| /* |
| ******************************************************************************* |
| * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each |
| * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash |
| * functions are employed. The original cuckoo hashing algorithm was described |
| * in: |
| * |
| * Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms |
| * 51(2):122-144. |
| * |
| * Generalization of cuckoo hashing was discussed in: |
| * |
| * Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical |
| * alternative to traditional hash tables. In Proceedings of the 7th |
| * Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA, |
| * January 2006. |
| * |
| * This implementation uses precisely two hash functions because that is the |
| * fewest that can work, and supporting multiple hashes is an implementation |
| * burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006) |
| * that shows approximate expected maximum load factors for various |
| * configurations: |
| * |
| * | #cells/bucket | |
| * #hashes | 1 | 2 | 4 | 8 | |
| * --------+-------+-------+-------+-------+ |
| * 1 | 0.006 | 0.006 | 0.03 | 0.12 | |
| * 2 | 0.49 | 0.86 |>0.93< |>0.96< | |
| * 3 | 0.91 | 0.97 | 0.98 | 0.999 | |
| * 4 | 0.97 | 0.99 | 0.999 | | |
| * |
| * The number of cells per bucket is chosen such that a bucket fits in one cache |
| * line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing, |
| * respectively. |
| * |
| ******************************************************************************/ |
| #define JEMALLOC_CKH_C_ |
| #include "jemalloc/internal/jemalloc_internal.h" |
| |
| /******************************************************************************/ |
| /* Function prototypes for non-inline static functions. */ |
| |
| static bool ckh_grow(ckh_t *ckh); |
| static void ckh_shrink(ckh_t *ckh); |
| |
| /******************************************************************************/ |
| |
| /* |
| * Search bucket for key and return the cell number if found; SIZE_T_MAX |
| * otherwise. |
| */ |
| JEMALLOC_INLINE size_t |
| ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key) |
| { |
| ckhc_t *cell; |
| unsigned i; |
| |
| for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { |
| cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; |
| if (cell->key != NULL && ckh->keycomp(key, cell->key)) |
| return ((bucket << LG_CKH_BUCKET_CELLS) + i); |
| } |
| |
| return (SIZE_T_MAX); |
| } |
| |
| /* |
| * Search table for key and return cell number if found; SIZE_T_MAX otherwise. |
| */ |
| JEMALLOC_INLINE size_t |
| ckh_isearch(ckh_t *ckh, const void *key) |
| { |
| size_t hash1, hash2, bucket, cell; |
| |
| assert(ckh != NULL); |
| |
| ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2); |
| |
| /* Search primary bucket. */ |
| bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| cell = ckh_bucket_search(ckh, bucket, key); |
| if (cell != SIZE_T_MAX) |
| return (cell); |
| |
| /* Search secondary bucket. */ |
| bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| cell = ckh_bucket_search(ckh, bucket, key); |
| return (cell); |
| } |
| |
| JEMALLOC_INLINE bool |
| ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key, |
| const void *data) |
| { |
| ckhc_t *cell; |
| unsigned offset, i; |
| |
| /* |
| * Cycle through the cells in the bucket, starting at a random position. |
| * The randomness avoids worst-case search overhead as buckets fill up. |
| */ |
| prng32(offset, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C); |
| for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { |
| cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + |
| ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))]; |
| if (cell->key == NULL) { |
| cell->key = key; |
| cell->data = data; |
| ckh->count++; |
| return (false); |
| } |
| } |
| |
| return (true); |
| } |
| |
| /* |
| * No space is available in bucket. Randomly evict an item, then try to find an |
| * alternate location for that item. Iteratively repeat this |
| * eviction/relocation procedure until either success or detection of an |
