blob: 9fd823aa964e847619c55f53800238c270e368f0 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/strings/string_util.h"
#include <ctype.h>
#include <errno.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <wchar.h>
#include <wctype.h>
#include <algorithm>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/memory/singleton.h"
#include "base/strings/utf_string_conversion_utils.h"
#include "base/strings/utf_string_conversions.h"
#include "base/third_party/icu/icu_utf.h"
#include "build/build_config.h"
// Remove when this entire file is in the base namespace.
using base::char16;
using base::string16;
namespace {
// Force the singleton used by EmptyString[16] to be a unique type. This
// prevents other code that might accidentally use Singleton<string> from
// getting our internal one.
struct EmptyStrings {
EmptyStrings() {}
const std::string s;
const string16 s16;
static EmptyStrings* GetInstance() {
return Singleton<EmptyStrings>::get();
}
};
// Used by ReplaceStringPlaceholders to track the position in the string of
// replaced parameters.
struct ReplacementOffset {
ReplacementOffset(uintptr_t parameter, size_t offset)
: parameter(parameter),
offset(offset) {}
// Index of the parameter.
uintptr_t parameter;
// Starting position in the string.
size_t offset;
};
static bool CompareParameter(const ReplacementOffset& elem1,
const ReplacementOffset& elem2) {
return elem1.parameter < elem2.parameter;
}
// Assuming that a pointer is the size of a "machine word", then
// uintptr_t is an integer type that is also a machine word.
typedef uintptr_t MachineWord;
const uintptr_t kMachineWordAlignmentMask = sizeof(MachineWord) - 1;
inline bool IsAlignedToMachineWord(const void* pointer) {
return !(reinterpret_cast<MachineWord>(pointer) & kMachineWordAlignmentMask);
}
template<typename T> inline T* AlignToMachineWord(T* pointer) {
return reinterpret_cast<T*>(reinterpret_cast<MachineWord>(pointer) &
~kMachineWordAlignmentMask);
}
template<size_t size, typename CharacterType> struct NonASCIIMask;
template<> struct NonASCIIMask<4, base::char16> {
static inline uint32_t value() { return 0xFF80FF80U; }
};
template<> struct NonASCIIMask<4, char> {
static inline uint32_t value() { return 0x80808080U; }
};
template<> struct NonASCIIMask<8, base::char16> {
static inline uint64_t value() { return 0xFF80FF80FF80FF80ULL; }
};
template<> struct NonASCIIMask<8, char> {
static inline uint64_t value() { return 0x8080808080808080ULL; }
};
#if defined(WCHAR_T_IS_UTF32)
template<> struct NonASCIIMask<4, wchar_t> {
static inline uint32_t value() { return 0xFFFFFF80U; }
};
template<> struct NonASCIIMask<8, wchar_t> {
static inline uint64_t value() { return 0xFFFFFF80FFFFFF80ULL; }
};
#endif // WCHAR_T_IS_UTF32
} // namespace
namespace base {
bool IsWprintfFormatPortable(const wchar_t* format) {
for (const wchar_t* position = format; *position != '\0'; ++position) {
if (*position == '%') {
bool in_specification = true;
bool modifier_l = false;
while (in_specification) {
// Eat up characters until reaching a known specifier.
if (*++position == '\0') {
// The format string ended in the middle of a specification. Call
// it portable because no unportable specifications were found. The
// string is equally broken on all platforms.
return true;
}
if (*position == 'l') {
// 'l' is the only thing that can save the 's' and 'c' specifiers.
modifier_l = true;
} else if (((*position == 's' || *position == 'c') && !modifier_l) ||
*position == 'S' || *position == 'C' || *position == 'F' ||
*position == 'D' || *position == 'O' || *position == 'U') {
// Not portable.
return false;
}
if (wcschr(L"diouxXeEfgGaAcspn%", *position)) {
// Portable, keep scanning the rest of the format string.
