| /* |
| * Copyright (c) 2017, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom/aom_codec.h" |
| #include "aom_dsp/bitreader_buffer.h" |
| #include "aom_ports/mem_ops.h" |
| |
| #include "av1/common/common.h" |
| #include "av1/common/obu_util.h" |
| #include "av1/common/timing.h" |
| #include "av1/decoder/decoder.h" |
| #include "av1/decoder/decodeframe.h" |
| #include "av1/decoder/obu.h" |
| |
| // Picture prediction structures (0-12 are predefined) in scalability metadata. |
| enum { |
| SCALABILITY_L1T2 = 0, |
| SCALABILITY_L1T3 = 1, |
| SCALABILITY_L2T1 = 2, |
| SCALABILITY_L2T2 = 3, |
| SCALABILITY_L2T3 = 4, |
| SCALABILITY_S2T1 = 5, |
| SCALABILITY_S2T2 = 6, |
| SCALABILITY_S2T3 = 7, |
| SCALABILITY_L2T1h = 8, |
| SCALABILITY_L2T2h = 9, |
| SCALABILITY_L2T3h = 10, |
| SCALABILITY_S2T1h = 11, |
| SCALABILITY_S2T2h = 12, |
| SCALABILITY_S2T3h = 13, |
| SCALABILITY_SS = 14 |
| } UENUM1BYTE(SCALABILITY_STRUCTURES); |
| |
| aom_codec_err_t aom_get_num_layers_from_operating_point_idc( |
| int operating_point_idc, unsigned int *number_spatial_layers, |
| unsigned int *number_temporal_layers) { |
| // derive number of spatial/temporal layers from operating_point_idc |
| |
| if (!number_spatial_layers || !number_temporal_layers) |
| return AOM_CODEC_INVALID_PARAM; |
| |
| if (operating_point_idc == 0) { |
| *number_temporal_layers = 1; |
| *number_spatial_layers = 1; |
| } else { |
| *number_spatial_layers = 0; |
| *number_temporal_layers = 0; |
| for (int j = 0; j < MAX_NUM_SPATIAL_LAYERS; j++) { |
| *number_spatial_layers += |
| (operating_point_idc >> (j + MAX_NUM_TEMPORAL_LAYERS)) & 0x1; |
| } |
| for (int j = 0; j < MAX_NUM_TEMPORAL_LAYERS; j++) { |
| *number_temporal_layers += (operating_point_idc >> j) & 0x1; |
| } |
| } |
| |
| return AOM_CODEC_OK; |
| } |
| |
| static int is_obu_in_current_operating_point(AV1Decoder *pbi, |
| ObuHeader obu_header) { |
| if (!pbi->current_operating_point) { |
| return 1; |
| } |
| |
| if ((pbi->current_operating_point >> obu_header.temporal_layer_id) & 0x1 && |
| (pbi->current_operating_point >> (obu_header.spatial_layer_id + 8)) & |
| 0x1) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int byte_alignment(AV1_COMMON *const cm, |
| struct aom_read_bit_buffer *const rb) { |
| while (rb->bit_offset & 7) { |
| if (aom_rb_read_bit(rb)) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| static uint32_t read_temporal_delimiter_obu() { return 0; } |
| |
| // Returns a boolean that indicates success. |
| static int read_bitstream_level(AV1_LEVEL *seq_level_idx, |
| struct aom_read_bit_buffer *rb) { |
| *seq_level_idx = aom_rb_read_literal(rb, LEVEL_BITS); |
| if (!is_valid_seq_level_idx(*seq_level_idx)) return 0; |
| return 1; |
| } |
| |
| // Returns whether two sequence headers are consistent with each other. |
| // TODO(huisu,wtc@google.com): make sure the code matches the spec exactly. |
| static int are_seq_headers_consistent(const SequenceHeader *seq_params_old, |
| const SequenceHeader *seq_params_new) { |
| return !memcmp(seq_params_old, seq_params_new, sizeof(SequenceHeader)); |
| } |
| |
| // On success, sets pbi->sequence_header_ready to 1 and returns the number of |
| // bytes read from 'rb'. |
| // On failure, sets pbi->common.error.error_code and returns 0. |
| static uint32_t read_sequence_header_obu(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| const uint32_t saved_bit_offset = rb->bit_offset; |
| |
| // Verify rb has been configured to report errors. |
| assert(rb->error_handler); |
| |
| // Use a local variable to store the information as we decode. At the end, |
| // if no errors have occurred, cm->seq_params is updated. |
| SequenceHeader sh = cm->seq_params; |
| SequenceHeader *const seq_params = &sh; |
| |
| seq_params->profile = av1_read_profile(rb); |
| if (seq_params->profile > CONFIG_MAX_DECODE_PROFILE) { |
| cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; |
| return 0; |
| } |
| |
| // Still picture or not |
