blob: 67b430f456e68a9a355051be83ba1ca6c4151821 [file] [log] [blame]
#define JEMALLOC_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
/* Runtime configuration options. */
const char *je_malloc_conf
#ifndef _WIN32
JEMALLOC_ATTR(weak)
#endif
;
bool opt_abort =
#ifdef JEMALLOC_DEBUG
true
#else
false
#endif
;
const char *opt_junk =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
"true"
#else
"false"
#endif
;
bool opt_junk_alloc =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
true
#else
false
#endif
;
bool opt_junk_free =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
true
#else
false
#endif
;
bool opt_utrace = false;
bool opt_xmalloc = false;
bool opt_zero = false;
unsigned opt_narenas = 0;
unsigned ncpus;
/* Protects arenas initialization. */
static malloc_mutex_t arenas_lock;
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*
* arenas[0..narenas_auto) are used for automatic multiplexing of threads and
* arenas. arenas[narenas_auto..narenas_total) are only used if the application
* takes some action to create them and allocate from them.
*/
arena_t **arenas;
static unsigned narenas_total; /* Use narenas_total_*(). */
static arena_t *a0; /* arenas[0]; read-only after initialization. */
unsigned narenas_auto; /* Read-only after initialization. */
typedef enum {
malloc_init_uninitialized = 3,
malloc_init_a0_initialized = 2,
malloc_init_recursible = 1,
malloc_init_initialized = 0 /* Common case --> jnz. */
} malloc_init_t;
static malloc_init_t malloc_init_state = malloc_init_uninitialized;
/* False should be the common case. Set to true to trigger initialization. */
static bool malloc_slow = true;
/* When malloc_slow is true, set the corresponding bits for sanity check. */
enum {
flag_opt_junk_alloc = (1U),
flag_opt_junk_free = (1U << 1),
flag_opt_zero = (1U << 2),
flag_opt_utrace = (1U << 3),
flag_opt_xmalloc = (1U << 4)
};
static uint8_t malloc_slow_flags;
JEMALLOC_ALIGNED(CACHELINE)
const size_t pind2sz_tab[NPSIZES+1] = {
#define PSZ_yes(lg_grp, ndelta, lg_delta) \
(((ZU(1)<<lg_grp) + (ZU(ndelta)<<lg_delta))),
#define PSZ_no(lg_grp, ndelta, lg_delta)
#define SC(index, lg_grp, lg_delta, ndelta, psz, bin, pgs, lg_delta_lookup) \
PSZ_##psz(lg_grp, ndelta, lg_delta)
SIZE_CLASSES
#undef PSZ_yes
#undef PSZ_no
#undef SC
(LARGE_MAXCLASS + PAGE)
};
JEMALLOC_ALIGNED(CACHELINE)
const size_t index2size_tab[NSIZES] = {
#define SC(index, lg_grp, lg_delta, ndelta, psz, bin, pgs, lg_delta_lookup) \
((ZU(1)<<lg_grp) + (ZU(ndelta)<<lg_delta)),
SIZE_CLASSES
#undef SC
};
JEMALLOC_ALIGNED(CACHELINE)
const uint8_t size2index_tab[] = {
#if LG_TINY_MIN == 0
#warning "Dangerous LG_TINY_MIN"
#define S2B_0(i) i,
#elif LG_TINY_MIN == 1
#warning "Dangerous LG_TINY_MIN"
#define S2B_1(i) i,
#elif LG_TINY_MIN == 2
#warning "Dangerous LG_TINY_MIN"
#define S2B_2(i) i,
#elif LG_TINY_MIN == 3
#define S2B_3(i) i,
#elif LG_TINY_MIN == 4
#define S2B_4(i) i,
#elif LG_TINY_MIN == 5
#define S2B_5(i) i,
#elif LG_TINY_MIN == 6
#define S2B_6(i) i,
#elif LG_TINY_MIN == 7
#define S2B_7(i) i,
#elif LG_TINY_MIN == 8
#define S2B_8(i) i,
#elif LG_TINY_MIN == 9
#define S2B_9(i) i,
#elif LG_TINY_MIN == 10
#define S2B_10(i) i,
#elif LG_TINY_MIN == 11
#define S2B_11(i) i,
#else
#error "Unsupported LG_TINY_MIN"
#endif
#if LG_TINY_MIN < 1
#define S2B_1(i) S2B_0(i) S2B_0(i)
#endif
#if LG_TINY_MIN < 2
#define S2B_2(i) S2B_1(i) S2B_1(i)
#endif
#if LG_TINY_MIN < 3
#define S2B_3(i) S2B_2(i) S2B_2(i)
#endif
#if LG_TINY_MIN < 4
#define S2B_4(i) S2B_3(i) S2B_3(i)
#endif
#if LG_TINY_MIN < 5
#define S2B_5(i) S2B_4(i) S2B_4(i)
#endif
#if LG_TINY_MIN < 6
#define S2B_6(i) S2B_5(i) S2B_5(i)
#endif
#if LG_TINY_MIN < 7
#define S2B_7(i) S2B_6(i) S2B_6(i)
#endif
#if LG_TINY_MIN < 8
#define S2B_8(i) S2B_7(i) S2B_7(i)
#endif
#if LG_TINY_MIN < 9
#define S2B_9(i) S2B_8(i) S2B_8(i)
#endif
#if LG_TINY_MIN < 10
#define S2B_10(i) S2B_9(i) S2B_9(i)
#endif
#if LG_TINY_MIN < 11
#define S2B_11(i) S2B_10(i) S2B_10(i)
#endif
#define S2B_no(i)
#define SC(index, lg_grp, lg_delta, ndelta, psz, bin, pgs, lg_delta_lookup) \
S2B_##lg_delta_lookup(index)
SIZE_CLASSES
#undef S2B_3
#undef S2B_4
#undef S2B_5
#undef S2B_6
#undef S2B_7
#undef S2B_8
#undef S2B_9
#undef S2B_10
#undef S2B_11
#undef S2B_no
#undef SC
};
#ifdef JEMALLOC_THREADED_INIT
/* Used to let the initializing thread recursively allocate. */
# define NO_INITIALIZER ((unsigned long)0)
# define INITIALIZER pthread_self()
# define IS_INITIALIZER (malloc_initializer == pthread_self())
static pthread_t malloc_initializer = NO_INITIALIZER;
#else
# define NO_INITIALIZER false
# define INITIALIZER true
# define IS_INITIALIZER malloc_initializer
static bool malloc_initializer = NO_INITIALIZER;
#endif
/* Used to avoid initialization races. */
#ifdef _WIN32
#if _WIN32_WINNT >= 0x0600
static malloc_mutex_t init_lock = SRWLOCK_INIT;
#else
static malloc_mutex_t init_lock;
static bool init_lock_initialized = false;
JEMALLOC_ATTR(constructor)
static void WINAPI
_init_init_lock(void) {
/*
* If another constructor in the same binary is using mallctl to e.g.
* set up extent hooks, it may end up running before this one, and
* malloc_init_hard will crash trying to lock the uninitialized lock. So
* we force an initialization of the lock in malloc_init_hard as well.
* We don't try to care about atomicity of the accessed to the
* init_lock_initialized boolean, since it really only matters early in
* the process creation, before any separate thread normally starts
* doing anything.
*/
if (!init_lock_initialized) {
malloc_mutex_init(&init_lock, "init", WITNESS_RANK_INIT);
}
init_lock_initialized = true;
}
#ifdef _MSC_VER
# pragma section(".CRT$XCU", read)
JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used)
static const void (WINAPI *init_init_lock)(void) = _init_init_lock;
#endif
#endif
#else
static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER;
#endif
typedef struct {
void *p; /* Input pointer (as in realloc(p, s)). */
size_t s; /* Request size. */
void *r; /* Result pointer. */
} malloc_utrace_t;
#ifdef JEMALLOC_UTRACE
# define UTRACE(a, b, c) do { \
if (unlikely(opt_utrace)) { \
int utrace_serrno = errno; \
malloc_utrace_t ut; \
ut.p = (a); \
ut.s = (b); \
ut.r = (c); \
utrace(&ut, sizeof(ut)); \
errno = utrace_serrno; \
} \
} while (0)
#else
# define UTRACE(a, b, c)
#endif
/******************************************************************************/
/*
* Function prototypes for static functions that are referenced prior to
* definition.
*/
static bool malloc_init_hard_a0(void);
static bool malloc_init_hard(void);
/******************************************************************************/
/*
* Begin miscellaneous support functions.
*/
JEMALLOC_ALWAYS_INLINE_C bool
malloc_initialized(void) {
return (malloc_init_state == malloc_init_initialized);
}
JEMALLOC_ALWAYS_INLINE_C bool
malloc_init_a0(void) {
if (unlikely(malloc_init_state == malloc_init_uninitialized)) {
return malloc_init_hard_a0();
}
return false;
}
JEMALLOC_ALWAYS_INLINE_C bool
malloc_init(void) {
if (unlikely(!malloc_initialized()) && malloc_init_hard()) {
return true;
}
return false;
}
/*
* The a0*() functions are used instead of i{d,}alloc() in situations that
* cannot tolerate TLS variable access.
*/
static void *
a0ialloc(size_t size, bool zero, bool is_internal) {
if (unlikely(malloc_init_a0())) {
return NULL;
}
return iallocztm(TSDN_NULL, size, size2index(size), zero, NULL,
is_internal, arena_get(TSDN_NULL, 0, true), true);
}
static void
a0idalloc(extent_t *extent, void *ptr, bool is_internal) {
idalloctm(TSDN_NULL, extent, ptr, false, is_internal, true);
}
void *
a0malloc(size_t size) {
return a0ialloc(size, false, true);
}
void
a0dalloc(void *ptr) {
a0idalloc(iealloc(NULL, ptr), ptr, true);
}
/*
* FreeBSD's libc uses the bootstrap_*() functions in bootstrap-senstive
* situations that cannot tolerate TLS variable access (TLS allocation and very
* early internal data structure initialization).