in_specification = false;
}
}
}
}
return true;
}
const std::string& EmptyString() {
return EmptyStrings::GetInstance()->s;
}
const string16& EmptyString16() {
return EmptyStrings::GetInstance()->s16;
}
template<typename STR>
bool ReplaceCharsT(const STR& input,
const STR& replace_chars,
const STR& replace_with,
STR* output) {
bool removed = false;
size_t replace_length = replace_with.length();
*output = input;
size_t found = output->find_first_of(replace_chars);
while (found != STR::npos) {
removed = true;
output->replace(found, 1, replace_with);
found = output->find_first_of(replace_chars, found + replace_length);
}
return removed;
}
bool ReplaceChars(const string16& input,
const base::StringPiece16& replace_chars,
const string16& replace_with,
string16* output) {
return ReplaceCharsT(input, replace_chars.as_string(), replace_with, output);
}
bool ReplaceChars(const std::string& input,
const base::StringPiece& replace_chars,
const std::string& replace_with,
std::string* output) {
return ReplaceCharsT(input, replace_chars.as_string(), replace_with, output);
}
bool RemoveChars(const string16& input,
const base::StringPiece16& remove_chars,
string16* output) {
return ReplaceChars(input, remove_chars.as_string(), string16(), output);
}
bool RemoveChars(const std::string& input,
const base::StringPiece& remove_chars,
std::string* output) {
return ReplaceChars(input, remove_chars.as_string(), std::string(), output);
}
template<typename STR>
TrimPositions TrimStringT(const STR& input,
const STR& trim_chars,
TrimPositions positions,
STR* output) {
// Find the edges of leading/trailing whitespace as desired.
const size_t last_char = input.length() - 1;
const size_t first_good_char = (positions & TRIM_LEADING) ?
input.find_first_not_of(trim_chars) : 0;
const size_t last_good_char = (positions & TRIM_TRAILING) ?
input.find_last_not_of(trim_chars) : last_char;
// When the string was all whitespace, report that we stripped off whitespace
// from whichever position the caller was interested in. For empty input, we
// stripped no whitespace, but we still need to clear |output|.
if (input.empty() ||
(first_good_char == STR::npos) || (last_good_char == STR::npos)) {
bool input_was_empty = input.empty(); // in case output == &input
output->clear();
return input_was_empty ? TRIM_NONE : positions;
}
// Trim the whitespace.
*output =
input.substr(first_good_char, last_good_char - first_good_char + 1);
// Return where we trimmed from.
return static_cast<TrimPositions>(
((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) |
((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING));
}
bool TrimString(const string16& input,
const base::StringPiece16& trim_chars,
string16* output) {
return TrimStringT(input, trim_chars.as_string(), TRIM_ALL, output) !=
TRIM_NONE;
}
bool TrimString(const std::string& input,
const base::StringPiece& trim_chars,
std::string* output) {
return TrimStringT(input, trim_chars.as_string(), TRIM_ALL, output) !=
TRIM_NONE;
}
void TruncateUTF8ToByteSize(const std::string& input,
const size_t byte_size,
std::string* output) {
DCHECK(output);
if (byte_size > input.length()) {
*output = input;
return;
}
DCHECK_LE(byte_size, static_cast<uint32>(kint32max));
// Note: This cast is necessary because CBU8_NEXT uses int32s.
int32 truncation_length = static_cast<int32>(byte_size);
int32 char_index = truncation_length - 1;
const char* data = input.data();
// Using CBU8, we will move backwards from the truncation point
// to the beginning of the string looking for a valid UTF8
// character. Once a full UTF8 character is found, we will
// truncate the string to the end of that character.
while (char_index >= 0) {
int32 prev = char_index;
base_icu::UChar32 code_point = 0;
CBU8_NEXT(data, char_index, truncation_length, code_point);
if (!IsValidCharacter(code_point) ||
!IsValidCodepoint(code_point)) {
char_index = prev - 1;
} else {
break;
}
}
if (char_index >= 0 )
*output = input.substr(0, char_index);
else
output->clear();
}
TrimPositions TrimWhitespace(const string16& input,
TrimPositions positions,
string16* output) {
return TrimStringT(input, base::string16(kWhitespaceUTF16), positions,
output);
}
TrimPositions TrimWhitespaceASCII(const std::string& input,
TrimPositions positions,
std::string* output) {
return TrimStringT(input, std::string(kWhitespaceASCII), positions, output);
}
// This function is only for backward-compatibility.
// To be removed when all callers are updated.