| seq_params->still_picture = aom_rb_read_bit(rb); |
| seq_params->reduced_still_picture_hdr = aom_rb_read_bit(rb); |
| // Video must have reduced_still_picture_hdr = 0 |
| if (!seq_params->still_picture && seq_params->reduced_still_picture_hdr) { |
| cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; |
| return 0; |
| } |
| |
| if (seq_params->reduced_still_picture_hdr) { |
| cm->timing_info_present = 0; |
| seq_params->decoder_model_info_present_flag = 0; |
| seq_params->display_model_info_present_flag = 0; |
| seq_params->operating_points_cnt_minus_1 = 0; |
| seq_params->operating_point_idc[0] = 0; |
| if (!read_bitstream_level(&seq_params->seq_level_idx[0], rb)) { |
| cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; |
| return 0; |
| } |
| seq_params->tier[0] = 0; |
| cm->op_params[0].decoder_model_param_present_flag = 0; |
| cm->op_params[0].display_model_param_present_flag = 0; |
| } else { |
| cm->timing_info_present = aom_rb_read_bit(rb); // timing_info_present_flag |
| if (cm->timing_info_present) { |
| av1_read_timing_info_header(cm, rb); |
| |
| seq_params->decoder_model_info_present_flag = aom_rb_read_bit(rb); |
| if (seq_params->decoder_model_info_present_flag) |
| av1_read_decoder_model_info(cm, rb); |
| } else { |
| seq_params->decoder_model_info_present_flag = 0; |
| } |
| seq_params->display_model_info_present_flag = aom_rb_read_bit(rb); |
| seq_params->operating_points_cnt_minus_1 = |
| aom_rb_read_literal(rb, OP_POINTS_CNT_MINUS_1_BITS); |
| for (int i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) { |
| seq_params->operating_point_idc[i] = |
| aom_rb_read_literal(rb, OP_POINTS_IDC_BITS); |
| if (!read_bitstream_level(&seq_params->seq_level_idx[i], rb)) { |
| cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; |
| return 0; |
| } |
| // This is the seq_level_idx[i] > 7 check in the spec. seq_level_idx 7 |
| // is equivalent to level 3.3. |
| if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0) |
| seq_params->tier[i] = aom_rb_read_bit(rb); |
| else |
| seq_params->tier[i] = 0; |
| if (seq_params->decoder_model_info_present_flag) { |
| cm->op_params[i].decoder_model_param_present_flag = aom_rb_read_bit(rb); |
| if (cm->op_params[i].decoder_model_param_present_flag) |
| av1_read_op_parameters_info(cm, rb, i); |
| } else { |
| cm->op_params[i].decoder_model_param_present_flag = 0; |
| } |
| if (cm->timing_info_present && |
| (cm->timing_info.equal_picture_interval || |
| cm->op_params[i].decoder_model_param_present_flag)) { |
| cm->op_params[i].bitrate = |
| max_level_bitrate(seq_params->profile, seq_params->seq_level_idx[i], |
| seq_params->tier[i]); |
| // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass |
| // the check |
| if (cm->op_params[i].bitrate == 0) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "AV1 does not support this combination of " |
| "profile, level, and tier."); |
| // Buffer size in bits/s is bitrate in bits/s * 1 s |
| cm->op_params[i].buffer_size = cm->op_params[i].bitrate; |
| } |
| if (cm->timing_info_present && cm->timing_info.equal_picture_interval && |
| !cm->op_params[i].decoder_model_param_present_flag) { |
| // When the decoder_model_parameters are not sent for this op, set |
| // the default ones that can be used with the resource availability mode |
| cm->op_params[i].decoder_buffer_delay = 70000; |
| cm->op_params[i].encoder_buffer_delay = 20000; |
| cm->op_params[i].low_delay_mode_flag = 0; |
| } |
| |
| if (seq_params->display_model_info_present_flag) { |
| cm->op_params[i].display_model_param_present_flag = aom_rb_read_bit(rb); |
| if (cm->op_params[i].display_model_param_present_flag) { |
| cm->op_params[i].initial_display_delay = |
| aom_rb_read_literal(rb, 4) + 1; |
| if (cm->op_params[i].initial_display_delay > 10) |
| aom_internal_error( |
| &cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "AV1 does not support more than 10 decoded frames delay"); |
| } else { |
| cm->op_params[i].initial_display_delay = 10; |
| } |