*/
void *
bootstrap_malloc(size_t size) {
if (unlikely(size == 0)) {
size = 1;
}
return a0ialloc(size, false, false);
}
void *
bootstrap_calloc(size_t num, size_t size) {
size_t num_size;
num_size = num * size;
if (unlikely(num_size == 0)) {
assert(num == 0 || size == 0);
num_size = 1;
}
return a0ialloc(num_size, true, false);
}
void
bootstrap_free(void *ptr) {
if (unlikely(ptr == NULL)) {
return;
}
a0idalloc(iealloc(NULL, ptr), ptr, false);
}
void
arena_set(unsigned ind, arena_t *arena) {
atomic_write_p((void **)&arenas[ind], arena);
}
static void
narenas_total_set(unsigned narenas) {
atomic_write_u(&narenas_total, narenas);
}
static void
narenas_total_inc(void) {
atomic_add_u(&narenas_total, 1);
}
unsigned
narenas_total_get(void) {
return atomic_read_u(&narenas_total);
}
/* Create a new arena and insert it into the arenas array at index ind. */
static arena_t *
arena_init_locked(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) {
arena_t *arena;
assert(ind <= narenas_total_get());
if (ind > MALLOCX_ARENA_MAX) {
return NULL;
}
if (ind == narenas_total_get()) {
narenas_total_inc();
}
/*
* Another thread may have already initialized arenas[ind] if it's an
* auto arena.
*/
arena = arena_get(tsdn, ind, false);
if (arena != NULL) {
assert(ind < narenas_auto);
return arena;
}
/* Actually initialize the arena. */
arena = arena_new(tsdn, ind, extent_hooks);
arena_set(ind, arena);
return arena;
}
arena_t *
arena_init(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) {
arena_t *arena;
malloc_mutex_lock(tsdn, &arenas_lock);
arena = arena_init_locked(tsdn, ind, extent_hooks);
malloc_mutex_unlock(tsdn, &arenas_lock);
return arena;
}
static void
arena_bind(tsd_t *tsd, unsigned ind, bool internal) {
arena_t *arena;
if (!tsd_nominal(tsd)) {
return;
}
arena = arena_get(tsd_tsdn(tsd), ind, false);
arena_nthreads_inc(arena, internal);
if (internal) {
tsd_iarena_set(tsd, arena);
} else {
tsd_arena_set(tsd, arena);
}
}
void
arena_migrate(tsd_t *tsd, unsigned oldind, unsigned newind) {
arena_t *oldarena, *newarena;
oldarena = arena_get(tsd_tsdn(tsd), oldind, false);
newarena = arena_get(tsd_tsdn(tsd), newind, false);
arena_nthreads_dec(oldarena, false);
arena_nthreads_inc(newarena, false);
tsd_arena_set(tsd, newarena);
}
static void
arena_unbind(tsd_t *tsd, unsigned ind, bool internal) {
arena_t *arena;
arena = arena_get(tsd_tsdn(tsd), ind, false);
arena_nthreads_dec(arena, internal);
if (internal) {
tsd_iarena_set(tsd, NULL);
} else {
tsd_arena_set(tsd, NULL);
}
}
arena_tdata_t *
arena_tdata_get_hard(tsd_t *tsd, unsigned ind) {
arena_tdata_t *tdata, *arenas_tdata_old;
arena_tdata_t *arenas_tdata = tsd_arenas_tdata_get(tsd);
unsigned narenas_tdata_old, i;
unsigned narenas_tdata = tsd_narenas_tdata_get(tsd);
unsigned narenas_actual = narenas_total_get();
/*
* Dissociate old tdata array (and set up for deallocation upon return)
* if it's too small.
*/
if (arenas_tdata != NULL && narenas_tdata < narenas_actual) {
arenas_tdata_old = arenas_tdata;
narenas_tdata_old = narenas_tdata;
arenas_tdata = NULL;
narenas_tdata = 0;
tsd_arenas_tdata_set(tsd, arenas_tdata);
tsd_narenas_tdata_set(tsd, narenas_tdata);
} else {
arenas_tdata_old = NULL;
narenas_tdata_old = 0;
}
/* Allocate tdata array if it's missing. */
if (arenas_tdata == NULL) {
bool *arenas_tdata_bypassp = tsd_arenas_tdata_bypassp_get(tsd);
narenas_tdata = (ind < narenas_actual) ? narenas_actual : ind+1;
if (tsd_nominal(tsd) && !*arenas_tdata_bypassp) {
*arenas_tdata_bypassp = true;
arenas_tdata = (arena_tdata_t *)a0malloc(
sizeof(arena_tdata_t) * narenas_tdata);
*arenas_tdata_bypassp = false;
}
if (arenas_tdata == NULL) {
tdata = NULL;
goto label_return;
}
assert(tsd_nominal(tsd) && !*arenas_tdata_bypassp);
tsd_arenas_tdata_set(tsd, arenas_tdata);
tsd_narenas_tdata_set(tsd, narenas_tdata);
}
/*
* Copy to tdata array. It's possible that the actual number of arenas
* has increased since narenas_total_get() was called above, but that
* causes no correctness issues unless two threads concurrently execute
* the arenas.create mallctl, which we trust mallctl synchronization to
* prevent.
*/
/* Copy/initialize tickers. */
for (i = 0; i < narenas_actual; i++) {
if (i < narenas_tdata_old) {
ticker_copy(&arenas_tdata[i].decay_ticker,
&arenas_tdata_old[i].decay_ticker);
} else {
ticker_init(&arenas_tdata[i].decay_ticker,
DECAY_NTICKS_PER_UPDATE);
}
}
if (narenas_tdata > narenas_actual) {
memset(&arenas_tdata[narenas_actual], 0, sizeof(arena_tdata_t)
* (narenas_tdata - narenas_actual));
}
/* Read the refreshed tdata array. */
tdata = &arenas_tdata[ind];
label_return:
if (arenas_tdata_old != NULL) {
a0dalloc(arenas_tdata_old);
}
return tdata;
}
/* Slow path, called only by arena_choose(). */
arena_t *
arena_choose_hard(tsd_t *tsd, bool internal) {
arena_t *ret JEMALLOC_CC_SILENCE_INIT(NULL);
if (narenas_auto > 1) {
unsigned i, j, choose[2], first_null;
/*
* Determine binding for both non-internal and internal
* allocation.
*
* choose[0]: For application allocation.
* choose[1]: For internal metadata allocation.
*/
for (j = 0; j < 2; j++) {
choose[j] = 0;
}
first_null = narenas_auto;
malloc_mutex_lock(tsd_tsdn(tsd), &arenas_lock);
assert(arena_get(tsd_tsdn(tsd), 0, false) != NULL);
for (i = 1; i < narenas_auto; i++) {
if (arena_get(tsd_tsdn(tsd), i, false) != NULL) {
/*
* Choose the first arena that has the lowest
* number of threads assigned to it.
*/
for (j = 0; j < 2; j++) {
if (arena_nthreads_get(arena_get(
tsd_tsdn(tsd), i, false), !!j) <
arena_nthreads_get(arena_get(
tsd_tsdn(tsd), choose[j], false),
!!j)) {
choose[j] = i;
}
}
} else if (first_null == narenas_auto) {
/*
* Record the index of the first uninitialized
* arena, in case all extant arenas are in use.
*
* NB: It is possible for there to be
* discontinuities in terms of initialized
* versus uninitialized arenas, due to the
* "thread.arena" mallctl.
*/
first_null = i;
}
}
for (j = 0; j < 2; j++) {
if (arena_nthreads_get(arena_get(tsd_tsdn(tsd),
choose[j], false), !!j) == 0 || first_null ==
narenas_auto) {
/*
* Use an unloaded arena, or the least loaded
* arena if all arenas are already initialized.
*/
if (!!j == internal) {
ret = arena_get(tsd_tsdn(tsd),
choose[j], false);
}
} else {
arena_t *arena;
/* Initialize a new arena. */
choose[j] = first_null;
arena = arena_init_locked(tsd_tsdn(tsd),
choose[j],
(extent_hooks_t *)&extent_hooks_default);
if (arena == NULL) {
malloc_mutex_unlock(tsd_tsdn(tsd),
&arenas_lock);
return NULL;
}
if (!!j == internal) {
ret = arena;
}
}
arena_bind(tsd, choose[j], !!j);
}
malloc_mutex_unlock(tsd_tsdn(tsd), &arenas_lock);
} else {
ret = arena_get(tsd_tsdn(tsd), 0, false);
arena_bind(tsd, 0, false);
arena_bind(tsd, 0, true);
}
return ret;
}
void
iarena_cleanup(tsd_t *tsd) {
arena_t *iarena;
iarena = tsd_iarena_get(tsd);
if (iarena != NULL) {
arena_unbind(tsd, arena_ind_get(iarena), true);
}
}
void
arena_cleanup(tsd_t *tsd) {
arena_t *arena;
arena = tsd_arena_get(tsd);
if (arena != NULL) {
arena_unbind(tsd, arena_ind_get(arena), false);
}
}
void
arenas_tdata_cleanup(tsd_t *tsd) {
arena_tdata_t *arenas_tdata;
/* Prevent tsd->arenas_tdata from being (re)created. */
*tsd_arenas_tdata_bypassp_get(tsd) = true;
arenas_tdata = tsd_arenas_tdata_get(tsd);
if (arenas_tdata != NULL) {
tsd_arenas_tdata_set(tsd, NULL);
a0dalloc(arenas_tdata);
}
}
static void
stats_print_atexit(void) {
if (config_tcache && config_stats) {
tsdn_t *tsdn;
unsigned narenas, i;
tsdn = tsdn_fetch();
/*
* Merge stats from extant threads. This is racy, since
* individual threads do not lock when recording tcache stats
* events. As a consequence, the final stats may be slightly
* out of date by the time they are reported, if other threads
* continue to allocate.
