blob: b64386e316cdfe64a7b2c5dc5e926b2b7d4a41ba [file] [log] [blame]
#define JEMALLOC_PROF_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
#ifdef JEMALLOC_PROF_LIBUNWIND
#define UNW_LOCAL_ONLY
#include <libunwind.h>
#endif
#ifdef JEMALLOC_PROF_LIBGCC
#include <unwind.h>
#endif
/******************************************************************************/
/* Data. */
malloc_tsd_data(, prof_tdata, prof_tdata_t *, NULL)
bool opt_prof = false;
bool opt_prof_active = true;
size_t opt_lg_prof_sample = LG_PROF_SAMPLE_DEFAULT;
ssize_t opt_lg_prof_interval = LG_PROF_INTERVAL_DEFAULT;
bool opt_prof_gdump = false;
bool opt_prof_final = true;
bool opt_prof_leak = false;
bool opt_prof_accum = false;
char opt_prof_prefix[
/* Minimize memory bloat for non-prof builds. */
#ifdef JEMALLOC_PROF
PATH_MAX +
#endif
1];
uint64_t prof_interval = 0;
/*
* Table of mutexes that are shared among ctx's. These are leaf locks, so
* there is no problem with using them for more than one ctx at the same time.
* The primary motivation for this sharing though is that ctx's are ephemeral,
* and destroying mutexes causes complications for systems that allocate when
* creating/destroying mutexes.
*/
static malloc_mutex_t *ctx_locks;
static unsigned cum_ctxs; /* Atomic counter. */
/*
* Global hash of (prof_bt_t *)-->(prof_ctx_t *). This is the master data
* structure that knows about all backtraces currently captured.
*/
static ckh_t bt2ctx;
static malloc_mutex_t bt2ctx_mtx;
static malloc_mutex_t prof_dump_seq_mtx;
static uint64_t prof_dump_seq;
static uint64_t prof_dump_iseq;
static uint64_t prof_dump_mseq;
static uint64_t prof_dump_useq;
/*
* This buffer is rather large for stack allocation, so use a single buffer for
* all profile dumps.
*/
static malloc_mutex_t prof_dump_mtx;
static char prof_dump_buf[
/* Minimize memory bloat for non-prof builds. */
#ifdef JEMALLOC_PROF
PROF_DUMP_BUFSIZE
#else
1
#endif
];
static unsigned prof_dump_buf_end;
static int prof_dump_fd;
/* Do not dump any profiles until bootstrapping is complete. */
static bool prof_booted = false;
/******************************************************************************/
void
bt_init(prof_bt_t *bt, void **vec)
{
cassert(config_prof);
bt->vec = vec;
bt->len = 0;
}
static void
bt_destroy(prof_bt_t *bt)
{
cassert(config_prof);
idalloc(bt);
}
static prof_bt_t *
bt_dup(prof_bt_t *bt)
{
prof_bt_t *ret;
cassert(config_prof);
/*
* Create a single allocation that has space for vec immediately
* following the prof_bt_t structure. The backtraces that get
* stored in the backtrace caches are copied from stack-allocated
* temporary variables, so size is known at creation time. Making this
* a contiguous object improves cache locality.
*/
ret = (prof_bt_t *)imalloc(QUANTUM_CEILING(sizeof(prof_bt_t)) +
(bt->len * sizeof(void *)));
if (ret == NULL)
return (NULL);
ret->vec = (void **)((uintptr_t)ret +
QUANTUM_CEILING(sizeof(prof_bt_t)));
memcpy(ret->vec, bt->vec, bt->len * sizeof(void *));
ret->len = bt->len;
return (ret);
}
static inline void
prof_enter(prof_tdata_t *prof_tdata)
{
cassert(config_prof);
assert(prof_tdata->enq == false);
prof_tdata->enq = true;
malloc_mutex_lock(&bt2ctx_mtx);
}
static inline void
prof_leave(prof_tdata_t *prof_tdata)
{
bool idump, gdump;
cassert(config_prof);
malloc_mutex_unlock(&bt2ctx_mtx);
assert(prof_tdata->enq);
prof_tdata->enq = false;
idump = prof_tdata->enq_idump;
prof_tdata->enq_idump = false;
gdump = prof_tdata->enq_gdump;
prof_tdata->enq_gdump = false;
if (idump)