TrimPositions TrimWhitespace(const std::string& input,
TrimPositions positions,
std::string* output) {
return TrimWhitespaceASCII(input, positions, output);
}
template<typename STR>
STR CollapseWhitespaceT(const STR& text,
bool trim_sequences_with_line_breaks) {
STR result;
result.resize(text.size());
// Set flags to pretend we're already in a trimmed whitespace sequence, so we
// will trim any leading whitespace.
bool in_whitespace = true;
bool already_trimmed = true;
int chars_written = 0;
for (typename STR::const_iterator i(text.begin()); i != text.end(); ++i) {
if (IsWhitespace(*i)) {
if (!in_whitespace) {
// Reduce all whitespace sequences to a single space.
in_whitespace = true;
result[chars_written++] = L' ';
}
if (trim_sequences_with_line_breaks && !already_trimmed &&
((*i == '\n') || (*i == '\r'))) {
// Whitespace sequences containing CR or LF are eliminated entirely.
already_trimmed = true;
--chars_written;
}
} else {
// Non-whitespace chracters are copied straight across.
in_whitespace = false;
already_trimmed = false;
result[chars_written++] = *i;
}
}
if (in_whitespace && !already_trimmed) {
// Any trailing whitespace is eliminated.
--chars_written;
}
result.resize(chars_written);
return result;
}
string16 CollapseWhitespace(const string16& text,
bool trim_sequences_with_line_breaks) {
return CollapseWhitespaceT(text, trim_sequences_with_line_breaks);
}
std::string CollapseWhitespaceASCII(const std::string& text,
bool trim_sequences_with_line_breaks) {
return CollapseWhitespaceT(text, trim_sequences_with_line_breaks);
}
bool ContainsOnlyChars(const StringPiece& input,
const StringPiece& characters) {
return input.find_first_not_of(characters) == StringPiece::npos;
}
bool ContainsOnlyChars(const StringPiece16& input,
const StringPiece16& characters) {
return input.find_first_not_of(characters) == StringPiece16::npos;
}
template <class Char>
inline bool DoIsStringASCII(const Char* characters, size_t length) {
MachineWord all_char_bits = 0;
const Char* end = characters + length;
// Prologue: align the input.
while (!IsAlignedToMachineWord(characters) && characters != end) {
all_char_bits |= *characters;
++characters;
}
// Compare the values of CPU word size.
const Char* word_end = AlignToMachineWord(end);
const size_t loop_increment = sizeof(MachineWord) / sizeof(Char);
while (characters < word_end) {
all_char_bits |= *(reinterpret_cast<const MachineWord*>(characters));
characters += loop_increment;
}
// Process the remaining bytes.
while (characters != end) {
all_char_bits |= *characters;
++characters;
}
MachineWord non_ascii_bit_mask =
NonASCIIMask<sizeof(MachineWord), Char>::value();
return !(all_char_bits & non_ascii_bit_mask);
}
bool IsStringASCII(const StringPiece& str) {
return DoIsStringASCII(str.data(), str.length());
}
bool IsStringASCII(const StringPiece16& str) {
return DoIsStringASCII(str.data(), str.length());
}
bool IsStringASCII(const string16& str) {
return DoIsStringASCII(str.data(), str.length());
}
#if defined(WCHAR_T_IS_UTF32)
bool IsStringASCII(const std::wstring& str) {
return DoIsStringASCII(str.data(), str.length());
}
#endif
bool IsStringUTF8(const StringPiece& str) {
const char *src = str.data();
int32 src_len = static_cast<int32>(str.length());
int32 char_index = 0;
while (char_index < src_len) {
int32 code_point;
CBU8_NEXT(src, char_index, src_len, code_point);
if (!IsValidCharacter(code_point))
return false;
}
return true;
}
template<typename Iter>
static inline bool DoLowerCaseEqualsASCII(Iter a_begin,
Iter a_end,
const char* b) {
for (Iter it = a_begin; it != a_end; ++it, ++b) {
if (!*b || ToLowerASCII(*it) != *b)
return false;
}
return *b == 0;
}
// Front-ends for LowerCaseEqualsASCII.