*/
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena = arena_get(tsdn, i, false);
if (arena != NULL) {
tcache_t *tcache;
/*
* tcache_stats_merge() locks bins, so if any
* code is introduced that acquires both arena
* and bin locks in the opposite order,
* deadlocks may result.
*/
malloc_mutex_lock(tsdn, &arena->lock);
ql_foreach(tcache, &arena->tcache_ql, link) {
tcache_stats_merge(tsdn, tcache, arena);
}
malloc_mutex_unlock(tsdn, &arena->lock);
}
}
}
je_malloc_stats_print(NULL, NULL, NULL);
}
/*
* End miscellaneous support functions.
*/
/******************************************************************************/
/*
* Begin initialization functions.
*/
#ifndef JEMALLOC_HAVE_SECURE_GETENV
static char *
secure_getenv(const char *name) {
# ifdef JEMALLOC_HAVE_ISSETUGID
if (issetugid() != 0) {
return NULL;
}
# endif
return getenv(name);
}
#endif
static unsigned
malloc_ncpus(void) {
long result;
#ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
result = si.dwNumberOfProcessors;
#elif defined(JEMALLOC_GLIBC_MALLOC_HOOK) && defined(CPU_COUNT)
/*
* glibc >= 2.6 has the CPU_COUNT macro.
*
* glibc's sysconf() uses isspace(). glibc allocates for the first time
* *before* setting up the isspace tables. Therefore we need a
* different method to get the number of CPUs.
*/
{
cpu_set_t set;
pthread_getaffinity_np(pthread_self(), sizeof(set), &set);
result = CPU_COUNT(&set);
}
#else
result = sysconf(_SC_NPROCESSORS_ONLN);
#endif
return ((result == -1) ? 1 : (unsigned)result);
}
static bool
malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p,
char const **v_p, size_t *vlen_p) {
bool accept;
const char *opts = *opts_p;
*k_p = opts;
for (accept = false; !accept;) {
switch (*opts) {
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R':
case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
case 'm': case 'n': case 'o': case 'p': case 'q': case 'r':
case 's': case 't': case 'u': case 'v': case 'w': case 'x':
case 'y': case 'z':
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
case '_':
opts++;
break;
case ':':
opts++;
*klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p;
*v_p = opts;
accept = true;
break;
case '\0':
if (opts != *opts_p) {
malloc_write("<jemalloc>: Conf string ends "
"with key\n");
}
return true;
default:
malloc_write("<jemalloc>: Malformed conf string\n");
return true;
}
}
for (accept = false; !accept;) {
switch (*opts) {
case ',':
opts++;
/*
* Look ahead one character here, because the next time
* this function is called, it will assume that end of
* input has been cleanly reached if no input remains,
* but we have optimistically already consumed the
* comma if one exists.
*/
if (*opts == '\0') {
malloc_write("<jemalloc>: Conf string ends "
"with comma\n");
}
*vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p;
accept = true;
break;
case '\0':
*vlen_p = (uintptr_t)opts - (uintptr_t)*v_p;
accept = true;
break;
default:
opts++;
break;
}
}
*opts_p = opts;
return false;
}
static void
malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v,
size_t vlen) {
malloc_printf("<jemalloc>: %s: %.*s:%.*s\n", msg, (int)klen, k,
(int)vlen, v);
}
static void
malloc_slow_flag_init(void) {
/*
* Combine the runtime options into malloc_slow for fast path. Called
* after processing all the options.
*/
malloc_slow_flags |= (opt_junk_alloc ? flag_opt_junk_alloc : 0)
| (opt_junk_free ? flag_opt_junk_free : 0)
| (opt_zero ? flag_opt_zero : 0)
| (opt_utrace ? flag_opt_utrace : 0)
| (opt_xmalloc ? flag_opt_xmalloc : 0);
malloc_slow = (malloc_slow_flags != 0);
}
static void
malloc_conf_init(void) {
unsigned i;
char buf[PATH_MAX + 1];
const char *opts, *k, *v;
size_t klen, vlen;
for (i = 0; i < 4; i++) {
/* Get runtime configuration. */
switch (i) {
case 0:
opts = config_malloc_conf;
break;
case 1:
if (je_malloc_conf != NULL) {
/*
* Use options that were compiled into the
* program.
*/
opts = je_malloc_conf;
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 2: {
ssize_t linklen = 0;
#ifndef _WIN32
int saved_errno = errno;
const char *linkname =
# ifdef JEMALLOC_PREFIX
"/etc/"JEMALLOC_PREFIX"malloc.conf"
# else
"/etc/malloc.conf"
# endif
;
/*
* Try to use the contents of the "/etc/malloc.conf"
* symbolic link's name.
*/
linklen = readlink(linkname, buf, sizeof(buf) - 1);
if (linklen == -1) {
/* No configuration specified. */
linklen = 0;
/* Restore errno. */
set_errno(saved_errno);
}
#endif
buf[linklen] = '\0';
opts = buf;
break;
} case 3: {
const char *envname =
#ifdef JEMALLOC_PREFIX
JEMALLOC_CPREFIX"MALLOC_CONF"
#else
"MALLOC_CONF"
#endif
;
if ((opts = secure_getenv(envname)) != NULL) {
/*
* Do nothing; opts is already initialized to
* the value of the MALLOC_CONF environment
* variable.
*/
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
} default:
not_reached();
buf[0] = '\0';
opts = buf;
}
while (*opts != '\0' && !malloc_conf_next(&opts, &k, &klen, &v,
&vlen)) {
#define CONF_MATCH(n) \
(sizeof(n)-1 == klen && strncmp(n, k, klen) == 0)
#define CONF_MATCH_VALUE(n) \
(sizeof(n)-1 == vlen && strncmp(n, v, vlen) == 0)
#define CONF_HANDLE_BOOL(o, n, cont) \
if (CONF_MATCH(n)) { \
if (CONF_MATCH_VALUE("true")) { \
o = true; \
} else if (CONF_MATCH_VALUE("false")) { \
o = false; \
} else { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} \
if (cont) { \
continue; \
} \
}
#define CONF_MIN_no(um, min) false
#define CONF_MIN_yes(um, min) ((um) < (min))
#define CONF_MAX_no(um, max) false
#define CONF_MAX_yes(um, max) ((um) > (max))
#define CONF_HANDLE_T_U(t, o, n, min, max, check_min, check_max, clip) \
if (CONF_MATCH(n)) { \
uintmax_t um; \
char *end; \
\
set_errno(0); \
um = malloc_strtoumax(v, &end, 0); \
if (get_errno() != 0 || (uintptr_t)end -\
(uintptr_t)v != vlen) { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} else if (clip) { \
if (CONF_MIN_##check_min(um, \
(min))) { \
o = (t)(min); \
} else if ( \
CONF_MAX_##check_max(um, \
(max))) { \
o = (t)(max); \
} else { \
o = (t)um; \
} \
} else { \
if (CONF_MIN_##check_min(um, \
(min)) || \
CONF_MAX_##check_max(um, \
(max))) { \
malloc_conf_error( \
"Out-of-range " \
"conf value", \
k, klen, v, vlen); \
} else { \
o = (t)um; \
} \
} \
continue; \
}
#define CONF_HANDLE_UNSIGNED(o, n, min, max, check_min, check_max, \
clip) \
CONF_HANDLE_T_U(unsigned, o, n, min, max, \
check_min, check_max, clip)
#define CONF_HANDLE_SIZE_T(o, n, min, max, check_min, check_max, clip) \
CONF_HANDLE_T_U(size_t, o, n, min, max, \
check_min, check_max, clip)
#define CONF_HANDLE_SSIZE_T(o, n, min, max) \
if (CONF_MATCH(n)) { \
long l; \
char *end; \
\
set_errno(0); \
l = strtol(v, &end, 0); \
if (get_errno() != 0 || (uintptr_t)end -\
(uintptr_t)v != vlen) { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} else if (l < (ssize_t)(min) || l > \
(ssize_t)(max)) { \
malloc_conf_error( \
"Out-of-range conf value", \
k, klen, v, vlen); \
} else { \
o = l; \
} \
continue; \
}
#define CONF_HANDLE_CHAR_P(o, n, d) \
if (CONF_MATCH(n)) { \
size_t cpylen = (vlen <= \
sizeof(o)-1) ? vlen : \
sizeof(o)-1; \
strncpy(o, v, cpylen); \
o[cpylen] = '\0'; \
continue; \
}
CONF_HANDLE_BOOL(opt_abort, "abort", true)
if (strncmp("dss", k, klen) == 0) {
int i;
bool match = false;
for (i = 0; i < dss_prec_limit; i++) {
if (strncmp(dss_prec_names[i], v, vlen)
== 0) {
if (extent_dss_prec_set(i)) {
malloc_conf_error(
"Error setting dss",
k, klen, v, vlen);
} else {
opt_dss =
dss_prec_names[i];
match = true;
break;
}
}
}
if (!match) {
malloc_conf_error("Invalid conf value",