prof_idump();
if (gdump)
prof_gdump();
}
#ifdef JEMALLOC_PROF_LIBUNWIND
void
prof_backtrace(prof_bt_t *bt)
{
int nframes;
cassert(config_prof);
assert(bt->len == 0);
assert(bt->vec != NULL);
nframes = unw_backtrace(bt->vec, PROF_BT_MAX);
if (nframes <= 0)
return;
bt->len = nframes;
}
#elif (defined(JEMALLOC_PROF_LIBGCC))
static _Unwind_Reason_Code
prof_unwind_init_callback(struct _Unwind_Context *context, void *arg)
{
cassert(config_prof);
return (_URC_NO_REASON);
}
static _Unwind_Reason_Code
prof_unwind_callback(struct _Unwind_Context *context, void *arg)
{
prof_unwind_data_t *data = (prof_unwind_data_t *)arg;
void *ip;
cassert(config_prof);
ip = (void *)_Unwind_GetIP(context);
if (ip == NULL)
return (_URC_END_OF_STACK);
data->bt->vec[data->bt->len] = ip;
data->bt->len++;
if (data->bt->len == data->max)
return (_URC_END_OF_STACK);
return (_URC_NO_REASON);
}
void
prof_backtrace(prof_bt_t *bt)
{
prof_unwind_data_t data = {bt, PROF_BT_MAX};
cassert(config_prof);
_Unwind_Backtrace(prof_unwind_callback, &data);
}
#elif (defined(JEMALLOC_PROF_GCC))
void
prof_backtrace(prof_bt_t *bt)
{
#define BT_FRAME(i) \
if ((i) < PROF_BT_MAX) { \
void *p; \
if (__builtin_frame_address(i) == 0) \
return; \
p = __builtin_return_address(i); \
if (p == NULL) \
return; \
bt->vec[(i)] = p; \
bt->len = (i) + 1; \
} else \
return;
cassert(config_prof);
BT_FRAME(0)
BT_FRAME(1)
BT_FRAME(2)
BT_FRAME(3)
BT_FRAME(4)
BT_FRAME(5)
BT_FRAME(6)
BT_FRAME(7)
BT_FRAME(8)
BT_FRAME(9)
BT_FRAME(10)
BT_FRAME(11)
BT_FRAME(12)
BT_FRAME(13)
BT_FRAME(14)
BT_FRAME(15)
BT_FRAME(16)
BT_FRAME(17)
BT_FRAME(18)
BT_FRAME(19)
BT_FRAME(20)
BT_FRAME(21)
BT_FRAME(22)
BT_FRAME(23)
BT_FRAME(24)
BT_FRAME(25)
BT_FRAME(26)
BT_FRAME(27)
BT_FRAME(28)
BT_FRAME(29)
BT_FRAME(30)
BT_FRAME(31)
BT_FRAME(32)
BT_FRAME(33)
BT_FRAME(34)
BT_FRAME(35)
BT_FRAME(36)
BT_FRAME(37)
BT_FRAME(38)
BT_FRAME(39)
BT_FRAME(40)
BT_FRAME(41)
BT_FRAME(42)
BT_FRAME(43)
BT_FRAME(44)
BT_FRAME(45)
BT_FRAME(46)
BT_FRAME(47)
BT_FRAME(48)
BT_FRAME(49)
BT_FRAME(50)
BT_FRAME(51)
BT_FRAME(52)
BT_FRAME(53)
BT_FRAME(54)
BT_FRAME(55)
BT_FRAME(56)
BT_FRAME(57)
BT_FRAME(58)
BT_FRAME(59)
BT_FRAME(60)
BT_FRAME(61)
BT_FRAME(62)
BT_FRAME(63)
BT_FRAME(64)
BT_FRAME(65)
BT_FRAME(66)
BT_FRAME(67)
BT_FRAME(68)
BT_FRAME(69)
BT_FRAME(70)
BT_FRAME(71)
BT_FRAME(72)
BT_FRAME(73)
BT_FRAME(74)
BT_FRAME(75)
BT_FRAME(76)
BT_FRAME(77)
BT_FRAME(78)
BT_FRAME(79)
BT_FRAME(80)
BT_FRAME(81)
BT_FRAME(82)
BT_FRAME(83)
BT_FRAME(84)
BT_FRAME(85)
BT_FRAME(86)
BT_FRAME(87)
BT_FRAME(88)
BT_FRAME(89)
BT_FRAME(90)
BT_FRAME(91)
BT_FRAME(92)
BT_FRAME(93)
BT_FRAME(94)
BT_FRAME(95)
BT_FRAME(96)
BT_FRAME(97)
BT_FRAME(98)
BT_FRAME(99)
BT_FRAME(100)
BT_FRAME(101)
BT_FRAME(102)
BT_FRAME(103)
BT_FRAME(104)
BT_FRAME(105)
BT_FRAME(106)
BT_FRAME(107)
BT_FRAME(108)
BT_FRAME(109)
BT_FRAME(110)
BT_FRAME(111)
BT_FRAME(112)
BT_FRAME(113)
BT_FRAME(114)
BT_FRAME(115)
BT_FRAME(116)
BT_FRAME(117)
BT_FRAME(118)
BT_FRAME(119)
BT_FRAME(120)
BT_FRAME(121)
BT_FRAME(122)
BT_FRAME(123)
BT_FRAME(124)
BT_FRAME(125)
BT_FRAME(126)
BT_FRAME(127)
#undef BT_FRAME
}
#else
void
prof_backtrace(prof_bt_t *bt)
{
cassert(config_prof);
not_reached();
}
#endif
static malloc_mutex_t *
prof_ctx_mutex_choose(void)
{
unsigned nctxs = atomic_add_u(&cum_ctxs, 1);
return (&ctx_locks[(nctxs - 1) % PROF_NCTX_LOCKS]);
}
static void
prof_ctx_init(prof_ctx_t *ctx, prof_bt_t *bt)
{
ctx->bt = bt;
ctx->lock = prof_ctx_mutex_choose();
/*
* Set nlimbo to 1, in order to avoid a race condition with
* prof_ctx_merge()/prof_ctx_destroy().