bool LowerCaseEqualsASCII(const std::string& a, const char* b) {
return DoLowerCaseEqualsASCII(a.begin(), a.end(), b);
}
bool LowerCaseEqualsASCII(const string16& a, const char* b) {
return DoLowerCaseEqualsASCII(a.begin(), a.end(), b);
}
bool LowerCaseEqualsASCII(std::string::const_iterator a_begin,
std::string::const_iterator a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool LowerCaseEqualsASCII(string16::const_iterator a_begin,
string16::const_iterator a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool LowerCaseEqualsASCII(const char* a_begin,
const char* a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool LowerCaseEqualsASCII(const char* a_begin,
const char* a_end,
const char* b_begin,
const char* b_end) {
while (a_begin != a_end && b_begin != b_end &&
ToLowerASCII(*a_begin) == *b_begin) {
a_begin++;
b_begin++;
}
return a_begin == a_end && b_begin == b_end;
}
bool LowerCaseEqualsASCII(const char16* a_begin,
const char16* a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
} // namespace base
bool EqualsASCII(const string16& a, const base::StringPiece& b) {
if (a.length() != b.length())
return false;
return std::equal(b.begin(), b.end(), a.begin());
}
bool StartsWithASCII(const std::string& str,
const std::string& search,
bool case_sensitive) {
if (case_sensitive)
return str.compare(0, search.length(), search) == 0;
else
return base::strncasecmp(str.c_str(), search.c_str(), search.length()) == 0;
}
template <typename STR>
bool StartsWithT(const STR& str, const STR& search, bool case_sensitive) {
if (case_sensitive) {
return str.compare(0, search.length(), search) == 0;
} else {
if (search.size() > str.size())
return false;
return std::equal(search.begin(), search.end(), str.begin(),
base::CaseInsensitiveCompare<typename STR::value_type>());
}
}
bool StartsWith(const string16& str, const string16& search,
bool case_sensitive) {
return StartsWithT(str, search, case_sensitive);
}
template <typename STR>
bool EndsWithT(const STR& str, const STR& search, bool case_sensitive) {
size_t str_length = str.length();
size_t search_length = search.length();
if (search_length > str_length)
return false;
if (case_sensitive)
return str.compare(str_length - search_length, search_length, search) == 0;
return std::equal(search.begin(), search.end(),
str.begin() + (str_length - search_length),
base::CaseInsensitiveCompare<typename STR::value_type>());
}
bool EndsWith(const std::string& str, const std::string& search,
bool case_sensitive) {
return EndsWithT(str, search, case_sensitive);
}
bool EndsWith(const string16& str, const string16& search,
bool case_sensitive) {
return EndsWithT(str, search, case_sensitive);
}
static const char* const kByteStringsUnlocalized[] = {
" B",
" kB",
" MB",
" GB",
" TB",
" PB"
};
string16 FormatBytesUnlocalized(int64 bytes) {
double unit_amount = static_cast<double>(bytes);
size_t dimension = 0;
const int kKilo = 1024;
while (unit_amount >= kKilo &&
dimension < arraysize(kByteStringsUnlocalized) - 1) {
unit_amount /= kKilo;
dimension++;
}
char buf[64];
if (bytes != 0 && dimension > 0 && unit_amount < 100) {
base::snprintf(buf, arraysize(buf), "%.1lf%s", unit_amount,
kByteStringsUnlocalized[dimension]);
} else {
base::snprintf(buf, arraysize(buf), "%.0lf%s", unit_amount,
kByteStringsUnlocalized[dimension]);
}
return base::ASCIIToUTF16(buf);
}
// Runs in O(n) time in the length of |str|.
template<class StringType>
void DoReplaceSubstringsAfterOffset(StringType* str,
size_t offset,
const StringType& find_this,
const StringType& replace_with,
bool replace_all) {
DCHECK(!find_this.empty());
// If the find string doesn't appear, there's nothing to do.
offset = str->find(find_this, offset);
if (offset == StringType::npos)
return;
// If we're only replacing one instance, there's no need to do anything
// complicated.
size_t find_length = find_this.length();
if (!replace_all) {
str->replace(offset, find_length, replace_with);
return;
}
// If the find and replace strings are the same length, we can simply use
// replace() on each instance, and finish the entire operation in O(n) time.
size_t replace_length = replace_with.length();
if (find_length == replace_length) {
do {
str->replace(offset, find_length, replace_with);
offset = str->find(find_this, offset + replace_length);
} while (offset != StringType::npos);
return;
}
// Since the find and replace strings aren't the same length, a loop like the
// one above would be O(n^2) in the worst case, as replace() will shift the
// entire remaining string each time. We need to be more clever to keep
// things O(n).