| * eviction/relocation bucket cycle. |
| */ |
| JEMALLOC_INLINE bool |
| ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey, |
| void const **argdata) |
| { |
| const void *key, *data, *tkey, *tdata; |
| ckhc_t *cell; |
| size_t hash1, hash2, bucket, tbucket; |
| unsigned i; |
| |
| bucket = argbucket; |
| key = *argkey; |
| data = *argdata; |
| while (true) { |
| /* |
| * Choose a random item within the bucket to evict. This is |
| * critical to correct function, because without (eventually) |
| * evicting all items within a bucket during iteration, it |
| * would be possible to get stuck in an infinite loop if there |
| * were an item for which both hashes indicated the same |
| * bucket. |
| */ |
| prng32(i, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C); |
| cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; |
| assert(cell->key != NULL); |
| |
| /* Swap cell->{key,data} and {key,data} (evict). */ |
| tkey = cell->key; tdata = cell->data; |
| cell->key = key; cell->data = data; |
| key = tkey; data = tdata; |
| |
| #ifdef CKH_COUNT |
| ckh->nrelocs++; |
| #endif |
| |
| /* Find the alternate bucket for the evicted item. */ |
| ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2); |
| tbucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| if (tbucket == bucket) { |
| tbucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| /* |
| * It may be that (tbucket == bucket) still, if the |
| * item's hashes both indicate this bucket. However, |
| * we are guaranteed to eventually escape this bucket |
| * during iteration, assuming pseudo-random item |
| * selection (true randomness would make infinite |
| * looping a remote possibility). The reason we can |
| * never get trapped forever is that there are two |
| * cases: |
| * |
| * 1) This bucket == argbucket, so we will quickly |
| * detect an eviction cycle and terminate. |
| * 2) An item was evicted to this bucket from another, |
| * which means that at least one item in this bucket |
| * has hashes that indicate distinct buckets. |
| */ |
| } |
| /* Check for a cycle. */ |
| if (tbucket == argbucket) { |
| *argkey = key; |
| *argdata = data; |
| return (true); |
| } |
| |
| bucket = tbucket; |
| if (ckh_try_bucket_insert(ckh, bucket, key, data) == false) |
| return (false); |
| } |
| } |
| |
| JEMALLOC_INLINE bool |
| ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata) |
| { |
| size_t hash1, hash2, bucket; |
| const void *key = *argkey; |
| const void *data = *argdata; |
| |
| ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2); |
| |
| /* Try to insert in primary bucket. */ |
| bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| if (ckh_try_bucket_insert(ckh, bucket, key, data) == false) |
| return (false); |
| |
| /* Try to insert in secondary bucket. */ |
| bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| if (ckh_try_bucket_insert(ckh, bucket, key, data) == false) |
| return (false); |
| |
| /* |
| * Try to find a place for this item via iterative eviction/relocation. |
| */ |
| return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata)); |
| } |
| |
| /* |
| * Try to rebuild the hash table from scratch by inserting all items from the |
| * old table into the new. |
| */ |
| JEMALLOC_INLINE bool |
| ckh_rebuild(ckh_t *ckh, ckhc_t *aTab) |
| { |
| size_t count, i, nins; |
| const void *key, *data; |
| |
| count = ckh->count; |
| ckh->count = 0; |
| for (i = nins = 0; nins < count; i++) { |
| if (aTab[i].key != NULL) { |
| key = aTab[i].key; |
| data = aTab[i].data; |
| if (ckh_try_insert(ckh, &key, &data)) { |
| ckh->count = count; |
| return (true); |
| } |
| nins++; |
| } |
| } |
| |
| return (false); |
| } |
| |
| static bool |
| ckh_grow(ckh_t *ckh) |
| { |
| bool ret; |
| ckhc_t *tab, *ttab; |
| size_t lg_curcells; |
| unsigned lg_prevbuckets; |
| |
| #ifdef CKH_COUNT |
| ckh->ngrows++; |
| #endif |
| |
| /* |
| * It is possible (though unlikely, given well behaved hashes) that the |
| * table will have to be doubled more than once in order to create a |
| * usable table. |
| */ |