| } else { |
| cm->op_params[i].display_model_param_present_flag = 0; |
| cm->op_params[i].initial_display_delay = 10; |
| } |
| } |
| } |
| // This decoder supports all levels. Choose operating point provided by |
| // external means |
| int operating_point = pbi->operating_point; |
| if (operating_point < 0 || |
| operating_point > seq_params->operating_points_cnt_minus_1) |
| operating_point = 0; |
| pbi->current_operating_point = |
| seq_params->operating_point_idc[operating_point]; |
| if (aom_get_num_layers_from_operating_point_idc( |
| pbi->current_operating_point, &cm->number_spatial_layers, |
| &cm->number_temporal_layers) != AOM_CODEC_OK) { |
| cm->error.error_code = AOM_CODEC_ERROR; |
| return 0; |
| } |
| |
| av1_read_sequence_header(cm, rb, seq_params); |
| |
| av1_read_color_config(rb, pbi->allow_lowbitdepth, seq_params, &cm->error); |
| if (!(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0) && |
| !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) && |
| !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 0)) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Only 4:4:4, 4:2:2 and 4:2:0 are currently supported, " |
| "%d %d subsampling is not supported.\n", |
| seq_params->subsampling_x, seq_params->subsampling_y); |
| } |
| |
| seq_params->film_grain_params_present = aom_rb_read_bit(rb); |
| |
| if (av1_check_trailing_bits(pbi, rb) != 0) { |
| // cm->error.error_code is already set. |
| return 0; |
| } |
| |
| // If a sequence header has been decoded before, we check if the new |
| // one is consistent with the old one. |
| if (pbi->sequence_header_ready) { |
| if (!are_seq_headers_consistent(&cm->seq_params, seq_params)) |
| pbi->sequence_header_changed = 1; |
| } |
| |
| cm->seq_params = *seq_params; |
| pbi->sequence_header_ready = 1; |
| |
| return ((rb->bit_offset - saved_bit_offset + 7) >> 3); |
| } |
| |
| // On success, returns the frame header size. On failure, calls |
| // aom_internal_error and does not return. |
| static uint32_t read_frame_header_obu(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb, |
| const uint8_t *data, |
| const uint8_t **p_data_end, |
| int trailing_bits_present) { |
| return av1_decode_frame_headers_and_setup(pbi, rb, data, p_data_end, |
| trailing_bits_present); |
| } |
| |
| // On success, returns the tile group header size. On failure, calls |
| // aom_internal_error() and returns -1. |
| static int32_t read_tile_group_header(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb, |
| int *start_tile, int *end_tile, |
| int tile_start_implicit) { |
| AV1_COMMON *const cm = &pbi->common; |
| uint32_t saved_bit_offset = rb->bit_offset; |
| int tile_start_and_end_present_flag = 0; |
| const int num_tiles = pbi->common.tile_rows * pbi->common.tile_cols; |
| |
| if (!pbi->common.large_scale_tile && num_tiles > 1) { |
| tile_start_and_end_present_flag = aom_rb_read_bit(rb); |
| if (tile_start_implicit && tile_start_and_end_present_flag) { |
| aom_internal_error( |
| &cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "For OBU_FRAME type obu tile_start_and_end_present_flag must be 0"); |
| return -1; |
| } |
| } |
| if (pbi->common.large_scale_tile || num_tiles == 1 || |
| !tile_start_and_end_present_flag) { |
| *start_tile = 0; |
| *end_tile = num_tiles - 1; |
| } else { |
| int tile_bits = cm->log2_tile_rows + cm->log2_tile_cols; |
| *start_tile = aom_rb_read_literal(rb, tile_bits); |
| *end_tile = aom_rb_read_literal(rb, tile_bits); |
| } |
| if (*start_tile > *end_tile) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "tg_end must be greater than or equal to tg_start"); |
| return -1; |
| } |
| |
| return ((rb->bit_offset - saved_bit_offset + 7) >> 3); |
| } |
| |
| // On success, returns the tile group OBU size. On failure, sets |
| // pbi->common.error.error_code and returns 0. |
| static uint32_t read_one_tile_group_obu( |
| AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int is_first_tg, |
| const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end, |
