blob: fdd36eab8023038b6ff16ed457f241568cf1d9cc [file] [log] [blame]
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/scoped_handle.h"
#include "base/thread.h"
#include "base/ref_counted.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_WIN)
#include "base/message_pump_win.h"
#endif
namespace {
class MessageLoopTest : public testing::Test {
public:
virtual void SetUp() {
enable_recursive_task_ = MessageLoop::current()->NestableTasksAllowed();
}
virtual void TearDown() {
MessageLoop::current()->SetNestableTasksAllowed(enable_recursive_task_);
}
private:
bool enable_recursive_task_;
};
class Foo : public base::RefCounted<Foo> {
public:
Foo() : test_count_(0) {
}
void Test0() {
++test_count_;
}
void Test1ConstRef(const std::string& a) {
++test_count_;
result_.append(a);
}
void Test1Ptr(std::string* a) {
++test_count_;
result_.append(*a);
}
void Test1Int(int a) {
test_count_ += a;
}
void Test2Ptr(std::string* a, std::string* b) {
++test_count_;
result_.append(*a);
result_.append(*b);
}
void Test2Mixed(const std::string& a, std::string* b) {
++test_count_;
result_.append(a);
result_.append(*b);
}
int test_count() const { return test_count_; }
const std::string& result() const { return result_; }
private:
int test_count_;
std::string result_;
};
class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
public:
void QuitNow() {
MessageLoop::current()->Quit();
}
};
} // namespace
TEST(MessageLoopTest, PostTask) {
// Add tests to message loop
scoped_refptr<Foo> foo = new Foo();
std::string a("a"), b("b"), c("c"), d("d");
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test0));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1ConstRef, a));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1Ptr, &b));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1Int, 100));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test2Ptr, &a, &c));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test2Mixed, a, &d));
// After all tests, post a message that will shut down the message loop
scoped_refptr<QuitMsgLoop> quit = new QuitMsgLoop();
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
quit.get(), &QuitMsgLoop::QuitNow));
// Now kick things off
MessageLoop::current()->Run();
EXPECT_EQ(foo->test_count(), 105);
EXPECT_EQ(foo->result(), "abacad");
}
TEST(MessageLoopTest, InvokeLater_SEH) {
// Add tests to message loop
scoped_refptr<Foo> foo = new Foo();
std::string a("a"), b("b"), c("c"), d("d");
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test0));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1ConstRef, a));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1Ptr, &b));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test1Int, 100));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test2Ptr, &a, &c));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
foo.get(), &Foo::Test2Mixed, a, &d));
// After all tests, post a message that will shut down the message loop
scoped_refptr<QuitMsgLoop> quit = new QuitMsgLoop();
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
quit.get(), &QuitMsgLoop::QuitNow));
// Now kick things off with the SEH block active.
MessageLoop::current()->set_exception_restoration(true);
MessageLoop::current()->Run();
MessageLoop::current()->set_exception_restoration(false);
EXPECT_EQ(foo->test_count(), 105);
EXPECT_EQ(foo->result(), "abacad");
}
namespace {
class NestingTest : public Task {
public:
explicit NestingTest(int* depth) : depth_(depth) {
}
void Run() {
if (*depth_ > 0) {
*depth_ -= 1;
MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->Run();
}
MessageLoop::current()->Quit();
}
private:
int* depth_;
};
LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
ADD_FAILURE() << "bad exception handler";
::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
return EXCEPTION_EXECUTE_HANDLER;
}
// This task throws an SEH exception: initially write to an invalid address.
// If the right SEH filter is installed, it will fix the error.
class CrasherTask : public Task {
public:
// Ctor. If trash_SEH_handler is true, the task will override the unhandled
// exception handler with one sure to crash this test.
explicit CrasherTask(bool trash_SEH_handler)
: trash_SEH_handler_(trash_SEH_handler) {
}
void Run() {
Sleep(1);
if (trash_SEH_handler_)
::SetUnhandledExceptionFilter(&BadExceptionHandler);
// Generate a SEH fault. We do it in asm to make sure we know how to undo
// the damage.
#if defined(_M_IX86)
__asm {
mov eax, dword ptr [CrasherTask::bad_array_]
mov byte ptr [eax], 66
}
#elif defined(_M_X64)
bad_array_[0] = 66;
#elif
#endif
MessageLoop::current()->Quit();
}
// Points the bad array to a valid memory location.
static void FixError() {
bad_array_ = &valid_store_;
}
private:
bool trash_SEH_handler_;
static volatile char* bad_array_;
static char valid_store_;
};
volatile char* CrasherTask::bad_array_ = 0;
char CrasherTask::valid_store_ = 0;
// This SEH filter fixes the problem and retries execution. Fixing requires
// that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
// so we move the instruction pointer 5 bytes back.
LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
return EXCEPTION_EXECUTE_HANDLER;
CrasherTask::FixError();
#if defined(_M_IX86)
ex_info->ContextRecord->Eip -= 5;
#elif defined(_M_X64)
ex_info->ContextRecord->Rip -= 5;
#endif
return EXCEPTION_CONTINUE_EXECUTION;
}
} // namespace
#if defined(OS_WIN)
TEST(MessageLoopTest, Crasher) {
if (::IsDebuggerPresent())
return;
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
MessageLoop::current()->set_exception_restoration(true);
MessageLoop::current()->Run();
MessageLoop::current()->set_exception_restoration(false);
::SetUnhandledExceptionFilter(old_SEH_filter);
}
TEST(MessageLoopTest, CrasherNasty) {
if (::IsDebuggerPresent())
return;
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
MessageLoop::current()->set_exception_restoration(true);
MessageLoop::current()->Run();
MessageLoop::current()->set_exception_restoration(false);
::SetUnhandledExceptionFilter(old_SEH_filter);
}
#endif // defined(OS_WIN)
TEST(MessageLoopTest, Nesting) {
int depth = 100;
MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
MessageLoop::current()->Run();
EXPECT_EQ(depth, 0);
}
namespace {
const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
enum TaskType {
MESSAGEBOX,
ENDDIALOG,
RECURSIVE,
TIMEDMESSAGELOOP,
QUITMESSAGELOOP,
ORDERERD,
PUMPS,
};
// Saves the order in which the tasks executed.
struct TaskItem {
TaskItem(TaskType t, int c, bool s)
: type(t),
cookie(c),
start(s) {
}
TaskType type;
int cookie;
bool start;
bool operator == (const TaskItem& other) const {
return type == other.type && cookie == other.cookie && start == other.start;
}
};
typedef std::vector<TaskItem> TaskList;
std::ostream& operator <<(std::ostream& os, TaskType type) {
switch (type) {
case MESSAGEBOX: os << "MESSAGEBOX"; break;
case ENDDIALOG: os << "ENDDIALOG"; break;
case RECURSIVE: os << "RECURSIVE"; break;
case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
case ORDERERD: os << "ORDERERD"; break;
case PUMPS: os << "PUMPS"; break;
default:
NOTREACHED();
os << "Unknown TaskType";
break;
}
return os;
}
std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
if (item.start)
return os << item.type << " " << item.cookie << " starts";
else
return os << item.type << " " << item.cookie << " ends";
}
// Saves the order the tasks ran.
class OrderedTasks : public Task {
public:
OrderedTasks(TaskList* order, int cookie)
: order_(order),
type_(ORDERERD),
cookie_(cookie) {
}
OrderedTasks(TaskList* order, TaskType type, int cookie)
: order_(order),
type_(type),
cookie_(cookie) {
}
void RunStart() {
TaskItem item(type_, cookie_, true);
DLOG(INFO) << item;
order_->push_back(item);
}
void RunEnd() {
TaskItem item(type_, cookie_, false);
DLOG(INFO) << item;
order_->push_back(item);
}
virtual void Run() {
RunStart();
RunEnd();
}
protected:
TaskList* order() const {
return order_;
}
int cookie() const {
return cookie_;
}
private:
TaskList* order_;
TaskType type_;
int cookie_;
};
// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
// common controls (like OpenFile) and StartDoc printing function can cause
// implicit message loops.
class MessageBoxTask : public OrderedTasks {
public:
MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
: OrderedTasks(order, MESSAGEBOX, cookie),
is_reentrant_(is_reentrant) {
}
virtual void Run() {
RunStart();
if (is_reentrant_)
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
RunEnd();
}
private:
bool is_reentrant_;
};
// Will end the MessageBox.
class EndDialogTask : public OrderedTasks {
public:
EndDialogTask(TaskList* order, int cookie)
: OrderedTasks(order, ENDDIALOG, cookie) {
}
virtual void Run() {
RunStart();
HWND window = GetActiveWindow();
if (window != NULL) {
EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
// Cheap way to signal that the window wasn't found if RunEnd() isn't
// called.