//
// If we're shortening the string, we can alternate replacements with shifting
// forward the intervening characters using memmove().
size_t str_length = str->length();
if (find_length > replace_length) {
size_t write_offset = offset;
do {
if (replace_length) {
str->replace(write_offset, replace_length, replace_with);
write_offset += replace_length;
}
size_t read_offset = offset + find_length;
offset = std::min(str->find(find_this, read_offset), str_length);
size_t length = offset - read_offset;
if (length) {
memmove(&(*str)[write_offset], &(*str)[read_offset],
length * sizeof(typename StringType::value_type));
write_offset += length;
}
} while (offset < str_length);
str->resize(write_offset);
return;
}
// We're lengthening the string. We can use alternating replacements and
// memmove() calls like above, but we need to precalculate the final string
// length and then expand from back-to-front to avoid overwriting the string
// as we're reading it, needing to shift, or having to copy to a second string
// temporarily.
size_t first_match = offset;
// First, calculate the final length and resize the string.
size_t final_length = str_length;
size_t expansion = replace_length - find_length;
size_t current_match;
do {
final_length += expansion;
// Minor optimization: save this offset into |current_match|, so that on
// exit from the loop, |current_match| will point at the last instance of
// the find string, and we won't need to find() it again immediately.
current_match = offset;
offset = str->find(find_this, offset + find_length);
} while (offset != StringType::npos);
str->resize(final_length);
// Now do the replacement loop, working backwards through the string.
for (size_t prev_match = str_length, write_offset = final_length; ;
current_match = str->rfind(find_this, current_match - 1)) {
size_t read_offset = current_match + find_length;
size_t length = prev_match - read_offset;
if (length) {
write_offset -= length;
memmove(&(*str)[write_offset], &(*str)[read_offset],
length * sizeof(typename StringType::value_type));
}
write_offset -= replace_length;
str->replace(write_offset, replace_length, replace_with);
if (current_match == first_match)
return;
prev_match = current_match;
}
}
void ReplaceFirstSubstringAfterOffset(string16* str,
size_t start_offset,
const string16& find_this,
const string16& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with,
false); // replace first instance
}
void ReplaceFirstSubstringAfterOffset(std::string* str,
size_t start_offset,
const std::string& find_this,
const std::string& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with,
false); // replace first instance
}
void ReplaceSubstringsAfterOffset(string16* str,
size_t start_offset,
const string16& find_this,
const string16& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with,
true); // replace all instances
}
void ReplaceSubstringsAfterOffset(std::string* str,
size_t start_offset,
const std::string& find_this,
const std::string& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with,
true); // replace all instances
}
template<typename STR>
static size_t TokenizeT(const STR& str,
const STR& delimiters,
std::vector<STR>* tokens) {
tokens->clear();
size_t start = str.find_first_not_of(delimiters);
while (start != STR::npos) {
size_t end = str.find_first_of(delimiters, start + 1);
if (end == STR::npos) {
tokens->push_back(str.substr(start));
break;
} else {
tokens->push_back(str.substr(start, end - start));
start = str.find_first_not_of(delimiters, end + 1);
}
}
return tokens->size();
}
size_t Tokenize(const string16& str,
const string16& delimiters,
std::vector<string16>* tokens) {
return TokenizeT(str, delimiters, tokens);
}
size_t Tokenize(const std::string& str,
const std::string& delimiters,
std::vector<std::string>* tokens) {
return TokenizeT(str, delimiters, tokens);
}
size_t Tokenize(const base::StringPiece& str,
const base::StringPiece& delimiters,
std::vector<base::StringPiece>* tokens) {
return TokenizeT(str, delimiters, tokens);
}
template<typename STR>
static STR JoinStringT(const std::vector<STR>& parts, const STR& sep) {
if (parts.empty())
return STR();
STR result(parts[0]);
typename std::vector<STR>::const_iterator iter = parts.begin();
++iter;
for (; iter != parts.end(); ++iter) {
result += sep;
result += *iter;
}
return result;
}
std::string JoinString(const std::vector<std::string>& parts, char sep) {
return JoinStringT(parts, std::string(1, sep));
}
string16 JoinString(const std::vector<string16>& parts, char16 sep) {