*/
ctx->nlimbo = 1;
ql_elm_new(ctx, dump_link);
memset(&ctx->cnt_merged, 0, sizeof(prof_cnt_t));
ql_new(&ctx->cnts_ql);
}
static void
prof_ctx_destroy(prof_ctx_t *ctx)
{
prof_tdata_t *prof_tdata;
cassert(config_prof);
/*
* Check that ctx is still unused by any thread cache before destroying
* it. prof_lookup() increments ctx->nlimbo in order to avoid a race
* condition with this function, as does prof_ctx_merge() in order to
* avoid a race between the main body of prof_ctx_merge() and entry
* into this function.
*/
prof_tdata = prof_tdata_get(false);
assert((uintptr_t)prof_tdata > (uintptr_t)PROF_TDATA_STATE_MAX);
prof_enter(prof_tdata);
malloc_mutex_lock(ctx->lock);
if (ql_first(&ctx->cnts_ql) == NULL && ctx->cnt_merged.curobjs == 0 &&
ctx->nlimbo == 1) {
assert(ctx->cnt_merged.curbytes == 0);
assert(ctx->cnt_merged.accumobjs == 0);
assert(ctx->cnt_merged.accumbytes == 0);
/* Remove ctx from bt2ctx. */
if (ckh_remove(&bt2ctx, ctx->bt, NULL, NULL))
not_reached();
prof_leave(prof_tdata);
/* Destroy ctx. */
malloc_mutex_unlock(ctx->lock);
bt_destroy(ctx->bt);
idalloc(ctx);
} else {
/*
* Compensate for increment in prof_ctx_merge() or
* prof_lookup().
*/
ctx->nlimbo--;
malloc_mutex_unlock(ctx->lock);
prof_leave(prof_tdata);
}
}
static void
prof_ctx_merge(prof_ctx_t *ctx, prof_thr_cnt_t *cnt)
{
bool destroy;
cassert(config_prof);
/* Merge cnt stats and detach from ctx. */
malloc_mutex_lock(ctx->lock);
ctx->cnt_merged.curobjs += cnt->cnts.curobjs;
ctx->cnt_merged.curbytes += cnt->cnts.curbytes;
ctx->cnt_merged.accumobjs += cnt->cnts.accumobjs;
ctx->cnt_merged.accumbytes += cnt->cnts.accumbytes;
ql_remove(&ctx->cnts_ql, cnt, cnts_link);
if (opt_prof_accum == false && ql_first(&ctx->cnts_ql) == NULL &&
ctx->cnt_merged.curobjs == 0 && ctx->nlimbo == 0) {
/*
* Increment ctx->nlimbo in order to keep another thread from
* winning the race to destroy ctx while this one has ctx->lock
* dropped. Without this, it would be possible for another
* thread to:
*
* 1) Sample an allocation associated with ctx.
* 2) Deallocate the sampled object.
* 3) Successfully prof_ctx_destroy(ctx).
*
* The result would be that ctx no longer exists by the time
* this thread accesses it in prof_ctx_destroy().
*/
ctx->nlimbo++;
destroy = true;
} else
destroy = false;
malloc_mutex_unlock(ctx->lock);
if (destroy)
prof_ctx_destroy(ctx);
}
static bool
prof_lookup_global(prof_bt_t *bt, prof_tdata_t *prof_tdata, void **p_btkey,
prof_ctx_t **p_ctx, bool *p_new_ctx)
{
union {
prof_ctx_t *p;
void *v;
} ctx;
union {
prof_bt_t *p;
void *v;
} btkey;
bool new_ctx;
prof_enter(prof_tdata);
if (ckh_search(&bt2ctx, bt, &btkey.v, &ctx.v)) {
/* bt has never been seen before. Insert it. */
ctx.v = imalloc(sizeof(prof_ctx_t));
if (ctx.v == NULL) {
prof_leave(prof_tdata);
return (true);
}
btkey.p = bt_dup(bt);
if (btkey.v == NULL) {
prof_leave(prof_tdata);
idalloc(ctx.v);
return (true);
}
prof_ctx_init(ctx.p, btkey.p);
if (ckh_insert(&bt2ctx, btkey.v, ctx.v)) {
/* OOM. */
prof_leave(prof_tdata);
idalloc(btkey.v);
idalloc(ctx.v);
return (true);
}
new_ctx = true;
} else {
/*
* Increment nlimbo, in order to avoid a race condition with
* prof_ctx_merge()/prof_ctx_destroy().
*/
malloc_mutex_lock(ctx.p->lock);
ctx.p->nlimbo++;
malloc_mutex_unlock(ctx.p->lock);
new_ctx = false;
}
prof_leave(prof_tdata);
*p_btkey = btkey.v;
*p_ctx = ctx.p;
*p_new_ctx = new_ctx;
return (false);
}
prof_thr_cnt_t *
prof_lookup(prof_bt_t *bt)
{
union {
prof_thr_cnt_t *p;
void *v;
} ret;
prof_tdata_t *prof_tdata;
cassert(config_prof);
prof_tdata = prof_tdata_get(false);
if ((uintptr_t)prof_tdata <= (uintptr_t)PROF_TDATA_STATE_MAX)
return (NULL);
if (ckh_search(&prof_tdata->bt2cnt, bt, NULL, &ret.v)) {
void *btkey;
prof_ctx_t *ctx;
bool new_ctx;
/*
* This thread's cache lacks bt. Look for it in the global
* cache.