RunEnd();
}
}
};
class RecursiveTask : public OrderedTasks {
public:
RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
: OrderedTasks(order, RECURSIVE, cookie),
depth_(depth),
is_reentrant_(is_reentrant) {
}
virtual void Run() {
RunStart();
if (depth_ > 0) {
if (is_reentrant_)
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
}
RunEnd();
}
private:
int depth_;
bool is_reentrant_;
};
class QuitTask : public OrderedTasks {
public:
QuitTask(TaskList* order, int cookie)
: OrderedTasks(order, QUITMESSAGELOOP, cookie) {
}
virtual void Run() {
RunStart();
MessageLoop::current()->Quit();
RunEnd();
}
};
#if defined(OS_WIN)
class Recursive2Tasks : public Task {
public:
Recursive2Tasks(MessageLoop* target,
HANDLE event,
bool expect_window,
TaskList* order,
bool is_reentrant)
: target_(target),
event_(event),
expect_window_(expect_window),
order_(order),
is_reentrant_(is_reentrant) {
}
virtual void Run() {
target_->PostTask(FROM_HERE,
new RecursiveTask(2, order_, 1, is_reentrant_));
target_->PostTask(FROM_HERE,
new MessageBoxTask(order_, 2, is_reentrant_));
target_->PostTask(FROM_HERE,
new RecursiveTask(2, order_, 3, is_reentrant_));
// The trick here is that for recursive task processing, this task will be
// ran _inside_ the MessageBox message loop, dismissing the MessageBox
// without a chance.
// For non-recursive task processing, this will be executed _after_ the
// MessageBox will have been dismissed by the code below, where
// expect_window_ is true.
target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
target_->PostTask(FROM_HERE, new QuitTask(order_, 5));
// Enforce that every tasks are sent before starting to run the main thread
// message loop.
ASSERT_TRUE(SetEvent(event_));
// Poll for the MessageBox. Don't do this at home! At the speed we do it,
// you will never realize one MessageBox was shown.
for (; expect_window_;) {
HWND window = FindWindow(L"#32770", kMessageBoxTitle);
if (window) {
// Dismiss it.
for (;;) {
HWND button = FindWindowEx(window, NULL, L"Button", NULL);
if (button != NULL) {
EXPECT_TRUE(0 == SendMessage(button, WM_LBUTTONDOWN, 0, 0));
EXPECT_TRUE(0 == SendMessage(button, WM_LBUTTONUP, 0, 0));
break;
}
}
break;
}
}
}
private:
MessageLoop* target_;
HANDLE event_;
TaskList* order_;
bool expect_window_;
bool is_reentrant_;
};
#endif // defined(OS_WIN)
} // namespace
TEST(MessageLoop, RecursiveDenial1) {
EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
TaskList order;
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(2, &order, 1, false));
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(2, &order, 2, false));
MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(order.size(), 14);
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
}
TEST(MessageLoop, RecursiveSupport1) {
TaskList order;
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(2, &order, 1, true));
MessageLoop::current()->PostTask(FROM_HERE,
new RecursiveTask(2, &order, 2, true));
MessageLoop::current()->PostTask(FROM_HERE,
new QuitTask(&order, 3));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(order.size(), 14);
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
}
#if defined(OS_WIN)
// TODO(darin): These tests need to be ported since they test critical
// message loop functionality.
// A side effect of this test is the generation a beep. Sorry.
TEST(MessageLoop, RecursiveDenial2) {
Thread worker("RecursiveDenial2_worker");
ASSERT_EQ(true, worker.Start());
TaskList order;
ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.message_loop()->PostTask(FROM_HERE,
new Recursive2Tasks(MessageLoop::current(),
event,
true,
&order,
false));
// Let the other thread execute.
WaitForSingleObject(event, INFINITE);
MessageLoop::current()->Run();
ASSERT_EQ(order.size(), 17);
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
// When EndDialogTask is processed, the window is already dismissed, hence no
// "end" entry.
EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
}
// A side effect of this test is the generation a beep. Sorry.
TEST(MessageLoop, RecursiveSupport2) {
Thread worker("RecursiveSupport2_worker");
ASSERT_EQ(true, worker.Start());
TaskList order;
ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.message_loop()->PostTask(FROM_HERE,
new Recursive2Tasks(MessageLoop::current(),
event,
false,
&order,
true));
// Let the other thread execute.
WaitForSingleObject(event, INFINITE);
MessageLoop::current()->Run();
ASSERT_EQ(order.size(), 18);
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
// Note that this executes in the MessageBox modal loop.
EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
/* The order can subtly change here. The reason is that when RecursiveTask(1)
is called in the main thread, if it is faster than getting to the
PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
change. We don't care anyway that the order isn't correct.
EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
*/
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
}
#endif // defined(OS_WIN)
class TaskThatPumps : public OrderedTasks {
public:
TaskThatPumps(TaskList* order, int cookie)
: OrderedTasks(order, PUMPS, cookie) {
}
virtual void Run() {
RunStart();
bool old_state = MessageLoop::current()->NestableTasksAllowed();
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->RunAllPending();
MessageLoop::current()->SetNestableTasksAllowed(old_state);
RunEnd();
}
private:
};
// Tests that non nestable tasks run in FIFO if there are no nested loops.
TEST(MessageLoop, NonNestableWithNoNesting) {
TaskList order;
Task* task = new OrderedTasks(&order, 1);
task->set_nestable(false);
MessageLoop::current()->PostTask(FROM_HERE, task);
MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(order.size(), 6);
EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
}
// Tests that non nestable tasks don't run when there's code in the call stack.
TEST(MessageLoop, NonNestableInNestedLoop) {
TaskList order;
MessageLoop::current()->PostTask(FROM_HERE,
new TaskThatPumps(&order, 1));
Task* task = new OrderedTasks(&order, 2);
task->set_nestable(false);
MessageLoop::current()->PostTask(FROM_HERE, task);
MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 4));
Task* non_nestable_quit = new QuitTask(&order, 5);
non_nestable_quit->set_nestable(false);
MessageLoop::current()->PostTask(FROM_HERE, non_nestable_quit);
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(order.size(), 10);
EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 4, true));
EXPECT_EQ(order[ 4], TaskItem(ORDERERD, 4, false));
EXPECT_EQ(order[ 5], TaskItem(PUMPS, 1, false));
EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 2, true));
EXPECT_EQ(order[ 7], TaskItem(ORDERERD, 2, false));
EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
}
#if defined(OS_WIN)
namespace {
class AutoresetWatcher : public MessageLoop::Watcher {
public:
AutoresetWatcher(HANDLE signal, MessageLoop* message_loop)
: signal_(signal),
message_loop_(message_loop) {
}
virtual void OnObjectSignaled(HANDLE object);
private:
HANDLE signal_;
MessageLoop* message_loop_;
};
void AutoresetWatcher::OnObjectSignaled(HANDLE object) {
message_loop_->WatchObject(object, NULL);
ASSERT_TRUE(SetEvent(signal_));
}
class AutoresetTask : public Task {
public:
AutoresetTask(HANDLE object, MessageLoop::Watcher* watcher)
: object_(object), watcher_(watcher) {}
virtual void Run() {
MessageLoop::current()->WatchObject(object_, watcher_);
}
private:
HANDLE object_;
MessageLoop::Watcher* watcher_;
};
} // namespace
TEST(MessageLoop, AutoresetEvents) {
SECURITY_ATTRIBUTES attributes;
attributes.nLength = sizeof(attributes);
attributes.bInheritHandle = false;
attributes.lpSecurityDescriptor = NULL;
// Init an autoreset and a manual reset events.
HANDLE autoreset = CreateEvent(&attributes, FALSE, FALSE, NULL);
HANDLE callback_called = CreateEvent(&attributes, TRUE, FALSE, NULL);
ASSERT_TRUE(NULL != autoreset);
ASSERT_TRUE(NULL != callback_called);
Thread thread("Autoreset test");
ASSERT_TRUE(thread.Start());
MessageLoop* message_loop = thread.message_loop();
ASSERT_TRUE(NULL != message_loop);
AutoresetWatcher watcher(callback_called, message_loop);
AutoresetTask* task = new AutoresetTask(autoreset, &watcher);
message_loop->PostTask(FROM_HERE, task);
Sleep(100); // Make sure the thread runs and sleeps for lack of work.
ASSERT_TRUE(SetEvent(autoreset));
DWORD result = WaitForSingleObject(callback_called, 1000);
EXPECT_EQ(WAIT_OBJECT_0, result);
thread.Stop();
}
namespace {
class DispatcherImpl : public MessageLoop::Dispatcher {
public:
DispatcherImpl() : dispatch_count_(0) {}
virtual bool Dispatch(const MSG& msg) {
::TranslateMessage(&msg);
::DispatchMessage(&msg);
return (++dispatch_count_ != 2);
}
int dispatch_count_;
};
} // namespace
TEST(MessageLoop, Dispatcher) {
class MyTask : public Task {
public:
virtual void Run() {
PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
}
};
Task* task = new MyTask();
MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
DispatcherImpl dispatcher;
MessageLoop::current()->Run(&dispatcher);
ASSERT_EQ(2, dispatcher.dispatch_count_);
}
#endif