| int *is_last_tg, int tile_start_implicit) { |
| AV1_COMMON *const cm = &pbi->common; |
| int start_tile, end_tile; |
| int32_t header_size, tg_payload_size; |
| |
| assert((rb->bit_offset & 7) == 0); |
| assert(rb->bit_buffer + aom_rb_bytes_read(rb) == data); |
| |
| header_size = read_tile_group_header(pbi, rb, &start_tile, &end_tile, |
| tile_start_implicit); |
| if (header_size == -1 || byte_alignment(cm, rb)) return 0; |
| data += header_size; |
| av1_decode_tg_tiles_and_wrapup(pbi, data, data_end, p_data_end, start_tile, |
| end_tile, is_first_tg); |
| |
| tg_payload_size = (uint32_t)(*p_data_end - data); |
| |
| // TODO(shan): For now, assume all tile groups received in order |
| *is_last_tg = end_tile == cm->tile_rows * cm->tile_cols - 1; |
| return header_size + tg_payload_size; |
| } |
| |
| static void alloc_tile_list_buffer(AV1Decoder *pbi) { |
| // The resolution of the output frame is read out from the bitstream. The data |
| // are stored in the order of Y plane, U plane and V plane. As an example, for |
| // image format 4:2:0, the output frame of U plane and V plane is 1/4 of the |
| // output frame. |
| AV1_COMMON *const cm = &pbi->common; |
| int tile_width, tile_height; |
| av1_get_uniform_tile_size(cm, &tile_width, &tile_height); |
| const int tile_width_in_pixels = tile_width * MI_SIZE; |
| const int tile_height_in_pixels = tile_height * MI_SIZE; |
| const int output_frame_width = |
| (pbi->output_frame_width_in_tiles_minus_1 + 1) * tile_width_in_pixels; |
| const int output_frame_height = |
| (pbi->output_frame_height_in_tiles_minus_1 + 1) * tile_height_in_pixels; |
| // The output frame is used to store the decoded tile list. The decoded tile |
| // list has to fit into 1 output frame. |
| assert((pbi->tile_count_minus_1 + 1) <= |
| (pbi->output_frame_width_in_tiles_minus_1 + 1) * |
| (pbi->output_frame_height_in_tiles_minus_1 + 1)); |
| |
| // Allocate the tile list output buffer. |
| // Note: if cm->seq_params.use_highbitdepth is 1 and cm->seq_params.bit_depth |
| // is 8, we could allocate less memory, namely, 8 bits/pixel. |
| if (aom_alloc_frame_buffer(&pbi->tile_list_outbuf, output_frame_width, |
| output_frame_height, cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y, |
| (cm->seq_params.use_highbitdepth && |
| (cm->seq_params.bit_depth > AOM_BITS_8)), |
| 0, cm->byte_alignment)) |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate the tile list output buffer"); |
| } |
| |
| static void yv12_tile_copy(const YV12_BUFFER_CONFIG *src, int hstart1, |
| int hend1, int vstart1, int vend1, |
| YV12_BUFFER_CONFIG *dst, int hstart2, int vstart2, |
| int plane) { |
| const int src_stride = (plane > 0) ? src->strides[1] : src->strides[0]; |
| const int dst_stride = (plane > 0) ? dst->strides[1] : dst->strides[0]; |
| int row, col; |
| |
| assert(src->flags & YV12_FLAG_HIGHBITDEPTH); |
| assert(!(dst->flags & YV12_FLAG_HIGHBITDEPTH)); |
| |
| const uint16_t *src16 = |
| CONVERT_TO_SHORTPTR(src->buffers[plane] + vstart1 * src_stride + hstart1); |
| uint8_t *dst8 = dst->buffers[plane] + vstart2 * dst_stride + hstart2; |
| |
| for (row = vstart1; row < vend1; ++row) { |
| for (col = 0; col < (hend1 - hstart1); ++col) *dst8++ = (uint8_t)(*src16++); |
| src16 += src_stride - (hend1 - hstart1); |
| dst8 += dst_stride - (hend1 - hstart1); |
| } |
| return; |
| } |
| |
| static void copy_decoded_tile_to_tile_list_buffer(AV1Decoder *pbi, |
| int tile_idx) { |
| AV1_COMMON *const cm = &pbi->common; |
| int tile_width, tile_height; |
| av1_get_uniform_tile_size(cm, &tile_width, &tile_height); |
| const int tile_width_in_pixels = tile_width * MI_SIZE; |
| const int tile_height_in_pixels = tile_height * MI_SIZE; |
| const int ssy = cm->seq_params.subsampling_y; |
| const int ssx = cm->seq_params.subsampling_x; |
| const int num_planes = av1_num_planes(cm); |
| |
| YV12_BUFFER_CONFIG *cur_frame = &cm->cur_frame->buf; |
| const int tr = tile_idx / (pbi->output_frame_width_in_tiles_minus_1 + 1); |