*/
if (prof_lookup_global(bt, prof_tdata, &btkey, &ctx, &new_ctx))
return (NULL);
/* Link a prof_thd_cnt_t into ctx for this thread. */
if (ckh_count(&prof_tdata->bt2cnt) == PROF_TCMAX) {
assert(ckh_count(&prof_tdata->bt2cnt) > 0);
/*
* Flush the least recently used cnt in order to keep
* bt2cnt from becoming too large.
*/
ret.p = ql_last(&prof_tdata->lru_ql, lru_link);
assert(ret.v != NULL);
if (ckh_remove(&prof_tdata->bt2cnt, ret.p->ctx->bt,
NULL, NULL))
not_reached();
ql_remove(&prof_tdata->lru_ql, ret.p, lru_link);
prof_ctx_merge(ret.p->ctx, ret.p);
/* ret can now be re-used. */
} else {
assert(ckh_count(&prof_tdata->bt2cnt) < PROF_TCMAX);
/* Allocate and partially initialize a new cnt. */
ret.v = imalloc(sizeof(prof_thr_cnt_t));
if (ret.p == NULL) {
if (new_ctx)
prof_ctx_destroy(ctx);
return (NULL);
}
ql_elm_new(ret.p, cnts_link);
ql_elm_new(ret.p, lru_link);
}
/* Finish initializing ret. */
ret.p->ctx = ctx;
ret.p->epoch = 0;
memset(&ret.p->cnts, 0, sizeof(prof_cnt_t));
if (ckh_insert(&prof_tdata->bt2cnt, btkey, ret.v)) {
if (new_ctx)
prof_ctx_destroy(ctx);
idalloc(ret.v);
return (NULL);
}
ql_head_insert(&prof_tdata->lru_ql, ret.p, lru_link);
malloc_mutex_lock(ctx->lock);
ql_tail_insert(&ctx->cnts_ql, ret.p, cnts_link);
ctx->nlimbo--;
malloc_mutex_unlock(ctx->lock);
} else {
/* Move ret to the front of the LRU. */
ql_remove(&prof_tdata->lru_ql, ret.p, lru_link);
ql_head_insert(&prof_tdata->lru_ql, ret.p, lru_link);
}
return (ret.p);
}
void
prof_sample_threshold_update(prof_tdata_t *prof_tdata)
{
/*
* The body of this function is compiled out unless heap profiling is
* enabled, so that it is possible to compile jemalloc with floating
* point support completely disabled. Avoiding floating point code is
* important on memory-constrained systems, but it also enables a
* workaround for versions of glibc that don't properly save/restore
* floating point registers during dynamic lazy symbol loading (which
* internally calls into whatever malloc implementation happens to be
* integrated into the application). Note that some compilers (e.g.
* gcc 4.8) may use floating point registers for fast memory moves, so
* jemalloc must be compiled with such optimizations disabled (e.g.
* -mno-sse) in order for the workaround to be complete.
*/
#ifdef JEMALLOC_PROF
uint64_t r;
double u;
if (!config_prof)
return;
if (prof_tdata == NULL)
prof_tdata = prof_tdata_get(false);
if (opt_lg_prof_sample == 0) {
prof_tdata->bytes_until_sample = 0;
return;
}
/*
* Compute sample threshold as a geometrically distributed random
* variable with mean (2^opt_lg_prof_sample).
*
* __ __
* | log(u) | 1
* prof_tdata->threshold = | -------- |, where p = -------------------
* | log(1-p) | opt_lg_prof_sample
* 2
*
* For more information on the math, see:
*
* Non-Uniform Random Variate Generation
* Luc Devroye
* Springer-Verlag, New York, 1986
* pp 500
* (http://luc.devroye.org/rnbookindex.html)
*/
prng64(r, 53, prof_tdata->prng_state,
UINT64_C(6364136223846793005), UINT64_C(1442695040888963407));
u = (double)r * (1.0/9007199254740992.0L);
prof_tdata->bytes_until_sample = (uint64_t)(log(u) /
log(1.0 - (1.0 / (double)((uint64_t)1U << opt_lg_prof_sample))))
+ (uint64_t)1U;
#endif
}
#ifdef JEMALLOC_JET
size_t
prof_bt_count(void)
{
size_t bt_count;
prof_tdata_t *prof_tdata;
prof_tdata = prof_tdata_get(false);
if ((uintptr_t)prof_tdata <= (uintptr_t)PROF_TDATA_STATE_MAX)
return (0);
prof_enter(prof_tdata);
bt_count = ckh_count(&bt2ctx);
prof_leave(prof_tdata);
return (bt_count);
}
#endif
#ifdef JEMALLOC_JET
#undef prof_dump_open
#define prof_dump_open JEMALLOC_N(prof_dump_open_impl)
#endif
static int
prof_dump_open(bool propagate_err, const char *filename)
{
int fd;
fd = creat(filename, 0644);
if (fd == -1 && propagate_err == false) {
malloc_printf("<jemalloc>: creat(\"%s\"), 0644) failed\n",
filename);
if (opt_abort)
abort();
}
return (fd);
}
#ifdef JEMALLOC_JET
#undef prof_dump_open
#define prof_dump_open JEMALLOC_N(prof_dump_open)
prof_dump_open_t *prof_dump_open = JEMALLOC_N(prof_dump_open_impl);
#endif
static bool
prof_dump_flush(bool propagate_err)
{
bool ret = false;
ssize_t err;
cassert(config_prof);
err = write(prof_dump_fd, prof_dump_buf, prof_dump_buf_end);
if (err == -1) {
if (propagate_err == false) {
malloc_write("<jemalloc>: write() failed during heap "
"profile flush\n");
if (opt_abort)
abort();
}
ret = true;
}
prof_dump_buf_end = 0;
return (ret);
}
static bool
prof_dump_close(bool propagate_err)
{
bool ret;
assert(prof_dump_fd != -1);
ret = prof_dump_flush(propagate_err);
close(prof_dump_fd);
prof_dump_fd = -1;
return (ret);
}
static bool
prof_dump_write(bool propagate_err, const char *s)
{
unsigned i, slen, n;
cassert(config_prof);
i = 0;
slen = strlen(s);
while (i < slen) {
/* Flush the buffer if it is full. */
if (prof_dump_buf_end == PROF_DUMP_BUFSIZE)
if (prof_dump_flush(propagate_err) && propagate_err)
return (true);
if (prof_dump_buf_end + slen <= PROF_DUMP_BUFSIZE) {
/* Finish writing. */
n = slen - i;
} else {
/* Write as much of s as will fit. */
n = PROF_DUMP_BUFSIZE - prof_dump_buf_end;
}
memcpy(&prof_dump_buf[prof_dump_buf_end], &s[i], n);
prof_dump_buf_end += n;
i += n;
}
return (false);
}
JEMALLOC_ATTR(format(printf, 2, 3))
static bool
prof_dump_printf(bool propagate_err, const char *format, ...)