| lg_prevbuckets = ckh->lg_curbuckets; |
| lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS; |
| while (true) { |
| size_t usize; |
| |
| lg_curcells++; |
| usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE); |
| if (usize == 0) { |
| ret = true; |
| goto label_return; |
| } |
| tab = (ckhc_t *)ipalloc(usize, CACHELINE, true); |
| if (tab == NULL) { |
| ret = true; |
| goto label_return; |
| } |
| /* Swap in new table. */ |
| ttab = ckh->tab; |
| ckh->tab = tab; |
| tab = ttab; |
| ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; |
| |
| if (ckh_rebuild(ckh, tab) == false) { |
| idalloc(tab); |
| break; |
| } |
| |
| /* Rebuilding failed, so back out partially rebuilt table. */ |
| idalloc(ckh->tab); |
| ckh->tab = tab; |
| ckh->lg_curbuckets = lg_prevbuckets; |
| } |
| |
| ret = false; |
| label_return: |
| return (ret); |
| } |
| |
| static void |
| ckh_shrink(ckh_t *ckh) |
| { |
| ckhc_t *tab, *ttab; |
| size_t lg_curcells, usize; |
| unsigned lg_prevbuckets; |
| |
| /* |
| * It is possible (though unlikely, given well behaved hashes) that the |
| * table rebuild will fail. |
| */ |
| lg_prevbuckets = ckh->lg_curbuckets; |
| lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1; |
| usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE); |
| if (usize == 0) |
| return; |
| tab = (ckhc_t *)ipalloc(usize, CACHELINE, true); |
| if (tab == NULL) { |
| /* |
| * An OOM error isn't worth propagating, since it doesn't |
| * prevent this or future operations from proceeding. |
| */ |
| return; |
| } |
| /* Swap in new table. */ |
| ttab = ckh->tab; |
| ckh->tab = tab; |
| tab = ttab; |
| ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; |
| |
| if (ckh_rebuild(ckh, tab) == false) { |
| idalloc(tab); |
| #ifdef CKH_COUNT |
| ckh->nshrinks++; |
| #endif |
| return; |
| } |
| |
| /* Rebuilding failed, so back out partially rebuilt table. */ |
| idalloc(ckh->tab); |
| ckh->tab = tab; |
| ckh->lg_curbuckets = lg_prevbuckets; |
| #ifdef CKH_COUNT |
| ckh->nshrinkfails++; |
| #endif |
| } |
| |
| bool |
| ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash, ckh_keycomp_t *keycomp) |
| { |
| bool ret; |
| size_t mincells, usize; |
| unsigned lg_mincells; |
| |
| assert(minitems > 0); |
| assert(hash != NULL); |
| assert(keycomp != NULL); |
| |
| #ifdef CKH_COUNT |
| ckh->ngrows = 0; |
| ckh->nshrinks = 0; |
| ckh->nshrinkfails = 0; |
| ckh->ninserts = 0; |
| ckh->nrelocs = 0; |
| #endif |
| ckh->prng_state = 42; /* Value doesn't really matter. */ |
| ckh->count = 0; |
| |
| /* |
| * Find the minimum power of 2 that is large enough to fit aBaseCount |
| * entries. We are using (2+,2) cuckoo hashing, which has an expected |
| * maximum load factor of at least ~0.86, so 0.75 is a conservative load |
| * factor that will typically allow 2^aLgMinItems to fit without ever |
| * growing the table. |
| */ |
| assert(LG_CKH_BUCKET_CELLS > 0); |
| mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2; |
| for (lg_mincells = LG_CKH_BUCKET_CELLS; |
| (ZU(1) << lg_mincells) < mincells; |
| lg_mincells++) |
| ; /* Do nothing. */ |
| ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; |
| ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; |
| ckh->hash = hash; |
| ckh->keycomp = keycomp; |
| |
| usize = sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE); |
| if (usize == 0) { |
| ret = true; |
| goto label_return; |
| } |
| ckh->tab = (ckhc_t *)ipalloc(usize, CACHELINE, true); |
| if (ckh->tab == NULL) { |
| ret = true; |
| goto label_return; |
| } |
| |
| ret = false; |
| label_return: |
| return (ret); |
| } |
| |
| void |
| ckh_delete(ckh_t *ckh) |
| { |
| |
| assert(ckh != NULL); |
| |
| #ifdef CKH_VERBOSE |
| malloc_printf( |
| "%s(%p): ngrows: %"PRIu64", nshrinks: %"PRIu64"," |
| " nshrinkfails: %"PRIu64", ninserts: %"PRIu64"," |
| " nrelocs: %"PRIu64"\n", __func__, ckh, |
| (unsigned long long)ckh->ngrows, |
| (unsigned long long)ckh->nshrinks, |
| (unsigned long long)ckh->nshrinkfails, |
| (unsigned long long)ckh->ninserts, |
| (unsigned long long)ckh->nrelocs); |
| #endif |
| |
| idalloc(ckh->tab); |