k, klen, v, vlen);
}
continue;
}
CONF_HANDLE_UNSIGNED(opt_narenas, "narenas", 1,
UINT_MAX, yes, no, false)
CONF_HANDLE_SSIZE_T(opt_decay_time, "decay_time", -1,
NSTIME_SEC_MAX);
CONF_HANDLE_BOOL(opt_stats_print, "stats_print", true)
if (config_fill) {
if (CONF_MATCH("junk")) {
if (CONF_MATCH_VALUE("true")) {
opt_junk = "true";
opt_junk_alloc = opt_junk_free =
true;
} else if (CONF_MATCH_VALUE("false")) {
opt_junk = "false";
opt_junk_alloc = opt_junk_free =
false;
} else if (CONF_MATCH_VALUE("alloc")) {
opt_junk = "alloc";
opt_junk_alloc = true;
opt_junk_free = false;
} else if (CONF_MATCH_VALUE("free")) {
opt_junk = "free";
opt_junk_alloc = false;
opt_junk_free = true;
} else {
malloc_conf_error(
"Invalid conf value", k,
klen, v, vlen);
}
continue;
}
CONF_HANDLE_BOOL(opt_zero, "zero", true)
}
if (config_utrace) {
CONF_HANDLE_BOOL(opt_utrace, "utrace", true)
}
if (config_xmalloc) {
CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc", true)
}
if (config_tcache) {
CONF_HANDLE_BOOL(opt_tcache, "tcache", true)
CONF_HANDLE_SSIZE_T(opt_lg_tcache_max,
"lg_tcache_max", -1,
(sizeof(size_t) << 3) - 1)
}
if (config_prof) {
CONF_HANDLE_BOOL(opt_prof, "prof", true)
CONF_HANDLE_CHAR_P(opt_prof_prefix,
"prof_prefix", "jeprof")
CONF_HANDLE_BOOL(opt_prof_active, "prof_active",
true)
CONF_HANDLE_BOOL(opt_prof_thread_active_init,
"prof_thread_active_init", true)
CONF_HANDLE_SIZE_T(opt_lg_prof_sample,
"lg_prof_sample", 0, (sizeof(uint64_t) << 3)
- 1, no, yes, true)
CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum",
true)
CONF_HANDLE_SSIZE_T(opt_lg_prof_interval,
"lg_prof_interval", -1,
(sizeof(uint64_t) << 3) - 1)
CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump",
true)
CONF_HANDLE_BOOL(opt_prof_final, "prof_final",
true)
CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak",
true)
}
malloc_conf_error("Invalid conf pair", k, klen, v,
vlen);
#undef CONF_MATCH
#undef CONF_MATCH_VALUE
#undef CONF_HANDLE_BOOL
#undef CONF_MIN_no
#undef CONF_MIN_yes
#undef CONF_MAX_no
#undef CONF_MAX_yes
#undef CONF_HANDLE_T_U
#undef CONF_HANDLE_UNSIGNED
#undef CONF_HANDLE_SIZE_T
#undef CONF_HANDLE_SSIZE_T
#undef CONF_HANDLE_CHAR_P
}
}
}
static bool
malloc_init_hard_needed(void) {
if (malloc_initialized() || (IS_INITIALIZER && malloc_init_state ==
malloc_init_recursible)) {
/*
* Another thread initialized the allocator before this one
* acquired init_lock, or this thread is the initializing
* thread, and it is recursively allocating.
*/
return false;
}
#ifdef JEMALLOC_THREADED_INIT
if (malloc_initializer != NO_INITIALIZER && !IS_INITIALIZER) {
spin_t spinner;
/* Busy-wait until the initializing thread completes. */
spin_init(&spinner);
do {
malloc_mutex_unlock(TSDN_NULL, &init_lock);
spin_adaptive(&spinner);
malloc_mutex_lock(TSDN_NULL, &init_lock);
} while (!malloc_initialized());
return false;
}
#endif
return true;
}
static bool
malloc_init_hard_a0_locked() {
malloc_initializer = INITIALIZER;
if (config_prof) {
prof_boot0();
}
malloc_conf_init();
if (opt_stats_print) {
/* Print statistics at exit. */
if (atexit(stats_print_atexit) != 0) {
malloc_write("<jemalloc>: Error in atexit()\n");
if (opt_abort) {
abort();
}
}
}
pages_boot();
if (base_boot(TSDN_NULL)) {
return true;
}
if (extent_boot()) {
return true;
}
if (ctl_boot()) {
return true;
}
if (config_prof) {
prof_boot1();
}
arena_boot();
if (config_tcache && tcache_boot(TSDN_NULL)) {
return true;
}
if (malloc_mutex_init(&arenas_lock, "arenas", WITNESS_RANK_ARENAS)) {
return true;
}
/*
* Create enough scaffolding to allow recursive allocation in
* malloc_ncpus().
*/
narenas_auto = 1;
narenas_total_set(narenas_auto);
arenas = &a0;
memset(arenas, 0, sizeof(arena_t *) * narenas_auto);
/*
* Initialize one arena here. The rest are lazily created in
* arena_choose_hard().
*/
if (arena_init(TSDN_NULL, 0, (extent_hooks_t *)&extent_hooks_default)
== NULL) {
return true;
}
malloc_init_state = malloc_init_a0_initialized;
return false;
}
static bool
malloc_init_hard_a0(void) {
bool ret;
malloc_mutex_lock(TSDN_NULL, &init_lock);
ret = malloc_init_hard_a0_locked();
malloc_mutex_unlock(TSDN_NULL, &init_lock);
return ret;
}
/* Initialize data structures which may trigger recursive allocation. */
static bool
malloc_init_hard_recursible(void) {
malloc_init_state = malloc_init_recursible;
ncpus = malloc_ncpus();
#if (defined(JEMALLOC_HAVE_PTHREAD_ATFORK) && !defined(JEMALLOC_MUTEX_INIT_CB) \
&& !defined(JEMALLOC_ZONE) && !defined(_WIN32) && \
!defined(__native_client__))
/* LinuxThreads' pthread_atfork() allocates. */
if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent,
jemalloc_postfork_child) != 0) {
malloc_write("<jemalloc>: Error in pthread_atfork()\n");
if (opt_abort) {
abort();
}
return true;
}
#endif
return false;
}
static bool
malloc_init_hard_finish(tsdn_t *tsdn) {
if (malloc_mutex_boot()) {
return true;
}
if (opt_narenas == 0) {
/*
* For SMP systems, create more than one arena per CPU by
* default.
*/
if (ncpus > 1) {
opt_narenas = ncpus << 2;
} else {
opt_narenas = 1;
}
}
narenas_auto = opt_narenas;
/*
* Limit the number of arenas to the indexing range of MALLOCX_ARENA().
*/
if (narenas_auto > MALLOCX_ARENA_MAX) {
narenas_auto = MALLOCX_ARENA_MAX;
malloc_printf("<jemalloc>: Reducing narenas to limit (%d)\n",
narenas_auto);
}
narenas_total_set(narenas_auto);
/* Allocate and initialize arenas. */
arenas = (arena_t **)base_alloc(tsdn, a0->base, sizeof(arena_t *) *
(MALLOCX_ARENA_MAX+1), CACHELINE);
if (arenas == NULL) {
return true;
}
/* Copy the pointer to the one arena that was already initialized. */
arena_set(0, a0);
malloc_init_state = malloc_init_initialized;
malloc_slow_flag_init();
return false;
}
static bool
malloc_init_hard(void) {
tsd_t *tsd;
#if defined(_WIN32) && _WIN32_WINNT < 0x0600
_init_init_lock();
#endif
malloc_mutex_lock(TSDN_NULL, &init_lock);
if (!malloc_init_hard_needed()) {
malloc_mutex_unlock(TSDN_NULL, &init_lock);
return false;
}
if (malloc_init_state != malloc_init_a0_initialized &&
malloc_init_hard_a0_locked()) {
malloc_mutex_unlock(TSDN_NULL, &init_lock);
return true;
}
malloc_mutex_unlock(TSDN_NULL, &init_lock);
/* Recursive allocation relies on functional tsd. */
tsd = malloc_tsd_boot0();
if (tsd == NULL) {
return true;
}
if (malloc_init_hard_recursible()) {
return true;
}
malloc_mutex_lock(tsd_tsdn(tsd), &init_lock);
if (config_prof && prof_boot2(tsd)) {
malloc_mutex_unlock(tsd_tsdn(tsd), &init_lock);
return true;
}
if (malloc_init_hard_finish(tsd_tsdn(tsd))) {
malloc_mutex_unlock(tsd_tsdn(tsd), &init_lock);
return true;
}
malloc_mutex_unlock(tsd_tsdn(tsd), &init_lock);
malloc_tsd_boot1();
return false;
}
/*
* End initialization functions.
*/
/******************************************************************************/
/*
* Begin allocation-path internal functions and data structures.
*/
/*
* Settings determined by the documented behavior of the allocation functions.
*/
typedef struct static_opts_s static_opts_t;
struct static_opts_s {
/* Whether or not allocations of size 0 should be treated as size 1. */
bool bump_empty_alloc;
/*
* Whether to assert that allocations are not of size 0 (after any
* bumping).
*/
bool assert_nonempty_alloc;
/*
* Whether or not to modify the 'result' argument to malloc in case of
* error.
*/
bool null_out_result_on_error;
/* Whether to set errno when we encounter an error condition. */
bool set_errno_on_error;
/*
* The minimum valid alignment for functions requesting aligned storage.