{
bool ret;
va_list ap;
char buf[PROF_PRINTF_BUFSIZE];
va_start(ap, format);
malloc_vsnprintf(buf, sizeof(buf), format, ap);
va_end(ap);
ret = prof_dump_write(propagate_err, buf);
return (ret);
}
static void
prof_dump_ctx_prep(prof_ctx_t *ctx, prof_cnt_t *cnt_all, size_t *leak_nctx,
prof_ctx_list_t *ctx_ql)
{
prof_thr_cnt_t *thr_cnt;
prof_cnt_t tcnt;
cassert(config_prof);
malloc_mutex_lock(ctx->lock);
/*
* Increment nlimbo so that ctx won't go away before dump.
* Additionally, link ctx into the dump list so that it is included in
* prof_dump()'s second pass.
*/
ctx->nlimbo++;
ql_tail_insert(ctx_ql, ctx, dump_link);
memcpy(&ctx->cnt_summed, &ctx->cnt_merged, sizeof(prof_cnt_t));
ql_foreach(thr_cnt, &ctx->cnts_ql, cnts_link) {
volatile unsigned *epoch = &thr_cnt->epoch;
while (true) {
unsigned epoch0 = *epoch;
/* Make sure epoch is even. */
if (epoch0 & 1U)
continue;
memcpy(&tcnt, &thr_cnt->cnts, sizeof(prof_cnt_t));
/* Terminate if epoch didn't change while reading. */
if (*epoch == epoch0)
break;
}
ctx->cnt_summed.curobjs += tcnt.curobjs;
ctx->cnt_summed.curbytes += tcnt.curbytes;
if (opt_prof_accum) {
ctx->cnt_summed.accumobjs += tcnt.accumobjs;
ctx->cnt_summed.accumbytes += tcnt.accumbytes;
}
}
if (ctx->cnt_summed.curobjs != 0)
(*leak_nctx)++;
/* Add to cnt_all. */
cnt_all->curobjs += ctx->cnt_summed.curobjs;
cnt_all->curbytes += ctx->cnt_summed.curbytes;
if (opt_prof_accum) {
cnt_all->accumobjs += ctx->cnt_summed.accumobjs;
cnt_all->accumbytes += ctx->cnt_summed.accumbytes;
}
malloc_mutex_unlock(ctx->lock);
}
static bool
prof_dump_header(bool propagate_err, const prof_cnt_t *cnt_all)
{
if (opt_lg_prof_sample == 0) {
if (prof_dump_printf(propagate_err,
"heap profile: %"PRId64": %"PRId64
" [%"PRIu64": %"PRIu64"] @ heapprofile\n",
cnt_all->curobjs, cnt_all->curbytes,
cnt_all->accumobjs, cnt_all->accumbytes))
return (true);
} else {
if (prof_dump_printf(propagate_err,
"heap profile: %"PRId64": %"PRId64
" [%"PRIu64": %"PRIu64"] @ heap_v2/%"PRIu64"\n",
cnt_all->curobjs, cnt_all->curbytes,
cnt_all->accumobjs, cnt_all->accumbytes,
((uint64_t)1U << opt_lg_prof_sample)))
return (true);
}
return (false);
}
static void
prof_dump_ctx_cleanup_locked(prof_ctx_t *ctx, prof_ctx_list_t *ctx_ql)
{
ctx->nlimbo--;
ql_remove(ctx_ql, ctx, dump_link);
}
static void
prof_dump_ctx_cleanup(prof_ctx_t *ctx, prof_ctx_list_t *ctx_ql)
{
malloc_mutex_lock(ctx->lock);
prof_dump_ctx_cleanup_locked(ctx, ctx_ql);
malloc_mutex_unlock(ctx->lock);
}
static bool
prof_dump_ctx(bool propagate_err, prof_ctx_t *ctx, const prof_bt_t *bt,
prof_ctx_list_t *ctx_ql)
{
bool ret;
unsigned i;
cassert(config_prof);
/*
* Current statistics can sum to 0 as a result of unmerged per thread
* statistics. Additionally, interval- and growth-triggered dumps can
* occur between the time a ctx is created and when its statistics are
* filled in. Avoid dumping any ctx that is an artifact of either
* implementation detail.
