blob: d2cd3df4f7ddf50957dcbb33215869eaebab089e [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_MOVE_H_
#define BASE_MOVE_H_
// Macro with the boilerplate that makes a type move-only in C++03.
//
// USAGE
//
// This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
// a "move-only" type. Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
// the first line in a class declaration.
//
// A class using this macro must call .Pass() (or somehow be an r-value already)
// before it can be:
//
// * Passed as a function argument
// * Used as the right-hand side of an assignment
// * Returned from a function
//
// Each class will still need to define their own "move constructor" and "move
// operator=" to make this useful. Here's an example of the macro, the move
// constructor, and the move operator= from the scoped_ptr class:
//
// template <typename T>
// class scoped_ptr {
// MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
// public:
// scoped_ptr(RValue& other) : ptr_(other.release()) { }
// scoped_ptr& operator=(RValue& other) {
// swap(other);
// return *this;
// }
// };
//
// Note that the constructor must NOT be marked explicit.
//
// For consistency, the second parameter to the macro should always be RValue
// unless you have a strong reason to do otherwise. It is only exposed as a
// macro parameter so that the move constructor and move operator= don't look
// like they're using a phantom type.
//
//
// HOW THIS WORKS
//
// For a thorough explanation of this technique, see:
//
// http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
//
// The summary is that we take advantage of 2 properties:
//
// 1) non-const references will not bind to r-values.
// 2) C++ can apply one user-defined conversion when initializing a
// variable.
//
// The first lets us disable the copy constructor and assignment operator
// by declaring private version of them with a non-const reference parameter.
//
// For l-values, direct initialization still fails like in
// DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
// operators are private.
//
// For r-values, the situation is different. The copy constructor and
// assignment operator are not viable due to (1), so we are trying to call
// a non-existent constructor and non-existing operator= rather than a private
// one. Since we have not committed an error quite yet, we can provide an
// alternate conversion sequence and a constructor. We add
//
// * a private struct named "RValue"
// * a user-defined conversion "operator RValue()"
// * a "move constructor" and "move operator=" that take the RValue& as
// their sole parameter.
//
// Only r-values will trigger this sequence and execute our "move constructor"
// or "move operator=." L-values will match the private copy constructor and
// operator= first giving a "private in this context" error. This combination
// gives us a move-only type.
//
// For signaling a destructive transfer of data from an l-value, we provide a
// method named Pass() which creates an r-value for the current instance
// triggering the move constructor or move operator=.
//
// Other ways to get r-values is to use the result of an expression like a
// function call.
//
// Here's an example with comments explaining what gets triggered where:
//
// class Foo {
// MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
//
// public:
// ... API ...
// Foo(RValue other); // Move constructor.
// Foo& operator=(RValue rhs); // Move operator=
// };
//
// Foo MakeFoo(); // Function that returns a Foo.
//
// Foo f;
// Foo f_copy(f); // ERROR: Foo(Foo&) is private in this context.
// Foo f_assign;
// f_assign = f; // ERROR: operator=(Foo&) is private in this context.
//
//
// Foo f(MakeFoo()); // R-value so alternate conversion executed.
// Foo f_copy(f.Pass()); // R-value so alternate conversion executed.
// f = f_copy.Pass(); // R-value so alternate conversion executed.
//
//
// IMPLEMENTATION SUBTLETIES WITH RValue
//
// The RValue struct is just a container for a pointer back to the original
// object. It should only ever be created as a temporary, and no external
// class should ever declare it or use it in a parameter.
//
// It is tempting to want to use the RValue type in function parameters, but
// excluding the limited usage here for the move constructor and move
// operator=, doing so would mean that the function could take both r-values
// and l-values equially which is unexpected. See COMPARED To Boost.Move for
// more details.
//
// An alternate, and incorrect, implementation of the RValue class used by
// Boost.Move makes RValue a fieldless child of the move-only type. RValue&
// is then used in place of RValue in the various operators. The RValue& is
// "created" by doing *reinterpret_cast<RValue*>(this). This has the appeal
// of never creating a temporary RValue struct even with optimizations
// disabled. Also, by virtue of inheritance you can treat the RValue
// reference as if it were the move-only type itself. Unfortunately,
// using the result of this reinterpret_cast<> is actually undefined behavior
// due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
// will generate non-working code.
//
// In optimized builds, both implementations generate the same assembly so we
// choose the one that adheres to the standard.
//
//
// COMPARED TO C++11
//
// In C++11, you would implement this functionality using an r-value reference
// and our .Pass() method would be replaced with a call to std::move().
//
// This emulation also has a deficiency where it uses up the single
// user-defined conversion allowed by C++ during initialization. This can
// cause problems in some API edge cases. For instance, in scoped_ptr, it is
// impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
// value of type scoped_ptr<Child> even if you add a constructor to
// scoped_ptr<> that would make it look like it should work. C++11 does not
// have this deficiency.
//
//
// COMPARED TO Boost.Move
//
// Our implementation similar to Boost.Move, but we keep the RValue struct
// private to the move-only type, and we don't use the reinterpret_cast<> hack.
//
// In Boost.Move, RValue is the boost::rv<> template. This type can be used
// when writing APIs like:
//
// void MyFunc(boost::rv<Foo>& f)
//
// that can take advantage of rv<> to avoid extra copies of a type. However you
// would still be able to call this version of MyFunc with an l-value:
//
// Foo f;
// MyFunc(f); // Uh oh, we probably just destroyed |f| w/o calling Pass().
//
// unless someone is very careful to also declare a parallel override like:
//
// void MyFunc(const Foo& f)
//
// that would catch the l-values first. This was declared unsafe in C++11 and
// a C++11 compiler will explicitly fail MyFunc(f). Unfortunately, we cannot
// ensure this in C++03.
//
// Since we have no need for writing such APIs yet, our implementation keeps
// RValue private and uses a .Pass() method to do the conversion instead of
// trying to write a version of "std::move()." Writing an API like std::move()
// would require the RValue struct to be public.
//
//
// CAVEATS
//
// If you include a move-only type as a field inside a class that does not
// explicitly declare a copy constructor, the containing class's implicit
// copy constructor will change from Containing(const Containing&) to
// Containing(Containing&). This can cause some unexpected errors.
//
// http://llvm.org/bugs/show_bug.cgi?id=11528
//
// The workaround is to explicitly declare your copy constructor.
//
#define MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
private: \
struct rvalue_type { \
explicit rvalue_type(type* object) : object(object) {} \
type* object; \
}; \
type(type&); \
void operator=(type&); \
public: \
operator rvalue_type() { return rvalue_type(this); } \
type Pass() { return type(rvalue_type(this)); } \
private:
#endif // BASE_MOVE_H_