*/
size_t min_alignment;
/* The error string to use if we oom. */
const char *oom_string;
/* The error string to use if the passed-in alignment is invalid. */
const char *invalid_alignment_string;
/*
* False if we're configured to skip some time-consuming operations.
*
* This isn't really a malloc "behavior", but it acts as a useful
* summary of several other static (or at least, static after program
* initialization) options.
*/
bool slow;
};
JEMALLOC_ALWAYS_INLINE_C void
static_opts_init(static_opts_t *static_opts) {
static_opts->bump_empty_alloc = false;
static_opts->assert_nonempty_alloc = false;
static_opts->null_out_result_on_error = false;
static_opts->set_errno_on_error = false;
static_opts->min_alignment = 0;
static_opts->oom_string = "";
static_opts->invalid_alignment_string = "";
static_opts->slow = false;
}
/*
* These correspond to the macros in jemalloc/jemalloc_macros.h. Broadly, we
* should have one constant here per magic value there. Note however that the
* representations need not be related.
*/
#define TCACHE_IND_NONE ((unsigned)-1)
#define TCACHE_IND_AUTOMATIC ((unsigned)-2)
#define ARENA_IND_AUTOMATIC ((unsigned)-1)
typedef struct dynamic_opts_s dynamic_opts_t;
struct dynamic_opts_s {
void **result;
size_t num_items;
size_t item_size;
size_t alignment;
bool zero;
unsigned tcache_ind;
unsigned arena_ind;
};
JEMALLOC_ALWAYS_INLINE_C void
dynamic_opts_init(dynamic_opts_t *dynamic_opts) {
dynamic_opts->result = NULL;
dynamic_opts->num_items = 0;
dynamic_opts->item_size = 0;
dynamic_opts->alignment = 0;
dynamic_opts->zero = false;
dynamic_opts->tcache_ind = TCACHE_IND_AUTOMATIC;
dynamic_opts->arena_ind = ARENA_IND_AUTOMATIC;
}
/* ind is ignored if dopts->alignment > 0. */
JEMALLOC_ALWAYS_INLINE_C void *
imalloc_no_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
size_t size, size_t usize, szind_t ind) {
tcache_t *tcache;
arena_t *arena;
/* Fill in the tcache. */
if (dopts->tcache_ind == TCACHE_IND_AUTOMATIC) {
tcache = tcache_get(tsd, true);
} else if (dopts->tcache_ind == TCACHE_IND_NONE) {
tcache = NULL;
} else {
tcache = tcaches_get(tsd, dopts->tcache_ind);
}
/* Fill in the arena. */
if (dopts->arena_ind == ARENA_IND_AUTOMATIC) {
/*
* In case of automatic arena management, we defer arena
* computation until as late as we can, hoping to fill the
* allocation out of the tcache.
*/
arena = NULL;
} else {
arena = arena_get(tsd_tsdn(tsd), dopts->arena_ind, true);
}
if (unlikely(dopts->alignment != 0)) {
return ipalloct(tsd_tsdn(tsd), usize, dopts->alignment,
dopts->zero, tcache, arena);
}
return iallocztm(tsd_tsdn(tsd), size, ind, dopts->zero, tcache, false,
arena, sopts->slow);
}
JEMALLOC_ALWAYS_INLINE_C void *
imalloc_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
size_t usize, szind_t ind) {
void *ret;
/*
* For small allocations, sampling bumps the usize. If so, we allocate
* from the ind_large bucket.
*/
szind_t ind_large;
size_t bumped_usize = usize;
if (usize <= SMALL_MAXCLASS) {
assert(((dopts->alignment == 0) ? s2u(LARGE_MINCLASS) :
sa2u(LARGE_MINCLASS, dopts->alignment)) == LARGE_MINCLASS);
ind_large = size2index(LARGE_MINCLASS);
bumped_usize = s2u(LARGE_MINCLASS);
ret = imalloc_no_sample(sopts, dopts, tsd, bumped_usize,
bumped_usize, ind_large);
if (unlikely(ret == NULL)) {
return NULL;
}
arena_prof_promote(tsd_tsdn(tsd), iealloc(tsd_tsdn(tsd), ret),
ret, usize);
} else {
ret = imalloc_no_sample(sopts, dopts, tsd, usize, usize, ind);
}
return ret;
}
/*
* Returns true if the allocation will overflow, and false otherwise. Sets
* *size to the product either way.
*/
JEMALLOC_ALWAYS_INLINE_C bool
compute_size_with_overflow(dynamic_opts_t *dopts, size_t *size) {
/*
* This function is just num_items * item_size, except that we have to
* check for overflow.
*/
/* A size_t with its high-half bits all set to 1. */
const static size_t high_bits = SIZE_T_MAX >> (sizeof(size_t) * 8 / 2);
*size = dopts->item_size * dopts->num_items;
if (unlikely(*size == 0)) {
return (dopts->num_items != 0 && dopts->item_size != 0);
}
/*
* We got a non-zero size, but we don't know if we overflowed to get
* there. To avoid having to do a divide, we'll be clever and note that
* if both A and B can be represented in N/2 bits, then their product
* can be represented in N bits (without the possibility of overflow).
*/
if (likely((high_bits & (dopts->num_items | dopts->item_size)) == 0)) {
return false;
}
if (likely(*size / dopts->item_size == dopts->num_items)) {
return false;
}
return true;
}
JEMALLOC_ALWAYS_INLINE_C int
imalloc_body(static_opts_t *sopts, dynamic_opts_t *dopts) {
/* Where the actual allocated memory will live. */
void *allocation = NULL;
/* Filled in by compute_size_with_overflow below. */
size_t size = 0;
/* We compute a value for this right before allocating. */
tsd_t *tsd = NULL;
/*
* For unaligned allocations, we need only ind. For aligned
* allocations, or in case of stats or profiling we need usize.
*
* These are actually dead stores, in that their values are reset before
* any branch on their value is taken. Sometimes though, it's
* convenient to pass them as arguments before this point. To avoid
* undefined behavior then, we initialize them with dummy stores.
*/
szind_t ind = 0;
size_t usize = 0;
/* Initialize (if we can't prove we don't have to). */
if (sopts->slow) {
if (unlikely(malloc_init())) {
goto label_oom;
}
}
/* Compute the amount of memory the user wants. */
bool overflow = compute_size_with_overflow(dopts, &size);
if (unlikely(overflow)) {
goto label_oom;
}
/* Validate the user input. */
if (sopts->bump_empty_alloc) {
if (unlikely(size == 0)) {
size = 1;
}
}
if (sopts->assert_nonempty_alloc) {
assert (size != 0);
}
if (unlikely(dopts->alignment < sopts->min_alignment
|| (dopts->alignment & (dopts->alignment - 1)) != 0)) {
goto label_invalid_alignment;
}
/* This is the beginning of the "core" algorithm. */
if (dopts->alignment == 0) {
ind = size2index(size);
if (unlikely(ind >= NSIZES)) {
goto label_oom;
}
if (config_stats || (config_prof && opt_prof)) {
usize = index2size(ind);
assert(usize > 0 && usize <= LARGE_MAXCLASS);
}
} else {
usize = sa2u(size, dopts->alignment);
if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
goto label_oom;
}
}
/*
* We always need the tsd, even if we aren't going to use the tcache for
* some reason. Let's grab it right away.
*/
tsd = tsd_fetch();
witness_assert_lockless(tsd_tsdn(tsd));
/* If profiling is on, get our profiling context. */
if (config_prof && opt_prof) {
/*
* Note that if we're going down this path, usize must have been
* initialized in the previous if statement.
*/
prof_tctx_t *tctx = prof_alloc_prep(
tsd, usize, prof_active_get_unlocked(), true);
if (likely((uintptr_t)tctx == (uintptr_t)1U)) {
allocation = imalloc_no_sample(
sopts, dopts, tsd, usize, usize, ind);
} else if ((uintptr_t)tctx > (uintptr_t)1U) {
/*
* Note that ind might still be 0 here. This is fine;
* imalloc_sample ignores ind if dopts->alignment > 0.
*/
allocation = imalloc_sample(
sopts, dopts, tsd, usize, ind);
} else {
allocation = NULL;
}
if (unlikely(allocation == NULL)) {
prof_alloc_rollback(tsd, tctx, true);
goto label_oom;
}
prof_malloc(tsd_tsdn(tsd), iealloc(tsd_tsdn(tsd), allocation),
allocation, usize, tctx);
} else {
/*
* If dopts->alignment > 0, then ind is still 0, but usize was
* computed in the previous if statement. Down the positive
* alignment path, imalloc_no_sample ind and size (relying only
* on usize).
*/
allocation = imalloc_no_sample(sopts, dopts, tsd, usize, usize,
ind);
if (unlikely(allocation == NULL)) {
goto label_oom;
}
}
/*
* Allocation has been done at this point. We still have some
* post-allocation work to do though.
*/
assert(dopts->alignment == 0
|| ((uintptr_t)allocation & (dopts->alignment - 1)) == ZU(0));
if (config_stats) {
assert(usize == isalloc(tsd_tsdn(tsd), iealloc(tsd_tsdn(tsd),
allocation), allocation));
*tsd_thread_allocatedp_get(tsd) += usize;
}
if (sopts->slow) {
UTRACE(0, size, allocation);
}
witness_assert_lockless(tsd_tsdn(tsd));
/* Success! */
*dopts->result = allocation;
return 0;
label_oom:
if (unlikely(sopts->slow) && config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write(sopts->oom_string);
abort();
}
if (sopts->slow) {
UTRACE(NULL, size, NULL);
}
witness_assert_lockless(tsd_tsdn(tsd));
if (sopts->set_errno_on_error) {
set_errno(ENOMEM);
}
if (sopts->null_out_result_on_error) {
*dopts->result = NULL;
}
return ENOMEM;
/*
* This label is only jumped to by one goto; we move it out of line
* anyways to avoid obscuring the non-error paths, and for symmetry with
* the oom case.