*/
malloc_mutex_lock(ctx->lock);
if ((opt_prof_accum == false && ctx->cnt_summed.curobjs == 0) ||
(opt_prof_accum && ctx->cnt_summed.accumobjs == 0)) {
assert(ctx->cnt_summed.curobjs == 0);
assert(ctx->cnt_summed.curbytes == 0);
assert(ctx->cnt_summed.accumobjs == 0);
assert(ctx->cnt_summed.accumbytes == 0);
ret = false;
goto label_return;
}
if (prof_dump_printf(propagate_err, "%"PRId64": %"PRId64
" [%"PRIu64": %"PRIu64"] @",
ctx->cnt_summed.curobjs, ctx->cnt_summed.curbytes,
ctx->cnt_summed.accumobjs, ctx->cnt_summed.accumbytes)) {
ret = true;
goto label_return;
}
for (i = 0; i < bt->len; i++) {
if (prof_dump_printf(propagate_err, " %#"PRIxPTR,
(uintptr_t)bt->vec[i])) {
ret = true;
goto label_return;
}
}
if (prof_dump_write(propagate_err, "\n")) {
ret = true;
goto label_return;
}
ret = false;
label_return:
prof_dump_ctx_cleanup_locked(ctx, ctx_ql);
malloc_mutex_unlock(ctx->lock);
return (ret);
}
static bool
prof_dump_maps(bool propagate_err)
{
bool ret;
int mfd;
char filename[PATH_MAX + 1];
cassert(config_prof);
#ifdef __FreeBSD__
malloc_snprintf(filename, sizeof(filename), "/proc/curproc/map");
#else
malloc_snprintf(filename, sizeof(filename), "/proc/%d/maps",
(int)getpid());
#endif
mfd = open(filename, O_RDONLY);
if (mfd != -1) {
ssize_t nread;
if (prof_dump_write(propagate_err, "\nMAPPED_LIBRARIES:\n") &&
propagate_err) {
ret = true;
goto label_return;
}
nread = 0;
do {
prof_dump_buf_end += nread;
if (prof_dump_buf_end == PROF_DUMP_BUFSIZE) {
/* Make space in prof_dump_buf before read(). */
if (prof_dump_flush(propagate_err) &&
propagate_err) {
ret = true;
goto label_return;
}
}
nread = read(mfd, &prof_dump_buf[prof_dump_buf_end],
PROF_DUMP_BUFSIZE - prof_dump_buf_end);
} while (nread > 0);
} else {
ret = true;
goto label_return;
}
ret = false;
label_return:
if (mfd != -1)
close(mfd);
return (ret);
}
static void
prof_leakcheck(const prof_cnt_t *cnt_all, size_t leak_nctx,
const char *filename)
{
if (cnt_all->curbytes != 0) {
malloc_printf("<jemalloc>: Leak summary: %"PRId64" byte%s, %"
PRId64" object%s, %zu context%s\n",
cnt_all->curbytes, (cnt_all->curbytes != 1) ? "s" : "",
cnt_all->curobjs, (cnt_all->curobjs != 1) ? "s" : "",
leak_nctx, (leak_nctx != 1) ? "s" : "");
malloc_printf(
"<jemalloc>: Run pprof on \"%s\" for leak detail\n",
filename);
}
}
static bool
prof_dump(bool propagate_err, const char *filename, bool leakcheck)
{
prof_tdata_t *prof_tdata;
prof_cnt_t cnt_all;
size_t tabind;
union {
prof_ctx_t *p;
void *v;
} ctx;
size_t leak_nctx;
prof_ctx_list_t ctx_ql;
cassert(config_prof);
prof_tdata = prof_tdata_get(false);
if ((uintptr_t)prof_tdata <= (uintptr_t)PROF_TDATA_STATE_MAX)
return (true);
malloc_mutex_lock(&prof_dump_mtx);
/* Merge per thread profile stats, and sum them in cnt_all. */
memset(&cnt_all, 0, sizeof(prof_cnt_t));
leak_nctx = 0;
ql_new(&ctx_ql);
prof_enter(prof_tdata);
for (tabind = 0; ckh_iter(&bt2ctx, &tabind, NULL, &ctx.v) == false;)
prof_dump_ctx_prep(ctx.p, &cnt_all, &leak_nctx, &ctx_ql);
prof_leave(prof_tdata);
/* Create dump file. */
if ((prof_dump_fd = prof_dump_open(propagate_err, filename)) == -1)
goto label_open_close_error;
/* Dump profile header. */
if (prof_dump_header(propagate_err, &cnt_all))
goto label_write_error;
/* Dump per ctx profile stats. */
while ((ctx.p = ql_first(&ctx_ql)) != NULL) {
if (prof_dump_ctx(propagate_err, ctx.p, ctx.p->bt, &ctx_ql))
goto label_write_error;
}
/* Dump /proc/<pid>/maps if possible. */
if (prof_dump_maps(propagate_err))
goto label_write_error;
if (prof_dump_close(propagate_err))
goto label_open_close_error;
malloc_mutex_unlock(&prof_dump_mtx);
if (leakcheck)
prof_leakcheck(&cnt_all, leak_nctx, filename);
return (false);
label_write_error:
prof_dump_close(propagate_err);
label_open_close_error:
while ((ctx.p = ql_first(&ctx_ql)) != NULL)
prof_dump_ctx_cleanup(ctx.p, &ctx_ql);
malloc_mutex_unlock(&prof_dump_mtx);
return (true);
}
#define DUMP_FILENAME_BUFSIZE (PATH_MAX + 1)
#define VSEQ_INVALID UINT64_C(0xffffffffffffffff)
static void