| const int tc = tile_idx % (pbi->output_frame_width_in_tiles_minus_1 + 1); |
| int plane; |
| |
| // Copy decoded tile to the tile list output buffer. |
| for (plane = 0; plane < num_planes; ++plane) { |
| const int shift_x = plane > 0 ? ssx : 0; |
| const int shift_y = plane > 0 ? ssy : 0; |
| const int h = tile_height_in_pixels >> shift_y; |
| const int w = tile_width_in_pixels >> shift_x; |
| |
| // src offset |
| int vstart1 = pbi->dec_tile_row * h; |
| int vend1 = vstart1 + h; |
| int hstart1 = pbi->dec_tile_col * w; |
| int hend1 = hstart1 + w; |
| // dst offset |
| int vstart2 = tr * h; |
| int hstart2 = tc * w; |
| |
| if (cm->seq_params.use_highbitdepth && |
| cm->seq_params.bit_depth == AOM_BITS_8) { |
| yv12_tile_copy(cur_frame, hstart1, hend1, vstart1, vend1, |
| &pbi->tile_list_outbuf, hstart2, vstart2, plane); |
| } else { |
| switch (plane) { |
| case 0: |
| aom_yv12_partial_copy_y(cur_frame, hstart1, hend1, vstart1, vend1, |
| &pbi->tile_list_outbuf, hstart2, vstart2); |
| break; |
| case 1: |
| aom_yv12_partial_copy_u(cur_frame, hstart1, hend1, vstart1, vend1, |
| &pbi->tile_list_outbuf, hstart2, vstart2); |
| break; |
| case 2: |
| aom_yv12_partial_copy_v(cur_frame, hstart1, hend1, vstart1, vend1, |
| &pbi->tile_list_outbuf, hstart2, vstart2); |
| break; |
| default: assert(0); |
| } |
| } |
| } |
| } |
| |
| // Only called while large_scale_tile = 1. |
| // |
| // On success, returns the tile list OBU size. On failure, sets |
| // pbi->common.error.error_code and returns 0. |
| static uint32_t read_and_decode_one_tile_list(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb, |
| const uint8_t *data, |
| const uint8_t *data_end, |
| const uint8_t **p_data_end, |
| int *frame_decoding_finished) { |
| AV1_COMMON *const cm = &pbi->common; |
| uint32_t tile_list_payload_size = 0; |
| const int num_tiles = cm->tile_cols * cm->tile_rows; |
| const int start_tile = 0; |
| const int end_tile = num_tiles - 1; |
| int i = 0; |
| |
| // Process the tile list info. |
| pbi->output_frame_width_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); |
| pbi->output_frame_height_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); |
| pbi->tile_count_minus_1 = aom_rb_read_literal(rb, 16); |
| if (pbi->tile_count_minus_1 > MAX_TILES - 1) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return 0; |
| } |
| |
| // Allocate output frame buffer for the tile list. |
| alloc_tile_list_buffer(pbi); |
| |
| uint32_t tile_list_info_bytes = 4; |
| tile_list_payload_size += tile_list_info_bytes; |
| data += tile_list_info_bytes; |
| |
| int tile_idx = 0; |
| for (i = 0; i <= pbi->tile_count_minus_1; i++) { |
| // Process 1 tile. |
| // Reset the bit reader. |
| rb->bit_offset = 0; |
| rb->bit_buffer = data; |
| |
| // Read out the tile info. |
| uint32_t tile_info_bytes = 5; |
| // Set reference for each tile. |
| int ref_idx = aom_rb_read_literal(rb, 8); |
| if (ref_idx >= MAX_EXTERNAL_REFERENCES) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return 0; |
| } |
| av1_set_reference_dec(cm, 0, 1, &pbi->ext_refs.refs[ref_idx]); |
| |
| pbi->dec_tile_row = aom_rb_read_literal(rb, 8); |
| pbi->dec_tile_col = aom_rb_read_literal(rb, 8); |
| if (pbi->dec_tile_row < 0 || pbi->dec_tile_col < 0 || |
| pbi->dec_tile_row >= cm->tile_rows || |
| pbi->dec_tile_col >= cm->tile_cols) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return 0; |
| } |
| |
| pbi->coded_tile_data_size = aom_rb_read_literal(rb, 16) + 1; |
| data += tile_info_bytes; |
| if ((size_t)(data_end - data) < pbi->coded_tile_data_size) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return 0; |
| } |
| |
| av1_decode_tg_tiles_and_wrapup(pbi, data, data + pbi->coded_tile_data_size, |
| p_data_end, start_tile, end_tile, 0); |
| uint32_t tile_payload_size = (uint32_t)(*p_data_end - data); |
| |
| tile_list_payload_size += tile_info_bytes + tile_payload_size; |
| |
| // Update data ptr for next tile decoding. |