*/
label_invalid_alignment:
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write(sopts->invalid_alignment_string);
abort();
}
if (sopts->set_errno_on_error) {
set_errno(EINVAL);
}
if (sopts->slow) {
UTRACE(NULL, size, NULL);
}
witness_assert_lockless(tsd_tsdn(tsd));
if (sopts->null_out_result_on_error) {
*dopts->result = NULL;
}
return EINVAL;
}
/* Returns the errno-style error code of the allocation. */
JEMALLOC_ALWAYS_INLINE_C int
imalloc(static_opts_t *sopts, dynamic_opts_t *dopts) {
if (unlikely(malloc_slow)) {
sopts->slow = true;
return imalloc_body(sopts, dopts);
} else {
sopts->slow = false;
return imalloc_body(sopts, dopts);
}
}
/******************************************************************************/
/*
* Begin malloc(3)-compatible functions.
*/
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
je_malloc(size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.oom_string = "<jemalloc>: Error in malloc(): out of memory\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
imalloc(&sopts, &dopts);
return ret;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
JEMALLOC_ATTR(nonnull(1))
je_posix_memalign(void **memptr, size_t alignment, size_t size) {
int ret;
static_opts_t sopts;
dynamic_opts_t dopts;
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.min_alignment = sizeof(void *);
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
dopts.result = memptr;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = alignment;
ret = imalloc(&sopts, &dopts);
return ret;
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(2)
je_aligned_alloc(size_t alignment, size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.min_alignment = 1;
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = alignment;
imalloc(&sopts, &dopts);
return ret;
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE2(1, 2)
je_calloc(size_t num, size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.oom_string = "<jemalloc>: Error in calloc(): out of memory\n";
dopts.result = &ret;
dopts.num_items = num;
dopts.item_size = size;
dopts.zero = true;
imalloc(&sopts, &dopts);
return ret;
}
static void *
irealloc_prof_sample(tsd_t *tsd, extent_t *extent, void *old_ptr,
size_t old_usize, size_t usize, prof_tctx_t *tctx) {
void *p;
if (tctx == NULL) {
return NULL;
}
if (usize <= SMALL_MAXCLASS) {
p = iralloc(tsd, extent, old_ptr, old_usize, LARGE_MINCLASS, 0,
false);
if (p == NULL) {
return NULL;
}
arena_prof_promote(tsd_tsdn(tsd), iealloc(tsd_tsdn(tsd), p), p,
usize);
} else {
p = iralloc(tsd, extent, old_ptr, old_usize, usize, 0, false);
}
return p;
}
JEMALLOC_ALWAYS_INLINE_C void *
irealloc_prof(tsd_t *tsd, extent_t *old_extent, void *old_ptr, size_t old_usize,
size_t usize) {
void *p;
extent_t *extent;
bool prof_active;
prof_tctx_t *old_tctx, *tctx;
prof_active = prof_active_get_unlocked();
old_tctx = prof_tctx_get(tsd_tsdn(tsd), old_extent, old_ptr);
tctx = prof_alloc_prep(tsd, usize, prof_active, true);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
p = irealloc_prof_sample(tsd, old_extent, old_ptr, old_usize,
usize, tctx);
} else {
p = iralloc(tsd, old_extent, old_ptr, old_usize, usize, 0,
false);
}
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx, true);
return NULL;
}
extent = (p == old_ptr) ? old_extent : iealloc(tsd_tsdn(tsd), p);
prof_realloc(tsd, extent, p, usize, tctx, prof_active, true, old_extent,
old_ptr, old_usize, old_tctx);
return p;
}
JEMALLOC_INLINE_C void
ifree(tsd_t *tsd, void *ptr, tcache_t *tcache, bool slow_path) {
extent_t *extent;
size_t usize;
witness_assert_lockless(tsd_tsdn(tsd));
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
extent = iealloc(tsd_tsdn(tsd), ptr);
if (config_prof && opt_prof) {
usize = isalloc(tsd_tsdn(tsd), extent, ptr);
prof_free(tsd, extent, ptr, usize);
} else if (config_stats) {
usize = isalloc(tsd_tsdn(tsd), extent, ptr);
}
if (config_stats) {
*tsd_thread_deallocatedp_get(tsd) += usize;
}
if (likely(!slow_path)) {
idalloctm(tsd_tsdn(tsd), extent, ptr, tcache, false, false);
} else {
idalloctm(tsd_tsdn(tsd), extent, ptr, tcache, false, true);
}
}
JEMALLOC_INLINE_C void
isfree(tsd_t *tsd, extent_t *extent, void *ptr, size_t usize, tcache_t *tcache,
bool slow_path) {
witness_assert_lockless(tsd_tsdn(tsd));
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
if (config_prof && opt_prof) {
prof_free(tsd, extent, ptr, usize);
}
if (config_stats) {
*tsd_thread_deallocatedp_get(tsd) += usize;
}
if (likely(!slow_path)) {
isdalloct(tsd_tsdn(tsd), extent, ptr, usize, tcache, false);
} else {
isdalloct(tsd_tsdn(tsd), extent, ptr, usize, tcache, true);
}
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ALLOC_SIZE(2)
je_realloc(void *ptr, size_t size) {
void *ret;
tsdn_t *tsdn JEMALLOC_CC_SILENCE_INIT(NULL);
size_t usize JEMALLOC_CC_SILENCE_INIT(0);
size_t old_usize = 0;
if (unlikely(size == 0)) {
if (ptr != NULL) {
tsd_t *tsd;
/* realloc(ptr, 0) is equivalent to free(ptr). */
UTRACE(ptr, 0, 0);
tsd = tsd_fetch();
ifree(tsd, ptr, tcache_get(tsd, false), true);
return NULL;
}
size = 1;
}
if (likely(ptr != NULL)) {
tsd_t *tsd;
extent_t *extent;
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
witness_assert_lockless(tsd_tsdn(tsd));
extent = iealloc(tsd_tsdn(tsd), ptr);
old_usize = isalloc(tsd_tsdn(tsd), extent, ptr);
if (config_prof && opt_prof) {
usize = s2u(size);
ret = unlikely(usize == 0 || usize > LARGE_MAXCLASS) ?
NULL : irealloc_prof(tsd, extent, ptr, old_usize,
usize);
} else {
if (config_stats) {
usize = s2u(size);
}
ret = iralloc(tsd, extent, ptr, old_usize, size, 0,
false);
}
tsdn = tsd_tsdn(tsd);
} else {
/* realloc(NULL, size) is equivalent to malloc(size). */
return je_malloc(size);
}
if (unlikely(ret == NULL)) {
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in realloc(): "
"out of memory\n");
abort();
}
set_errno(ENOMEM);
}
if (config_stats && likely(ret != NULL)) {
tsd_t *tsd;
assert(usize == isalloc(tsdn, iealloc(tsdn, ret), ret));
tsd = tsdn_tsd(tsdn);
*tsd_thread_allocatedp_get(tsd) += usize;
*tsd_thread_deallocatedp_get(tsd) += old_usize;
}
UTRACE(ptr, size, ret);
witness_assert_lockless(tsdn);
return ret;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_free(void *ptr) {
UTRACE(ptr, 0, 0);
if (likely(ptr != NULL)) {
tsd_t *tsd = tsd_fetch();
witness_assert_lockless(tsd_tsdn(tsd));
if (likely(!malloc_slow)) {
ifree(tsd, ptr, tcache_get(tsd, false), false);
} else {
ifree(tsd, ptr, tcache_get(tsd, false), true);
}
witness_assert_lockless(tsd_tsdn(tsd));
}
}
/*
* End malloc(3)-compatible functions.
*/
/******************************************************************************/
/*
* Begin non-standard override functions.
*/
#ifdef JEMALLOC_OVERRIDE_MEMALIGN
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc)
je_memalign(size_t alignment, size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.min_alignment = 1;
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
sopts.null_out_result_on_error = true;
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = alignment;
imalloc(&sopts, &dopts);
return ret;
}
#endif
#ifdef JEMALLOC_OVERRIDE_VALLOC
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc)
je_valloc(size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.min_alignment = PAGE;
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = PAGE;
imalloc(&sopts, &dopts);
return ret;
}
#endif
/*
* is_malloc(je_malloc) is some macro magic to detect if jemalloc_defs.h has
* #define je_malloc malloc
*/
#define malloc_is_malloc 1
#define is_malloc_(a) malloc_is_ ## a
#define is_malloc(a) is_malloc_(a)
#if ((is_malloc(je_malloc) == 1) && defined(JEMALLOC_GLIBC_MALLOC_HOOK))
/*
* glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
* to inconsistently reference libc's malloc(3)-compatible functions
* (https://bugzilla.mozilla.org/show_bug.cgi?id=493541).
*
* These definitions interpose hooks in glibc. The functions are actually
* passed an extra argument for the caller return address, which will be
* ignored.
*/
JEMALLOC_EXPORT void (*__free_hook)(void *ptr) = je_free;
JEMALLOC_EXPORT void *(*__malloc_hook)(size_t size) = je_malloc;
JEMALLOC_EXPORT void *(*__realloc_hook)(void *ptr, size_t size) = je_realloc;
# ifdef JEMALLOC_GLIBC_MEMALIGN_HOOK
JEMALLOC_EXPORT void *(*__memalign_hook)(size_t alignment, size_t size) =
je_memalign;
# endif
#ifdef CPU_COUNT
/*
* To enable static linking with glibc, the libc specific malloc interface must
* be implemented also, so none of glibc's malloc.o functions are added to the
* link.
