printf(" (%.1f dBm)", 0.01 * nla_get_u32(tb_freq[NL80211_FREQUENCY_ATTR_MAX_TX_POWER]));
open = 0;
if (tb_freq[NL80211_FREQUENCY_ATTR_DISABLED]) {
print_flag("disabled", &open);
goto next;
}
if (tb_freq[NL80211_FREQUENCY_ATTR_PASSIVE_SCAN])
print_flag("passive scanning", &open);
if (tb_freq[NL80211_FREQUENCY_ATTR_NO_IBSS])
print_flag("no IBSS", &open);
if (tb_freq[NL80211_FREQUENCY_ATTR_RADAR])
print_flag("radar detection", &open);
next:
if (open)
printf(")");
printf("\n");
}
printf("\t\tBitrates (non-HT):\n");
nla_for_each_nested(nl_rate, tb_band[NL80211_BAND_ATTR_RATES], rem_rate) {
nla_parse(tb_rate, NL80211_BITRATE_ATTR_MAX, nla_data(nl_rate),
nla_len(nl_rate), rate_policy);
if (!tb_rate[NL80211_BITRATE_ATTR_RATE])
continue;
printf("\t\t\t* %2.1f Mbps", 0.1 * nla_get_u32(tb_rate[NL80211_BITRATE_ATTR_RATE]));
open = 0;
if (tb_rate[NL80211_BITRATE_ATTR_2GHZ_SHORTPREAMBLE])
print_flag("short preamble supported", &open);
if (open)
printf(")");
printf("\n");
}
}
if (tb_msg[NL80211_ATTR_MAX_NUM_SCAN_SSIDS])
printf("\tmax # scan SSIDs: %d\n",
nla_get_u8(tb_msg[NL80211_ATTR_MAX_NUM_SCAN_SSIDS]));
if (tb_msg[NL80211_ATTR_MAX_SCAN_IE_LEN])
printf("\tmax scan IEs length: %d bytes\n",
nla_get_u16(tb_msg[NL80211_ATTR_MAX_SCAN_IE_LEN]));
if (tb_msg[NL80211_ATTR_WIPHY_FRAG_THRESHOLD]) {
unsigned int frag;
frag = nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_FRAG_THRESHOLD]);
if (frag != (unsigned int)-1)
printf("\tFragmentation threshold: %d\n", frag);
}
if (tb_msg[NL80211_ATTR_WIPHY_RTS_THRESHOLD]) {
unsigned int rts;
rts = nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_RTS_THRESHOLD]);
if (rts != (unsigned int)-1)
printf("\tRTS threshold: %d\n", rts);
}
if (tb_msg[NL80211_ATTR_WIPHY_COVERAGE_CLASS]) {
unsigned char coverage;
coverage = nla_get_u8(tb_msg[NL80211_ATTR_WIPHY_COVERAGE_CLASS]);
/* See handle_distance() for an explanation where the '450' comes from */
printf("\tCoverage class: %d (up to %dm)\n", coverage, 450 * coverage);
}
if (tb_msg[NL80211_ATTR_CIPHER_SUITES]) {
int num = nla_len(tb_msg[NL80211_ATTR_CIPHER_SUITES]) / sizeof(__u32);
int i;
__u32 *ciphers = nla_data(tb_msg[NL80211_ATTR_CIPHER_SUITES]);
if (num > 0) {
printf("\tSupported Ciphers:\n");
for (i = 0; i < num; i++)
printf("\t\t* %s\n",
cipher_name(ciphers[i]));
}
}
if (tb_msg[NL80211_ATTR_WIPHY_ANTENNA_AVAIL_TX] &&
tb_msg[NL80211_ATTR_WIPHY_ANTENNA_AVAIL_RX])
printf("\tAvailable Antennas: TX %#x RX %#x\n",
nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_ANTENNA_AVAIL_TX]),
nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_ANTENNA_AVAIL_RX]));
if (tb_msg[NL80211_ATTR_WIPHY_ANTENNA_TX] &&
tb_msg[NL80211_ATTR_WIPHY_ANTENNA_RX])
printf("\tConfigured Antennas: TX %#x RX %#x\n",
nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_ANTENNA_TX]),
nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_ANTENNA_RX]));
if (tb_msg[NL80211_ATTR_SUPPORTED_IFTYPES]) {
printf("\tSupported interface modes:\n");
nla_for_each_nested(nl_mode, tb_msg[NL80211_ATTR_SUPPORTED_IFTYPES], rem_mode)
printf("\t\t * %s\n", iftype_name(nla_type(nl_mode)));
}
if (tb_msg[NL80211_ATTR_SOFTWARE_IFTYPES]) {
printf("\tsoftware interface modes (can always be added):\n");
nla_for_each_nested(nl_mode, tb_msg[NL80211_ATTR_SOFTWARE_IFTYPES], rem_mode)
printf("\t\t * %s\n", iftype_name(nla_type(nl_mode)));
}
if (tb_msg[NL80211_ATTR_INTERFACE_COMBINATIONS]) {
struct nlattr *nl_combi;
int rem_combi;
bool have_combinations = false;
nla_for_each_nested(nl_combi, tb_msg[NL80211_ATTR_INTERFACE_COMBINATIONS], rem_combi) {
static struct nla_policy iface_combination_policy[NUM_NL80211_IFACE_COMB] = {
[NL80211_IFACE_COMB_LIMITS] = { .type = NLA_NESTED },
[NL80211_IFACE_COMB_MAXNUM] = { .type = NLA_U32 },
[NL80211_IFACE_COMB_STA_AP_BI_MATCH] = { .type = NLA_FLAG },
[NL80211_IFACE_COMB_NUM_CHANNELS] = { .type = NLA_U32 },
};
struct nlattr *tb_comb[NUM_NL80211_IFACE_COMB];
static struct nla_policy iface_limit_policy[NUM_NL80211_IFACE_LIMIT] = {
[NL80211_IFACE_LIMIT_TYPES] = { .type = NLA_NESTED },
[NL80211_IFACE_LIMIT_MAX] = { .type = NLA_U32 },
};
struct nlattr *tb_limit[NUM_NL80211_IFACE_LIMIT];
struct nlattr *nl_limit;
int err, rem_limit;
bool comma = false;
if (!have_combinations) {
printf("\tvalid interface combinations:\n");
have_combinations = true;
}
printf("\t\t * ");
err = nla_parse_nested(tb_comb, MAX_NL80211_IFACE_COMB,
nl_combi, iface_combination_policy);
if (err || !tb_comb[NL80211_IFACE_COMB_LIMITS] ||
!tb_comb[NL80211_IFACE_COMB_MAXNUM] ||
!tb_comb[NL80211_IFACE_COMB_NUM_CHANNELS]) {
printf(" <failed to parse>\n");
goto broken_combination;
}
nla_for_each_nested(nl_limit, tb_comb[NL80211_IFACE_COMB_LIMITS], rem_limit) {
bool ift_comma = false;
err = nla_parse_nested(tb_limit, MAX_NL80211_IFACE_LIMIT,
nl_limit, iface_limit_policy);
if (err || !tb_limit[NL80211_IFACE_LIMIT_TYPES]) {
printf("<failed to parse>\n");
goto broken_combination;
}
if (comma)
printf(", ");
comma = true;
printf("#{");
nla_for_each_nested(nl_mode, tb_limit[NL80211_IFACE_LIMIT_TYPES], rem_mode) {
printf("%s %s", ift_comma ? "," : "",
iftype_name(nla_type(nl_mode)));
ift_comma = true;
}
printf(" } <= %u", nla_get_u32(tb_limit[NL80211_IFACE_LIMIT_MAX]));
}
printf(",\n\t\t ");
printf("total <= %d, #channels <= %d%s\n",
nla_get_u32(tb_comb[NL80211_IFACE_COMB_MAXNUM]),
nla_get_u32(tb_comb[NL80211_IFACE_COMB_NUM_CHANNELS]),
tb_comb[NL80211_IFACE_COMB_STA_AP_BI_MATCH] ?