| data = *p_data_end; |
| assert(data <= data_end); |
| |
| // Copy the decoded tile to the tile list output buffer. |
| copy_decoded_tile_to_tile_list_buffer(pbi, tile_idx); |
| tile_idx++; |
| } |
| |
| *frame_decoding_finished = 1; |
| return tile_list_payload_size; |
| } |
| |
| static void read_metadata_itut_t35(const uint8_t *data, size_t sz) { |
| struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; |
| for (size_t i = 0; i < sz; i++) { |
| aom_rb_read_literal(&rb, 8); |
| } |
| } |
| |
| static void read_metadata_hdr_cll(const uint8_t *data, size_t sz) { |
| struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; |
| aom_rb_read_literal(&rb, 16); // max_cll |
| aom_rb_read_literal(&rb, 16); // max_fall |
| } |
| |
| static void read_metadata_hdr_mdcv(const uint8_t *data, size_t sz) { |
| struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; |
| for (int i = 0; i < 3; i++) { |
| aom_rb_read_literal(&rb, 16); // primary_i_chromaticity_x |
| aom_rb_read_literal(&rb, 16); // primary_i_chromaticity_y |
| } |
| |
| aom_rb_read_literal(&rb, 16); // white_point_chromaticity_x |
| aom_rb_read_literal(&rb, 16); // white_point_chromaticity_y |
| |
| aom_rb_read_unsigned_literal(&rb, 32); // luminance_max |
| aom_rb_read_unsigned_literal(&rb, 32); // luminance_min |
| } |
| |
| static void scalability_structure(struct aom_read_bit_buffer *rb) { |
| int spatial_layers_cnt = aom_rb_read_literal(rb, 2); |
| int spatial_layer_dimensions_present_flag = aom_rb_read_bit(rb); |
| int spatial_layer_description_present_flag = aom_rb_read_bit(rb); |
| int temporal_group_description_present_flag = aom_rb_read_bit(rb); |
| aom_rb_read_literal(rb, 3); // reserved |
| |
| if (spatial_layer_dimensions_present_flag) { |
| int i; |
| for (i = 0; i < spatial_layers_cnt + 1; i++) { |
| aom_rb_read_literal(rb, 16); |
| aom_rb_read_literal(rb, 16); |
| } |
| } |
| if (spatial_layer_description_present_flag) { |
| int i; |
| for (i = 0; i < spatial_layers_cnt + 1; i++) { |
| aom_rb_read_literal(rb, 8); |
| } |
| } |
| if (temporal_group_description_present_flag) { |
| int i, j, temporal_group_size; |
| temporal_group_size = aom_rb_read_literal(rb, 8); |
| for (i = 0; i < temporal_group_size; i++) { |
| aom_rb_read_literal(rb, 3); |
| aom_rb_read_bit(rb); |
| aom_rb_read_bit(rb); |
| int temporal_group_ref_cnt = aom_rb_read_literal(rb, 3); |
| for (j = 0; j < temporal_group_ref_cnt; j++) { |
| aom_rb_read_literal(rb, 8); |
| } |
| } |
| } |
| } |
| |
| static void read_metadata_scalability(const uint8_t *data, size_t sz) { |
| struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; |
| int scalability_mode_idc = aom_rb_read_literal(&rb, 8); |
| if (scalability_mode_idc == SCALABILITY_SS) { |
| scalability_structure(&rb); |
| } |
| } |
| |
| static void read_metadata_timecode(const uint8_t *data, size_t sz) { |
| struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; |
| aom_rb_read_literal(&rb, 5); // counting_type f(5) |
| int full_timestamp_flag = aom_rb_read_bit(&rb); // full_timestamp_flag f(1) |
| aom_rb_read_bit(&rb); // discontinuity_flag (f1) |
| aom_rb_read_bit(&rb); // cnt_dropped_flag f(1) |
| aom_rb_read_literal(&rb, 9); // n_frames f(9) |
| if (full_timestamp_flag) { |
| aom_rb_read_literal(&rb, 6); // seconds_value f(6) |
| aom_rb_read_literal(&rb, 6); // minutes_value f(6) |
| aom_rb_read_literal(&rb, 5); // hours_value f(5) |
| } else { |
| int seconds_flag = aom_rb_read_bit(&rb); // seconds_flag f(1) |
| if (seconds_flag) { |
| aom_rb_read_literal(&rb, 6); // seconds_value f(6) |
| int minutes_flag = aom_rb_read_bit(&rb); // minutes_flag f(1) |
| if (minutes_flag) { |
| aom_rb_read_literal(&rb, 6); // minutes_value f(6) |
| int hours_flag = aom_rb_read_bit(&rb); // hours_flag f(1) |
| if (hours_flag) { |
| aom_rb_read_literal(&rb, 5); // hours_value f(5) |
| } |
| } |
| } |
| } |
| // time_offset_length f(5) |
| int time_offset_length = aom_rb_read_literal(&rb, 5); |
| if (time_offset_length) { |