prof_dump_filename(char *filename, char v, int64_t vseq)
{
cassert(config_prof);
if (vseq != VSEQ_INVALID) {
/* "<prefix>.<pid>.<seq>.v<vseq>.heap" */
malloc_snprintf(filename, DUMP_FILENAME_BUFSIZE,
"%s.%d.%"PRIu64".%c%"PRId64".heap",
opt_prof_prefix, (int)getpid(), prof_dump_seq, v, vseq);
} else {
/* "<prefix>.<pid>.<seq>.<v>.heap" */
malloc_snprintf(filename, DUMP_FILENAME_BUFSIZE,
"%s.%d.%"PRIu64".%c.heap",
opt_prof_prefix, (int)getpid(), prof_dump_seq, v);
}
prof_dump_seq++;
}
static void
prof_fdump(void)
{
char filename[DUMP_FILENAME_BUFSIZE];
cassert(config_prof);
if (prof_booted == false)
return;
if (opt_prof_final && opt_prof_prefix[0] != '\0') {
malloc_mutex_lock(&prof_dump_seq_mtx);
prof_dump_filename(filename, 'f', VSEQ_INVALID);
malloc_mutex_unlock(&prof_dump_seq_mtx);
prof_dump(false, filename, opt_prof_leak);
}
}
void
prof_idump(void)
{
prof_tdata_t *prof_tdata;
char filename[PATH_MAX + 1];
cassert(config_prof);
if (prof_booted == false)
return;
prof_tdata = prof_tdata_get(false);
if ((uintptr_t)prof_tdata <= (uintptr_t)PROF_TDATA_STATE_MAX)
return;
if (prof_tdata->enq) {
prof_tdata->enq_idump = true;
return;
}
if (opt_prof_prefix[0] != '\0') {
malloc_mutex_lock(&prof_dump_seq_mtx);
prof_dump_filename(filename, 'i', prof_dump_iseq);
prof_dump_iseq++;
malloc_mutex_unlock(&prof_dump_seq_mtx);
prof_dump(false, filename, false);
}
}
bool
prof_mdump(const char *filename)
{
char filename_buf[DUMP_FILENAME_BUFSIZE];
cassert(config_prof);
if (opt_prof == false || prof_booted == false)
return (true);
if (filename == NULL) {
/* No filename specified, so automatically generate one. */
if (opt_prof_prefix[0] == '\0')
return (true);
malloc_mutex_lock(&prof_dump_seq_mtx);
prof_dump_filename(filename_buf, 'm', prof_dump_mseq);
prof_dump_mseq++;
malloc_mutex_unlock(&prof_dump_seq_mtx);
filename = filename_buf;
}
return (prof_dump(true, filename, false));
}
void
prof_gdump(void)
{
prof_tdata_t *prof_tdata;
char filename[DUMP_FILENAME_BUFSIZE];
cassert(config_prof);
if (prof_booted == false)
return;
prof_tdata = prof_tdata_get(false);
if ((uintptr_t)prof_tdata <= (uintptr_t)PROF_TDATA_STATE_MAX)
return;
if (prof_tdata->enq) {
prof_tdata->enq_gdump = true;
return;
}
if (opt_prof_prefix[0] != '\0') {
malloc_mutex_lock(&prof_dump_seq_mtx);
prof_dump_filename(filename, 'u', prof_dump_useq);
prof_dump_useq++;
malloc_mutex_unlock(&prof_dump_seq_mtx);
prof_dump(false, filename, false);
}
}
static void
prof_bt_hash(const void *key, size_t r_hash[2])
{
prof_bt_t *bt = (prof_bt_t *)key;
cassert(config_prof);
hash(bt->vec, bt->len * sizeof(void *), 0x94122f33U, r_hash);
}
static bool
prof_bt_keycomp(const void *k1, const void *k2)
{
const prof_bt_t *bt1 = (prof_bt_t *)k1;
const prof_bt_t *bt2 = (prof_bt_t *)k2;
cassert(config_prof);
if (bt1->len != bt2->len)
return (false);
return (memcmp(bt1->vec, bt2->vec, bt1->len * sizeof(void *)) == 0);
}
prof_tdata_t *
prof_tdata_init(void)
{
prof_tdata_t *prof_tdata;
cassert(config_prof);
/* Initialize an empty cache for this thread. */
prof_tdata = (prof_tdata_t *)imalloc(sizeof(prof_tdata_t));
if (prof_tdata == NULL)
return (NULL);
if (ckh_new(&prof_tdata->bt2cnt, PROF_CKH_MINITEMS,
prof_bt_hash, prof_bt_keycomp)) {
idalloc(prof_tdata);
return (NULL);
}
ql_new(&prof_tdata->lru_ql);
prof_tdata->vec = imalloc(sizeof(void *) * PROF_BT_MAX);
if (prof_tdata->vec == NULL) {
ckh_delete(&prof_tdata->bt2cnt);
idalloc(prof_tdata);
return (NULL);
}
prof_tdata->prng_state = (uint64_t)(uintptr_t)prof_tdata;
prof_sample_threshold_update(prof_tdata);
prof_tdata->enq = false;
prof_tdata->enq_idump = false;
prof_tdata->enq_gdump = false;
prof_tdata_tsd_set(&prof_tdata);
return (prof_tdata);
}
void
prof_tdata_cleanup(void *arg)
{
prof_thr_cnt_t *cnt;
prof_tdata_t *prof_tdata = *(prof_tdata_t **)arg;
cassert(config_prof);
if (prof_tdata == PROF_TDATA_STATE_REINCARNATED) {
/*
* Another destructor deallocated memory after this destructor
* was called. Reset prof_tdata to PROF_TDATA_STATE_PURGATORY
* in order to receive another callback.