", STA/AP BI must match" : "");
broken_combination:
;
}
if (!have_combinations)
printf("\tinterface combinations are not supported\n");
}
if (tb_msg[NL80211_ATTR_SUPPORTED_COMMANDS]) {
printf("\tSupported commands:\n");
nla_for_each_nested(nl_cmd, tb_msg[NL80211_ATTR_SUPPORTED_COMMANDS], rem_cmd)
printf("\t\t * %s\n", command_name(nla_get_u32(nl_cmd)));
}
if (tb_msg[NL80211_ATTR_TX_FRAME_TYPES]) {
printf("\tSupported TX frame types:\n");
nla_for_each_nested(nl_if, tb_msg[NL80211_ATTR_TX_FRAME_TYPES], rem_if) {
bool printed = false;
nla_for_each_nested(nl_ftype, nl_if, rem_ftype) {
if (!printed)
printf("\t\t * %s:", iftype_name(nla_type(nl_if)));
printed = true;
printf(" 0x%.4x", nla_get_u16(nl_ftype));
}
if (printed)
printf("\n");
}
}
if (tb_msg[NL80211_ATTR_RX_FRAME_TYPES]) {
printf("\tSupported RX frame types:\n");
nla_for_each_nested(nl_if, tb_msg[NL80211_ATTR_RX_FRAME_TYPES], rem_if) {
bool printed = false;
nla_for_each_nested(nl_ftype, nl_if, rem_ftype) {
if (!printed)
printf("\t\t * %s:", iftype_name(nla_type(nl_if)));
printed = true;
printf(" 0x%.4x", nla_get_u16(nl_ftype));
}
if (printed)
printf("\n");
}
}
if (tb_msg[NL80211_ATTR_SUPPORT_IBSS_RSN])
printf("\tDevice supports RSN-IBSS.\n");
if (tb_msg[NL80211_ATTR_WOWLAN_TRIGGERS_SUPPORTED]) {
struct nlattr *tb_wowlan[NUM_NL80211_WOWLAN_TRIG];
static struct nla_policy wowlan_policy[NUM_NL80211_WOWLAN_TRIG] = {
[NL80211_WOWLAN_TRIG_ANY] = { .type = NLA_FLAG },
[NL80211_WOWLAN_TRIG_DISCONNECT] = { .type = NLA_FLAG },
[NL80211_WOWLAN_TRIG_MAGIC_PKT] = { .type = NLA_FLAG },
[NL80211_WOWLAN_TRIG_PKT_PATTERN] = {
.minlen = sizeof(struct nl80211_wowlan_pattern_support),
},
[NL80211_WOWLAN_TRIG_GTK_REKEY_SUPPORTED] = { .type = NLA_FLAG },
[NL80211_WOWLAN_TRIG_GTK_REKEY_FAILURE] = { .type = NLA_FLAG },
[NL80211_WOWLAN_TRIG_EAP_IDENT_REQUEST] = { .type = NLA_FLAG },
[NL80211_WOWLAN_TRIG_4WAY_HANDSHAKE] = { .type = NLA_FLAG },
[NL80211_WOWLAN_TRIG_RFKILL_RELEASE] = { .type = NLA_FLAG },
};
struct nl80211_wowlan_pattern_support *pat;
int err;
err = nla_parse_nested(tb_wowlan, MAX_NL80211_WOWLAN_TRIG,
tb_msg[NL80211_ATTR_WOWLAN_TRIGGERS_SUPPORTED],
wowlan_policy);
printf("\tWoWLAN support:");
if (err) {
printf(" <failed to parse>\n");
} else {
printf("\n");
if (tb_wowlan[NL80211_WOWLAN_TRIG_ANY])
printf("\t\t * wake up on anything (device continues operating normally)\n");
if (tb_wowlan[NL80211_WOWLAN_TRIG_DISCONNECT])
printf("\t\t * wake up on disconnect\n");
if (tb_wowlan[NL80211_WOWLAN_TRIG_MAGIC_PKT])
printf("\t\t * wake up on magic packet\n");
if (tb_wowlan[NL80211_WOWLAN_TRIG_PKT_PATTERN]) {
pat = nla_data(tb_wowlan[NL80211_WOWLAN_TRIG_PKT_PATTERN]);
