| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/metrics/sparse_histogram.h" |
| |
| #include "base/metrics/sample_map.h" |
| #include "base/metrics/statistics_recorder.h" |
| #include "base/pickle.h" |
| #include "base/strings/stringprintf.h" |
| #include "base/synchronization/lock.h" |
| |
| using std::map; |
| using std::string; |
| |
| namespace base { |
| |
| typedef HistogramBase::Count Count; |
| typedef HistogramBase::Sample Sample; |
| |
| // static |
| HistogramBase* SparseHistogram::FactoryGet(const string& name, int32 flags) { |
| HistogramBase* histogram = StatisticsRecorder::FindHistogram(name); |
| |
| if (!histogram) { |
| // To avoid racy destruction at shutdown, the following will be leaked. |
| HistogramBase* tentative_histogram = new SparseHistogram(name); |
| tentative_histogram->SetFlags(flags); |
| histogram = |
| StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram); |
| } |
| DCHECK_EQ(SPARSE_HISTOGRAM, histogram->GetHistogramType()); |
| return histogram; |
| } |
| |
| SparseHistogram::~SparseHistogram() {} |
| |
| HistogramType SparseHistogram::GetHistogramType() const { |
| return SPARSE_HISTOGRAM; |
| } |
| |
| bool SparseHistogram::HasConstructionArguments( |
| Sample expected_minimum, |
| Sample expected_maximum, |
| size_t expected_bucket_count) const { |
| // SparseHistogram never has min/max/bucket_count limit. |
| return false; |
| } |
| |
| void SparseHistogram::Add(Sample value) { |
| base::AutoLock auto_lock(lock_); |
| samples_.Accumulate(value, 1); |
| } |
| |
| scoped_ptr<HistogramSamples> SparseHistogram::SnapshotSamples() const { |
| scoped_ptr<SampleMap> snapshot(new SampleMap()); |
| |
| base::AutoLock auto_lock(lock_); |
| snapshot->Add(samples_); |
| return snapshot.PassAs<HistogramSamples>(); |
| } |
| |
| void SparseHistogram::AddSamples(const HistogramSamples& samples) { |
| base::AutoLock auto_lock(lock_); |
| samples_.Add(samples); |
| } |
| |
| bool SparseHistogram::AddSamplesFromPickle(PickleIterator* iter) { |
| base::AutoLock auto_lock(lock_); |
| return samples_.AddFromPickle(iter); |
| } |
| |
| void SparseHistogram::WriteHTMLGraph(string* output) const { |
| output->append("<PRE>"); |
| WriteAsciiImpl(true, "<br>", output); |
| output->append("</PRE>"); |
| } |
| |
| void SparseHistogram::WriteAscii(string* output) const { |
| WriteAsciiImpl(true, "\n", output); |
| } |
| |
| bool SparseHistogram::SerializeInfoImpl(Pickle* pickle) const { |
| return pickle->WriteString(histogram_name()) && pickle->WriteInt(flags()); |
| } |
| |
| SparseHistogram::SparseHistogram(const string& name) |
| : HistogramBase(name) {} |
| |
| HistogramBase* SparseHistogram::DeserializeInfoImpl(PickleIterator* iter) { |
| string histogram_name; |
| int flags; |
| if (!iter->ReadString(&histogram_name) || !iter->ReadInt(&flags)) { |
| DLOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name; |
| return NULL; |
| } |
| |
| DCHECK(flags & HistogramBase::kIPCSerializationSourceFlag); |
| flags &= ~HistogramBase::kIPCSerializationSourceFlag; |
| |
| return SparseHistogram::FactoryGet(histogram_name, flags); |
| } |
| |
| void SparseHistogram::GetParameters(DictionaryValue* params) const { |
| // TODO(kaiwang): Implement. (See HistogramBase::WriteJSON.) |
| } |
| |
| void SparseHistogram::GetCountAndBucketData(Count* count, |
| int64* sum, |
| ListValue* buckets) const { |
| // TODO(kaiwang): Implement. (See HistogramBase::WriteJSON.) |
| } |
| |
| void SparseHistogram::WriteAsciiImpl(bool graph_it, |
| const std::string& newline, |
| std::string* output) const { |
| // Get a local copy of the data so we are consistent. |
| scoped_ptr<HistogramSamples> snapshot = SnapshotSamples(); |
| Count total_count = snapshot->TotalCount(); |
| double scaled_total_count = total_count / 100.0; |
| |
| WriteAsciiHeader(total_count, output); |
| output->append(newline); |
| |
| // Determine how wide the largest bucket range is (how many digits to print), |
| // so that we'll be able to right-align starts for the graphical bars. |
| // Determine which bucket has the largest sample count so that we can |
| // normalize the graphical bar-width relative to that sample count. |
| Count largest_count = 0; |
| Sample largest_sample = 0; |
| scoped_ptr<SampleCountIterator> it = snapshot->Iterator(); |
| while (!it->Done()) |
| { |
| Sample min; |
| Sample max; |
| Count count; |
| it->Get(&min, &max, &count); |
| if (min > largest_sample) |
| largest_sample = min; |
| if (count > largest_count) |
| largest_count = count; |
| it->Next(); |
| } |
| size_t print_width = GetSimpleAsciiBucketRange(largest_sample).size() + 1; |
| |
| // iterate over each item and display them |
| it = snapshot->Iterator(); |
| while (!it->Done()) |
| { |
| Sample min; |
| Sample max; |
| Count count; |
| it->Get(&min, &max, &count); |
| |
| // value is min, so display it |
| string range = GetSimpleAsciiBucketRange(min); |
| output->append(range); |
| for (size_t j = 0; range.size() + j < print_width + 1; ++j) |
| output->push_back(' '); |
| |
| if (graph_it) |
| WriteAsciiBucketGraph(count, largest_count, output); |
| WriteAsciiBucketValue(count, scaled_total_count, output); |
| output->append(newline); |
| it->Next(); |
| } |
| } |
| |
| void SparseHistogram::WriteAsciiHeader(const Count total_count, |
| std::string* output) const { |
| StringAppendF(output, |
| "Histogram: %s recorded %d samples", |
| histogram_name().c_str(), |
| total_count); |
| if (flags() & ~kHexRangePrintingFlag) |
| StringAppendF(output, " (flags = 0x%x)", flags() & ~kHexRangePrintingFlag); |
| } |
| |
| } // namespace base |