*/
prof_tdata = PROF_TDATA_STATE_PURGATORY;
prof_tdata_tsd_set(&prof_tdata);
} else if (prof_tdata == PROF_TDATA_STATE_PURGATORY) {
/*
* The previous time this destructor was called, we set the key
* to PROF_TDATA_STATE_PURGATORY so that other destructors
* wouldn't cause re-creation of the prof_tdata. This time, do
* nothing, so that the destructor will not be called again.
*/
} else if (prof_tdata != NULL) {
/*
* Delete the hash table. All of its contents can still be
* iterated over via the LRU.
*/
ckh_delete(&prof_tdata->bt2cnt);
/*
* Iteratively merge cnt's into the global stats and delete
* them.
*/
while ((cnt = ql_last(&prof_tdata->lru_ql, lru_link)) != NULL) {
ql_remove(&prof_tdata->lru_ql, cnt, lru_link);
prof_ctx_merge(cnt->ctx, cnt);
idalloc(cnt);
}
idalloc(prof_tdata->vec);
idalloc(prof_tdata);
prof_tdata = PROF_TDATA_STATE_PURGATORY;
prof_tdata_tsd_set(&prof_tdata);
}
}
void
prof_boot0(void)
{
cassert(config_prof);
memcpy(opt_prof_prefix, PROF_PREFIX_DEFAULT,
sizeof(PROF_PREFIX_DEFAULT));
}
void
prof_boot1(void)
{
cassert(config_prof);
/*
* opt_prof must be in its final state before any arenas are
* initialized, so this function must be executed early.
*/
if (opt_prof_leak && opt_prof == false) {
/*
* Enable opt_prof, but in such a way that profiles are never
* automatically dumped.
*/
opt_prof = true;
opt_prof_gdump = false;
} else if (opt_prof) {
if (opt_lg_prof_interval >= 0) {
prof_interval = (((uint64_t)1U) <<
opt_lg_prof_interval);
}
}
}
bool
prof_boot2(void)
{
cassert(config_prof);
if (opt_prof) {
unsigned i;
if (ckh_new(&bt2ctx, PROF_CKH_MINITEMS, prof_bt_hash,
prof_bt_keycomp))
return (true);
if (malloc_mutex_init(&bt2ctx_mtx))
return (true);
if (prof_tdata_tsd_boot()) {
malloc_write(
"<jemalloc>: Error in pthread_key_create()\n");
abort();
}
if (malloc_mutex_init(&prof_dump_seq_mtx))
return (true);
if (malloc_mutex_init(&prof_dump_mtx))
return (true);
if (atexit(prof_fdump) != 0) {
malloc_write("<jemalloc>: Error in atexit()\n");
if (opt_abort)
abort();
}
ctx_locks = (malloc_mutex_t *)base_alloc(PROF_NCTX_LOCKS *
sizeof(malloc_mutex_t));
if (ctx_locks == NULL)
return (true);
for (i = 0; i < PROF_NCTX_LOCKS; i++) {
if (malloc_mutex_init(&ctx_locks[i]))
return (true);
}
}
#ifdef JEMALLOC_PROF_LIBGCC
/*
* Cause the backtracing machinery to allocate its internal state
* before enabling profiling.
*/
_Unwind_Backtrace(prof_unwind_init_callback, NULL);
#endif
prof_booted = true;
return (false);
}
void
prof_prefork(void)
{
if (opt_prof) {
unsigned i;
malloc_mutex_prefork(&bt2ctx_mtx);
malloc_mutex_prefork(&prof_dump_seq_mtx);
for (i = 0; i < PROF_NCTX_LOCKS; i++)
malloc_mutex_prefork(&ctx_locks[i]);
}
}
void
prof_postfork_parent(void)
{
if (opt_prof) {
unsigned i;
for (i = 0; i < PROF_NCTX_LOCKS; i++)
malloc_mutex_postfork_parent(&ctx_locks[i]);
malloc_mutex_postfork_parent(&prof_dump_seq_mtx);
malloc_mutex_postfork_parent(&bt2ctx_mtx);
}
}
void
prof_postfork_child(void)
{
if (opt_prof) {
unsigned i;
for (i = 0; i < PROF_NCTX_LOCKS; i++)
malloc_mutex_postfork_child(&ctx_locks[i]);
malloc_mutex_postfork_child(&prof_dump_seq_mtx);
malloc_mutex_postfork_child(&bt2ctx_mtx);
}
}
/******************************************************************************/