*/
#define ALIAS(je_fn) __attribute__((alias (#je_fn), used))
/* To force macro expansion of je_ prefix before stringification. */
#define PREALIAS(je_fn) ALIAS(je_fn)
void *__libc_malloc(size_t size) PREALIAS(je_malloc);
void __libc_free(void* ptr) PREALIAS(je_free);
void *__libc_realloc(void* ptr, size_t size) PREALIAS(je_realloc);
void *__libc_calloc(size_t n, size_t size) PREALIAS(je_calloc);
void *__libc_memalign(size_t align, size_t s) PREALIAS(je_memalign);
void *__libc_valloc(size_t size) PREALIAS(je_valloc);
int __posix_memalign(void** r, size_t a, size_t s)
PREALIAS(je_posix_memalign);
#undef PREALIAS
#undef ALIAS
#endif
#endif
/*
* End non-standard override functions.
*/
/******************************************************************************/
/*
* Begin non-standard functions.
*/
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
je_mallocx(size_t size, int flags) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.assert_nonempty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.oom_string = "<jemalloc>: Error in mallocx(): out of memory\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
if (unlikely(flags != 0)) {
if ((flags & MALLOCX_LG_ALIGN_MASK) != 0) {
dopts.alignment = MALLOCX_ALIGN_GET_SPECIFIED(flags);
}
dopts.zero = MALLOCX_ZERO_GET(flags);
if ((flags & MALLOCX_TCACHE_MASK) != 0) {
if ((flags & MALLOCX_TCACHE_MASK)
== MALLOCX_TCACHE_NONE) {
dopts.tcache_ind = TCACHE_IND_NONE;
} else {
dopts.tcache_ind = MALLOCX_TCACHE_GET(flags);
}
} else {
dopts.tcache_ind = TCACHE_IND_AUTOMATIC;
}
if ((flags & MALLOCX_ARENA_MASK) != 0)
dopts.arena_ind = MALLOCX_ARENA_GET(flags);
}
imalloc(&sopts, &dopts);
return ret;
}
static void *
irallocx_prof_sample(tsdn_t *tsdn, extent_t *extent, void *old_ptr,
size_t old_usize, size_t usize, size_t alignment, bool zero,
tcache_t *tcache, arena_t *arena, prof_tctx_t *tctx) {
void *p;
if (tctx == NULL) {
return NULL;
}
if (usize <= SMALL_MAXCLASS) {
p = iralloct(tsdn, extent, old_ptr, old_usize, LARGE_MINCLASS,
alignment, zero, tcache, arena);
if (p == NULL) {
return NULL;
}
arena_prof_promote(tsdn, iealloc(tsdn, p), p, usize);
} else {
p = iralloct(tsdn, extent, old_ptr, old_usize, usize, alignment,
zero, tcache, arena);
}
return p;
}
JEMALLOC_ALWAYS_INLINE_C void *
irallocx_prof(tsd_t *tsd, extent_t *old_extent, void *old_ptr, size_t old_usize,
size_t size, size_t alignment, size_t *usize, bool zero, tcache_t *tcache,
arena_t *arena) {
void *p;
extent_t *extent;
bool prof_active;
prof_tctx_t *old_tctx, *tctx;
prof_active = prof_active_get_unlocked();
old_tctx = prof_tctx_get(tsd_tsdn(tsd), old_extent, old_ptr);
tctx = prof_alloc_prep(tsd, *usize, prof_active, false);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
p = irallocx_prof_sample(tsd_tsdn(tsd), old_extent, old_ptr,
old_usize, *usize, alignment, zero, tcache, arena, tctx);
} else {
p = iralloct(tsd_tsdn(tsd), old_extent, old_ptr, old_usize,
size, alignment, zero, tcache, arena);
}
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx, false);
return NULL;
}
if (p == old_ptr && alignment != 0) {
/*
* The allocation did not move, so it is possible that the size
* class is smaller than would guarantee the requested
* alignment, and that the alignment constraint was
* serendipitously satisfied. Additionally, old_usize may not
* be the same as the current usize because of in-place large
* reallocation. Therefore, query the actual value of usize.
*/
extent = old_extent;
*usize = isalloc(tsd_tsdn(tsd), extent, p);
} else {
extent = iealloc(tsd_tsdn(tsd), p);
}
prof_realloc(tsd, extent, p, *usize, tctx, prof_active, false,
old_extent, old_ptr, old_usize, old_tctx);
return p;
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ALLOC_SIZE(2)
je_rallocx(void *ptr, size_t size, int flags) {
void *p;
tsd_t *tsd;
extent_t *extent;
size_t usize;
size_t old_usize;
size_t alignment = MALLOCX_ALIGN_GET(flags);
bool zero = flags & MALLOCX_ZERO;
arena_t *arena;
tcache_t *tcache;
assert(ptr != NULL);
assert(size != 0);
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
witness_assert_lockless(tsd_tsdn(tsd));
extent = iealloc(tsd_tsdn(tsd), ptr);
if (unlikely((flags & MALLOCX_ARENA_MASK) != 0)) {
unsigned arena_ind = MALLOCX_ARENA_GET(flags);
arena = arena_get(tsd_tsdn(tsd), arena_ind, true);
if (unlikely(arena == NULL)) {
goto label_oom;
}
} else {
arena = NULL;
}
if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
tcache = NULL;
} else {
tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
}
} else {
tcache = tcache_get(tsd, true);
}
old_usize = isalloc(tsd_tsdn(tsd), extent, ptr);
if (config_prof && opt_prof) {
usize = (alignment == 0) ? s2u(size) : sa2u(size, alignment);
if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
goto label_oom;
}
p = irallocx_prof(tsd, extent, ptr, old_usize, size, alignment,
&usize, zero, tcache, arena);
if (unlikely(p == NULL)) {
goto label_oom;
}
} else {
p = iralloct(tsd_tsdn(tsd), extent, ptr, old_usize, size,
alignment, zero, tcache, arena);
if (unlikely(p == NULL)) {
goto label_oom;
}
if (config_stats) {
usize = isalloc(tsd_tsdn(tsd), iealloc(tsd_tsdn(tsd),
p), p);
}
}
assert(alignment == 0 || ((uintptr_t)p & (alignment - 1)) == ZU(0));
if (config_stats) {
*tsd_thread_allocatedp_get(tsd) += usize;
*tsd_thread_deallocatedp_get(tsd) += old_usize;
}
UTRACE(ptr, size, p);
witness_assert_lockless(tsd_tsdn(tsd));
return p;
label_oom:
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in rallocx(): out of memory\n");
abort();
}
UTRACE(ptr, size, 0);
witness_assert_lockless(tsd_tsdn(tsd));
return NULL;
}
JEMALLOC_ALWAYS_INLINE_C size_t
ixallocx_helper(tsdn_t *tsdn, extent_t *extent, void *ptr, size_t old_usize,
size_t size, size_t extra, size_t alignment, bool zero) {
size_t usize;
if (ixalloc(tsdn, extent, ptr, old_usize, size, extra, alignment,
zero)) {
return old_usize;
}
usize = isalloc(tsdn, extent, ptr);
return usize;
}
static size_t
ixallocx_prof_sample(tsdn_t *tsdn, extent_t *extent, void *ptr,
size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero,
prof_tctx_t *tctx) {
size_t usize;
if (tctx == NULL) {
return old_usize;
}
usize = ixallocx_helper(tsdn, extent, ptr, old_usize, size, extra,
alignment, zero);
return usize;
}
JEMALLOC_ALWAYS_INLINE_C size_t
ixallocx_prof(tsd_t *tsd, extent_t *extent, void *ptr, size_t old_usize,
size_t size, size_t extra, size_t alignment, bool zero) {
size_t usize_max, usize;
bool prof_active;
prof_tctx_t *old_tctx, *tctx;
prof_active = prof_active_get_unlocked();
old_tctx = prof_tctx_get(tsd_tsdn(tsd), extent, ptr);
/*
* usize isn't knowable before ixalloc() returns when extra is non-zero.
* Therefore, compute its maximum possible value and use that in
* prof_alloc_prep() to decide whether to capture a backtrace.
* prof_realloc() will use the actual usize to decide whether to sample.
*/
if (alignment == 0) {
usize_max = s2u(size+extra);
assert(usize_max > 0 && usize_max <= LARGE_MAXCLASS);
} else {
usize_max = sa2u(size+extra, alignment);
if (unlikely(usize_max == 0 || usize_max > LARGE_MAXCLASS)) {
/*
* usize_max is out of range, and chances are that
* allocation will fail, but use the maximum possible
* value and carry on with prof_alloc_prep(), just in
* case allocation succeeds.
*/
usize_max = LARGE_MAXCLASS;
}
}
tctx = prof_alloc_prep(tsd, usize_max, prof_active, false);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
usize = ixallocx_prof_sample(tsd_tsdn(tsd), extent, ptr,
old_usize, size, extra, alignment, zero, tctx);
} else {
usize = ixallocx_helper(tsd_tsdn(tsd), extent, ptr, old_usize,
size, extra, alignment, zero);
}
if (usize == old_usize) {
prof_alloc_rollback(tsd, tctx, false);
return usize;
}
prof_realloc(tsd, extent, ptr, usize, tctx, prof_active, false, extent,
ptr, old_usize, old_tctx);
return usize;
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
je_xallocx(void *ptr, size_t size, size_t extra, int flags) {
tsd_t *tsd;
extent_t *extent;
size_t usize, old_usize;
size_t alignment = MALLOCX_ALIGN_GET(flags);
bool zero = flags & MALLOCX_ZERO;
assert(ptr != NULL);
assert(size != 0);
assert(SIZE_T_MAX - size >= extra);
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
witness_assert_lockless(tsd_tsdn(tsd));
extent = iealloc(tsd_tsdn(tsd), ptr);
old_usize = isalloc(tsd_tsdn(tsd), extent, ptr);
/*
* The API explicitly absolves itself of protecting against (size +
* extra) numerical overflow, but we may need to clamp extra to avoid
* exceeding LARGE_MAXCLASS.