printf("\t\t * wake up on pattern match, up to %u patterns of %u-%u bytes\n",
pat->max_patterns, pat->min_pattern_len, pat->max_pattern_len);
}
if (tb_wowlan[NL80211_WOWLAN_TRIG_GTK_REKEY_SUPPORTED])
printf("\t\t * can do GTK rekeying\n");
if (tb_wowlan[NL80211_WOWLAN_TRIG_GTK_REKEY_FAILURE])
printf("\t\t * wake up on GTK rekey failure\n");
if (tb_wowlan[NL80211_WOWLAN_TRIG_EAP_IDENT_REQUEST])
printf("\t\t * wake up on EAP identity request\n");
if (tb_wowlan[NL80211_WOWLAN_TRIG_4WAY_HANDSHAKE])
printf("\t\t * wake up on 4-way handshake\n");
if (tb_wowlan[NL80211_WOWLAN_TRIG_RFKILL_RELEASE])
printf("\t\t * wake up on rfkill release\n");
}
}
if (tb_msg[NL80211_ATTR_ROAM_SUPPORT])
printf("\tDevice supports roaming.\n");
if (tb_msg[NL80211_ATTR_SUPPORT_AP_UAPSD])
printf("\tDevice supports AP-side u-APSD.\n");
if (tb_msg[NL80211_ATTR_HT_CAPABILITY_MASK]) {
struct ieee80211_ht_cap *cm;
printf("\tHT Capability overrides:\n");
if (nla_len(tb_msg[NL80211_ATTR_HT_CAPABILITY_MASK]) >= sizeof(*cm)) {
cm = nla_data(tb_msg[NL80211_ATTR_HT_CAPABILITY_MASK]);
printf("\t\t * MCS: %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx"
" %02hhx %02hhx %02hhx %02hhx\n",
cm->mcs.rx_mask[0], cm->mcs.rx_mask[1],
cm->mcs.rx_mask[2], cm->mcs.rx_mask[3],
cm->mcs.rx_mask[4], cm->mcs.rx_mask[5],
cm->mcs.rx_mask[6], cm->mcs.rx_mask[7],
cm->mcs.rx_mask[8], cm->mcs.rx_mask[9]);
if (cm->cap_info & htole16(IEEE80211_HT_CAP_MAX_AMSDU))
printf("\t\t * maximum A-MSDU length\n");
if (cm->cap_info & htole16(IEEE80211_HT_CAP_SUP_WIDTH_20_40))
printf("\t\t * supported channel width\n");
if (cm->cap_info & htole16(IEEE80211_HT_CAP_SGI_40))
printf("\t\t * short GI for 40 MHz\n");
if (cm->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_FACTOR)
printf("\t\t * max A-MPDU length exponent\n");
if (cm->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_DENSITY)
printf("\t\t * min MPDU start spacing\n");
} else {
printf("\tERROR: capabilities mask is too short, expected: %d, received: %d\n",
(int)(sizeof(*cm)),
(int)(nla_len(tb_msg[NL80211_ATTR_HT_CAPABILITY_MASK])));
}
}
return NL_SKIP;
}
static int handle_info(struct nl80211_state *state,
struct nl_cb *cb,
struct nl_msg *msg,
int argc, char **argv)
{
nl_cb_set(cb, NL_CB_VALID, NL_CB_CUSTOM, print_phy_handler, NULL);
return 0;
}
__COMMAND(NULL, info, "info", NULL, NL80211_CMD_GET_WIPHY, 0, 0, CIB_PHY, handle_info,
"Show capabilities for the specified wireless device.", NULL);
TOPLEVEL(list, NULL, NL80211_CMD_GET_WIPHY, NLM_F_DUMP, CIB_NONE, handle_info,
"List all wireless devices and their capabilities.");
TOPLEVEL(phy, NULL, NL80211_CMD_GET_WIPHY, NLM_F_DUMP, CIB_NONE, handle_info, NULL);