| #ifdef JEMALLOC_DEBUG |
| memset(ckh, 0x5a, sizeof(ckh_t)); |
| #endif |
| } |
| |
| size_t |
| ckh_count(ckh_t *ckh) |
| { |
| |
| assert(ckh != NULL); |
| |
| return (ckh->count); |
| } |
| |
| bool |
| ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data) |
| { |
| size_t i, ncells; |
| |
| for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets + |
| LG_CKH_BUCKET_CELLS)); i < ncells; i++) { |
| if (ckh->tab[i].key != NULL) { |
| if (key != NULL) |
| *key = (void *)ckh->tab[i].key; |
| if (data != NULL) |
| *data = (void *)ckh->tab[i].data; |
| *tabind = i + 1; |
| return (false); |
| } |
| } |
| |
| return (true); |
| } |
| |
| bool |
| ckh_insert(ckh_t *ckh, const void *key, const void *data) |
| { |
| bool ret; |
| |
| assert(ckh != NULL); |
| assert(ckh_search(ckh, key, NULL, NULL)); |
| |
| #ifdef CKH_COUNT |
| ckh->ninserts++; |
| #endif |
| |
| while (ckh_try_insert(ckh, &key, &data)) { |
| if (ckh_grow(ckh)) { |
| ret = true; |
| goto label_return; |
| } |
| } |
| |
| ret = false; |
| label_return: |
| return (ret); |
| } |
| |
| bool |
| ckh_remove(ckh_t *ckh, const void *searchkey, void **key, void **data) |
| { |
| size_t cell; |
| |
| assert(ckh != NULL); |
| |
| cell = ckh_isearch(ckh, searchkey); |
| if (cell != SIZE_T_MAX) { |
| if (key != NULL) |
| *key = (void *)ckh->tab[cell].key; |
| if (data != NULL) |
| *data = (void *)ckh->tab[cell].data; |
| ckh->tab[cell].key = NULL; |
| ckh->tab[cell].data = NULL; /* Not necessary. */ |
| |
| ckh->count--; |
| /* Try to halve the table if it is less than 1/4 full. */ |
| if (ckh->count < (ZU(1) << (ckh->lg_curbuckets |
| + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets |
| > ckh->lg_minbuckets) { |
| /* Ignore error due to OOM. */ |
| ckh_shrink(ckh); |
| } |
| |
| return (false); |
| } |
| |
| return (true); |
| } |
| |
| bool |
| ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data) |
| { |
| size_t cell; |
| |
| assert(ckh != NULL); |
| |
| cell = ckh_isearch(ckh, searchkey); |
| if (cell != SIZE_T_MAX) { |
| if (key != NULL) |
| *key = (void *)ckh->tab[cell].key; |
| if (data != NULL) |
| *data = (void *)ckh->tab[cell].data; |
| return (false); |
| } |
| |
| return (true); |
| } |
| |
| void |
| ckh_string_hash(const void *key, unsigned minbits, size_t *hash1, size_t *hash2) |
| { |
| size_t ret1, ret2; |
| uint64_t h; |
| |
| assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64)); |
| assert(hash1 != NULL); |
| assert(hash2 != NULL); |
| |
| h = hash(key, strlen((const char *)key), UINT64_C(0x94122f335b332aea)); |
| if (minbits <= 32) { |
| /* |
| * Avoid doing multiple hashes, since a single hash provides |
| * enough bits. |
| */ |
| ret1 = h & ZU(0xffffffffU); |
| ret2 = h >> 32; |
| } else { |
| ret1 = h; |
| ret2 = hash(key, strlen((const char *)key), |
| UINT64_C(0x8432a476666bbc13)); |
| } |
| |
| *hash1 = ret1; |
| *hash2 = ret2; |
| } |
| |
| bool |
| ckh_string_keycomp(const void *k1, const void *k2) |
| { |
| |
| assert(k1 != NULL); |
| assert(k2 != NULL); |
| |
| return (strcmp((char *)k1, (char *)k2) ? false : true); |
| } |
| |
| void |
| ckh_pointer_hash(const void *key, unsigned minbits, size_t *hash1, |
| size_t *hash2) |
| { |
| size_t ret1, ret2; |
| uint64_t h; |
| union { |
| const void *v; |
| uint64_t i; |
| } u; |
| |
| assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64)); |
| assert(hash1 != NULL); |
| assert(hash2 != NULL); |
| |
| assert(sizeof(u.v) == sizeof(u.i)); |
| #if (LG_SIZEOF_PTR != LG_SIZEOF_INT) |
| u.i = 0; |
| #endif |
| u.v = key; |
| h = hash(&u.i, sizeof(u.i), UINT64_C(0xd983396e68886082)); |
| if (minbits <= 32) { |
| /* |
| * Avoid doing multiple hashes, since a single hash provides |
| * enough bits. |
| */ |
| ret1 = h & ZU(0xffffffffU); |
| ret2 = h >> 32; |
| } else { |
| assert(SIZEOF_PTR == 8); |
| ret1 = h; |
| ret2 = hash(&u.i, sizeof(u.i), UINT64_C(0x5e2be9aff8709a5d)); |
| } |
| |
| *hash1 = ret1; |
| *hash2 = ret2; |
| } |
| |
| bool |
| ckh_pointer_keycomp(const void *k1, const void *k2) |
| { |
| |
| return ((k1 == k2) ? true : false); |
| } |