| aom_rb_read_literal(&rb, time_offset_length); // f(time_offset_length) |
| } |
| } |
| |
| // Not fully implemented. Always succeeds and returns sz. |
| static size_t read_metadata(const uint8_t *data, size_t sz) { |
| size_t type_length; |
| uint64_t type_value; |
| OBU_METADATA_TYPE metadata_type; |
| if (aom_uleb_decode(data, sz, &type_value, &type_length) < 0) { |
| return sz; |
| } |
| metadata_type = (OBU_METADATA_TYPE)type_value; |
| if (metadata_type == OBU_METADATA_TYPE_ITUT_T35) { |
| read_metadata_itut_t35(data + type_length, sz - type_length); |
| } else if (metadata_type == OBU_METADATA_TYPE_HDR_CLL) { |
| read_metadata_hdr_cll(data + type_length, sz - type_length); |
| } else if (metadata_type == OBU_METADATA_TYPE_HDR_MDCV) { |
| read_metadata_hdr_mdcv(data + type_length, sz - type_length); |
| } else if (metadata_type == OBU_METADATA_TYPE_SCALABILITY) { |
| read_metadata_scalability(data + type_length, sz - type_length); |
| } else if (metadata_type == OBU_METADATA_TYPE_TIMECODE) { |
| read_metadata_timecode(data + type_length, sz - type_length); |
| } |
| |
| return sz; |
| } |
| |
| // On success, returns a boolean that indicates whether the decoding of the |
| // current frame is finished. On failure, sets cm->error.error_code and |
| // returns -1. |
| int aom_decode_frame_from_obus(struct AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, |
| const uint8_t **p_data_end) { |
| AV1_COMMON *const cm = &pbi->common; |
| int frame_decoding_finished = 0; |
| int is_first_tg_obu_received = 1; |
| uint32_t frame_header_size = 0; |
| ObuHeader obu_header; |
| memset(&obu_header, 0, sizeof(obu_header)); |
| pbi->seen_frame_header = 0; |
| |
| if (data_end < data) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| |
| // Reset pbi->camera_frame_header_ready to 0 if cm->large_scale_tile = 0. |
| if (!cm->large_scale_tile) pbi->camera_frame_header_ready = 0; |
| |
| // decode frame as a series of OBUs |
| while (!frame_decoding_finished && cm->error.error_code == AOM_CODEC_OK) { |
| struct aom_read_bit_buffer rb; |
| size_t payload_size = 0; |
| size_t decoded_payload_size = 0; |
| size_t obu_payload_offset = 0; |
| size_t bytes_read = 0; |
| const size_t bytes_available = data_end - data; |
| |
| if (bytes_available == 0 && !pbi->seen_frame_header) { |
| *p_data_end = data; |
| cm->error.error_code = AOM_CODEC_OK; |
| break; |
| } |
| |
| aom_codec_err_t status = |
| aom_read_obu_header_and_size(data, bytes_available, cm->is_annexb, |
| &obu_header, &payload_size, &bytes_read); |
| |
| if (status != AOM_CODEC_OK) { |
| cm->error.error_code = status; |
| return -1; |
| } |
| |
| // Record obu size header information. |
| pbi->obu_size_hdr.data = data + obu_header.size; |
| pbi->obu_size_hdr.size = bytes_read - obu_header.size; |
| |
| // Note: aom_read_obu_header_and_size() takes care of checking that this |
| // doesn't cause 'data' to advance past 'data_end'. |
| data += bytes_read; |
| |
| if ((size_t)(data_end - data) < payload_size) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| |
| cm->temporal_layer_id = obu_header.temporal_layer_id; |
| cm->spatial_layer_id = obu_header.spatial_layer_id; |
| |
| if (obu_header.type != OBU_TEMPORAL_DELIMITER && |
| obu_header.type != OBU_SEQUENCE_HEADER && |
| obu_header.type != OBU_PADDING) { |
| // don't decode obu if it's not in current operating mode |
| if (!is_obu_in_current_operating_point(pbi, obu_header)) { |
| data += payload_size; |
| continue; |
| } |
| } |
| |
| av1_init_read_bit_buffer(pbi, &rb, data, data + payload_size); |
| |
| switch (obu_header.type) { |
| case OBU_TEMPORAL_DELIMITER: |
| decoded_payload_size = read_temporal_delimiter_obu(); |
| pbi->seen_frame_header = 0; |
| break; |
| case OBU_SEQUENCE_HEADER: |
| decoded_payload_size = read_sequence_header_obu(pbi, &rb); |
| if (cm->error.error_code != AOM_CODEC_OK) return -1; |
| // The sequence header should not change in the middle of a frame. |