*
* Ordinarily, size limit checking is handled deeper down, but here we
* have to check as part of (size + extra) clamping, since we need the
* clamped value in the above helper functions.
*/
if (unlikely(size > LARGE_MAXCLASS)) {
usize = old_usize;
goto label_not_resized;
}
if (unlikely(LARGE_MAXCLASS - size < extra)) {
extra = LARGE_MAXCLASS - size;
}
if (config_prof && opt_prof) {
usize = ixallocx_prof(tsd, extent, ptr, old_usize, size, extra,
alignment, zero);
} else {
usize = ixallocx_helper(tsd_tsdn(tsd), extent, ptr, old_usize,
size, extra, alignment, zero);
}
if (unlikely(usize == old_usize)) {
goto label_not_resized;
}
if (config_stats) {
*tsd_thread_allocatedp_get(tsd) += usize;
*tsd_thread_deallocatedp_get(tsd) += old_usize;
}
label_not_resized:
UTRACE(ptr, size, ptr);
witness_assert_lockless(tsd_tsdn(tsd));
return usize;
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
JEMALLOC_ATTR(pure)
je_sallocx(const void *ptr, int flags) {
size_t usize;
tsdn_t *tsdn;
assert(malloc_initialized() || IS_INITIALIZER);
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
if (config_ivsalloc) {
usize = ivsalloc(tsdn, ptr);
} else {
usize = isalloc(tsdn, iealloc(tsdn, ptr), ptr);
}
witness_assert_lockless(tsdn);
return usize;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_dallocx(void *ptr, int flags) {
tsd_t *tsd;
tcache_t *tcache;
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
witness_assert_lockless(tsd_tsdn(tsd));
if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
tcache = NULL;
} else {
tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
}
} else {
tcache = tcache_get(tsd, false);
}
UTRACE(ptr, 0, 0);
if (likely(!malloc_slow)) {
ifree(tsd, ptr, tcache, false);
} else {
ifree(tsd, ptr, tcache, true);
}
witness_assert_lockless(tsd_tsdn(tsd));
}
JEMALLOC_ALWAYS_INLINE_C size_t
inallocx(tsdn_t *tsdn, size_t size, int flags) {
size_t usize;
witness_assert_lockless(tsdn);
if (likely((flags & MALLOCX_LG_ALIGN_MASK) == 0)) {
usize = s2u(size);
} else {
usize = sa2u(size, MALLOCX_ALIGN_GET_SPECIFIED(flags));
}
witness_assert_lockless(tsdn);
return usize;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_sdallocx(void *ptr, size_t size, int flags) {
tsd_t *tsd;
extent_t *extent;
size_t usize;
tcache_t *tcache;
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
extent = iealloc(tsd_tsdn(tsd), ptr);
usize = inallocx(tsd_tsdn(tsd), size, flags);
assert(usize == isalloc(tsd_tsdn(tsd), extent, ptr));
witness_assert_lockless(tsd_tsdn(tsd));
if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
tcache = NULL;
} else {
tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
}
} else {
tcache = tcache_get(tsd, false);
}
UTRACE(ptr, 0, 0);
if (likely(!malloc_slow)) {
isfree(tsd, extent, ptr, usize, tcache, false);
} else {
isfree(tsd, extent, ptr, usize, tcache, true);
}
witness_assert_lockless(tsd_tsdn(tsd));
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
JEMALLOC_ATTR(pure)
je_nallocx(size_t size, int flags) {
size_t usize;
tsdn_t *tsdn;
assert(size != 0);
if (unlikely(malloc_init())) {
return 0;
}
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
usize = inallocx(tsdn, size, flags);
if (unlikely(usize > LARGE_MAXCLASS)) {
return 0;
}
witness_assert_lockless(tsdn);
return usize;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp,
size_t newlen) {
int ret;
tsd_t *tsd;
if (unlikely(malloc_init())) {
return EAGAIN;
}
tsd = tsd_fetch();
witness_assert_lockless(tsd_tsdn(tsd));
ret = ctl_byname(tsd, name, oldp, oldlenp, newp, newlen);
witness_assert_lockless(tsd_tsdn(tsd));
return ret;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp) {
int ret;
tsdn_t *tsdn;
if (unlikely(malloc_init())) {
return EAGAIN;
}
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
ret = ctl_nametomib(tsdn, name, mibp, miblenp);
witness_assert_lockless(tsdn);
return ret;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
void *newp, size_t newlen) {
int ret;
tsd_t *tsd;
if (unlikely(malloc_init())) {
return EAGAIN;
}
tsd = tsd_fetch();
witness_assert_lockless(tsd_tsdn(tsd));
ret = ctl_bymib(tsd, mib, miblen, oldp, oldlenp, newp, newlen);
witness_assert_lockless(tsd_tsdn(tsd));
return ret;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque,
const char *opts) {
tsdn_t *tsdn;
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
stats_print(write_cb, cbopaque, opts);
witness_assert_lockless(tsdn);
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr) {
size_t ret;
tsdn_t *tsdn;
assert(malloc_initialized() || IS_INITIALIZER);
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
if (config_ivsalloc) {
ret = ivsalloc(tsdn, ptr);
} else {
ret = (ptr == NULL) ? 0 : isalloc(tsdn, iealloc(tsdn, ptr),
ptr);
}
witness_assert_lockless(tsdn);
return ret;
}
/*
* End non-standard functions.
*/
/******************************************************************************/
/*
* The following functions are used by threading libraries for protection of
* malloc during fork().
*/
/*
* If an application creates a thread before doing any allocation in the main
* thread, then calls fork(2) in the main thread followed by memory allocation
* in the child process, a race can occur that results in deadlock within the
* child: the main thread may have forked while the created thread had
* partially initialized the allocator. Ordinarily jemalloc prevents
* fork/malloc races via the following functions it registers during
* initialization using pthread_atfork(), but of course that does no good if
* the allocator isn't fully initialized at fork time. The following library
* constructor is a partial solution to this problem. It may still be possible
* to trigger the deadlock described above, but doing so would involve forking
* via a library constructor that runs before jemalloc's runs.
*/
#ifndef JEMALLOC_JET
JEMALLOC_ATTR(constructor)
static void
jemalloc_constructor(void) {
malloc_init();
}
#endif
#ifndef JEMALLOC_MUTEX_INIT_CB
void
jemalloc_prefork(void)
#else
JEMALLOC_EXPORT void
_malloc_prefork(void)
#endif
{
tsd_t *tsd;
unsigned i, j, narenas;
arena_t *arena;
#ifdef JEMALLOC_MUTEX_INIT_CB
if (!malloc_initialized()) {
return;
}
#endif
assert(malloc_initialized());
tsd = tsd_fetch();
narenas = narenas_total_get();
witness_prefork(tsd);
/* Acquire all mutexes in a safe order. */
ctl_prefork(tsd_tsdn(tsd));
malloc_mutex_prefork(tsd_tsdn(tsd), &arenas_lock);
prof_prefork0(tsd_tsdn(tsd));
for (i = 0; i < 3; i++) {
for (j = 0; j < narenas; j++) {
if ((arena = arena_get(tsd_tsdn(tsd), j, false)) !=
NULL) {
switch (i) {
case 0:
arena_prefork0(tsd_tsdn(tsd), arena);
break;
case 1:
arena_prefork1(tsd_tsdn(tsd), arena);
break;
case 2:
arena_prefork2(tsd_tsdn(tsd), arena);
break;
default: not_reached();
}
}
}
}
for (i = 0; i < narenas; i++) {
if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
arena_prefork3(tsd_tsdn(tsd), arena);
}
}
prof_prefork1(tsd_tsdn(tsd));
}
#ifndef JEMALLOC_MUTEX_INIT_CB
void
jemalloc_postfork_parent(void)
#else
JEMALLOC_EXPORT void
_malloc_postfork(void)
#endif
{
tsd_t *tsd;
unsigned i, narenas;
#ifdef JEMALLOC_MUTEX_INIT_CB
if (!malloc_initialized()) {
return;
}
#endif
assert(malloc_initialized());
tsd = tsd_fetch();
witness_postfork_parent(tsd);
/* Release all mutexes, now that fork() has completed. */
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena;
if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
arena_postfork_parent(tsd_tsdn(tsd), arena);
}
}
prof_postfork_parent(tsd_tsdn(tsd));
malloc_mutex_postfork_parent(tsd_tsdn(tsd), &arenas_lock);
ctl_postfork_parent(tsd_tsdn(tsd));
}
void
jemalloc_postfork_child(void) {
tsd_t *tsd;
unsigned i, narenas;
assert(malloc_initialized());
tsd = tsd_fetch();
witness_postfork_child(tsd);
/* Release all mutexes, now that fork() has completed. */
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena;
if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
arena_postfork_child(tsd_tsdn(tsd), arena);
}
}
prof_postfork_child(tsd_tsdn(tsd));
malloc_mutex_postfork_child(tsd_tsdn(tsd), &arenas_lock);
ctl_postfork_child(tsd_tsdn(tsd));
}
/******************************************************************************/