| if (pbi->sequence_header_changed && pbi->seen_frame_header) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| break; |
| case OBU_FRAME_HEADER: |
| case OBU_REDUNDANT_FRAME_HEADER: |
| case OBU_FRAME: |
| // Only decode first frame header received |
| if (!pbi->seen_frame_header || |
| (cm->large_scale_tile && !pbi->camera_frame_header_ready)) { |
| frame_header_size = read_frame_header_obu( |
| pbi, &rb, data, p_data_end, obu_header.type != OBU_FRAME); |
| pbi->seen_frame_header = 1; |
| if (!pbi->ext_tile_debug && cm->large_scale_tile) |
| pbi->camera_frame_header_ready = 1; |
| } else { |
| // TODO(wtc): Verify that the frame_header_obu is identical to the |
| // original frame_header_obu. For now just skip frame_header_size |
| // bytes in the bit buffer. |
| if (frame_header_size > payload_size) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| assert(rb.bit_offset == 0); |
| rb.bit_offset = 8 * frame_header_size; |
| } |
| |
| decoded_payload_size = frame_header_size; |
| pbi->frame_header_size = frame_header_size; |
| |
| if (cm->show_existing_frame) { |
| if (obu_header.type == OBU_FRAME) { |
| cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; |
| return -1; |
| } |
| frame_decoding_finished = 1; |
| pbi->seen_frame_header = 0; |
| break; |
| } |
| |
| // In large scale tile coding, decode the common camera frame header |
| // before any tile list OBU. |
| if (!pbi->ext_tile_debug && pbi->camera_frame_header_ready) { |
| frame_decoding_finished = 1; |
| // Skip the rest of the frame data. |
| decoded_payload_size = payload_size; |
| // Update data_end. |
| *p_data_end = data_end; |
| break; |
| } |
| |
| if (obu_header.type != OBU_FRAME) break; |
| obu_payload_offset = frame_header_size; |
| // Byte align the reader before reading the tile group. |
| // byte_alignment() has set cm->error.error_code if it returns -1. |
| if (byte_alignment(cm, &rb)) return -1; |
| AOM_FALLTHROUGH_INTENDED; // fall through to read tile group. |
| case OBU_TILE_GROUP: |
| if (!pbi->seen_frame_header) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| if (obu_payload_offset > payload_size) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| decoded_payload_size += read_one_tile_group_obu( |
| pbi, &rb, is_first_tg_obu_received, data + obu_payload_offset, |
| data + payload_size, p_data_end, &frame_decoding_finished, |
| obu_header.type == OBU_FRAME); |
| if (cm->error.error_code != AOM_CODEC_OK) return -1; |
| is_first_tg_obu_received = 0; |
| if (frame_decoding_finished) pbi->seen_frame_header = 0; |
| break; |
| case OBU_METADATA: |
| decoded_payload_size = read_metadata(data, payload_size); |
| break; |
| case OBU_TILE_LIST: |
| if (CONFIG_NORMAL_TILE_MODE) { |
| cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; |
| return -1; |
| } |
| |
| // This OBU type is purely for the large scale tile coding mode. |
| // The common camera frame header has to be already decoded. |
| if (!pbi->camera_frame_header_ready) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| |
| cm->large_scale_tile = 1; |
| av1_set_single_tile_decoding_mode(cm); |
| decoded_payload_size = |
| read_and_decode_one_tile_list(pbi, &rb, data, data + payload_size, |
| p_data_end, &frame_decoding_finished); |
| if (cm->error.error_code != AOM_CODEC_OK) return -1; |
| break; |
| case OBU_PADDING: |
| default: |
| // Skip unrecognized OBUs |
| decoded_payload_size = payload_size; |
| break; |
| } |
| |
| // Check that the signalled OBU size matches the actual amount of data read |
| if (decoded_payload_size > payload_size) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| |
| // If there are extra padding bytes, they should all be zero |
| while (decoded_payload_size < payload_size) { |
| uint8_t padding_byte = data[decoded_payload_size++]; |
| if (padding_byte != 0) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| } |
| |
| data += payload_size; |
| } |
| |
| if (cm->error.error_code != AOM_CODEC_OK) return -1; |
| return frame_decoding_finished; |
| } |