return JoinStringT(parts, string16(1, sep));
}
std::string JoinString(const std::vector<std::string>& parts,
const std::string& separator) {
return JoinStringT(parts, separator);
}
string16 JoinString(const std::vector<string16>& parts,
const string16& separator) {
return JoinStringT(parts, separator);
}
template<class FormatStringType, class OutStringType>
OutStringType DoReplaceStringPlaceholders(const FormatStringType& format_string,
const std::vector<OutStringType>& subst, std::vector<size_t>* offsets) {
size_t substitutions = subst.size();
size_t sub_length = 0;
for (typename std::vector<OutStringType>::const_iterator iter = subst.begin();
iter != subst.end(); ++iter) {
sub_length += iter->length();
}
OutStringType formatted;
formatted.reserve(format_string.length() + sub_length);
std::vector<ReplacementOffset> r_offsets;
for (typename FormatStringType::const_iterator i = format_string.begin();
i != format_string.end(); ++i) {
if ('$' == *i) {
if (i + 1 != format_string.end()) {
++i;
DCHECK('$' == *i || '1' <= *i) << "Invalid placeholder: " << *i;
if ('$' == *i) {
while (i != format_string.end() && '$' == *i) {
formatted.push_back('$');
++i;
}
--i;
} else {
uintptr_t index = 0;
while (i != format_string.end() && '0' <= *i && *i <= '9') {
index *= 10;
index += *i - '0';
++i;
}
--i;
index -= 1;
if (offsets) {
ReplacementOffset r_offset(index,
static_cast<int>(formatted.size()));
r_offsets.insert(std::lower_bound(r_offsets.begin(),
r_offsets.end(),
r_offset,
&CompareParameter),
r_offset);
}
if (index < substitutions)
formatted.append(subst.at(index));
}
}
} else {
formatted.push_back(*i);
}
}
if (offsets) {
for (std::vector<ReplacementOffset>::const_iterator i = r_offsets.begin();
i != r_offsets.end(); ++i) {
offsets->push_back(i->offset);
}
}
return formatted;
}
string16 ReplaceStringPlaceholders(const string16& format_string,
const std::vector<string16>& subst,
std::vector<size_t>* offsets) {
return DoReplaceStringPlaceholders(format_string, subst, offsets);
}
std::string ReplaceStringPlaceholders(const base::StringPiece& format_string,
const std::vector<std::string>& subst,
std::vector<size_t>* offsets) {
return DoReplaceStringPlaceholders(format_string, subst, offsets);
}
string16 ReplaceStringPlaceholders(const string16& format_string,
const string16& a,
size_t* offset) {
std::vector<size_t> offsets;
std::vector<string16> subst;
subst.push_back(a);
string16 result = ReplaceStringPlaceholders(format_string, subst, &offsets);
DCHECK_EQ(1U, offsets.size());
if (offset)
*offset = offsets[0];
return result;
}
static bool IsWildcard(base_icu::UChar32 character) {
return character == '*' || character == '?';
}
// Move the strings pointers to the point where they start to differ.
template <typename CHAR, typename NEXT>
static void EatSameChars(const CHAR** pattern, const CHAR* pattern_end,
const CHAR** string, const CHAR* string_end,
NEXT next) {
const CHAR* escape = NULL;
while (*pattern != pattern_end && *string != string_end) {
if (!escape && IsWildcard(**pattern)) {
// We don't want to match wildcard here, except if it's escaped.
return;
}
// Check if the escapement char is found. If so, skip it and move to the
// next character.
if (!escape && **pattern == '\\') {
escape = *pattern;
next(pattern, pattern_end);
continue;
}
// Check if the chars match, if so, increment the ptrs.
const CHAR* pattern_next = *pattern;
const CHAR* string_next = *string;
base_icu::UChar32 pattern_char = next(&pattern_next, pattern_end);
if (pattern_char == next(&string_next, string_end) &&
pattern_char != CBU_SENTINEL) {
*pattern = pattern_next;
*string = string_next;
} else {
// Uh oh, it did not match, we are done. If the last char was an
// escapement, that means that it was an error to advance the ptr here,
// let's put it back where it was. This also mean that the MatchPattern
// function will return false because if we can't match an escape char
// here, then no one will.
if (escape) {
*pattern = escape;
}
return;
}
escape = NULL;
}
}
template <typename CHAR, typename NEXT>
static void EatWildcard(const CHAR** pattern, const CHAR* end, NEXT next) {
while (*pattern != end) {
if (!IsWildcard(**pattern))
return;
next(pattern, end);
}
}
template <typename CHAR, typename NEXT>
static bool MatchPatternT(const CHAR* eval, const CHAR* eval_end,
const CHAR* pattern, const CHAR* pattern_end,
int depth,
NEXT next) {
const int kMaxDepth = 16;
if (depth > kMaxDepth)
return false;
// Eat all the matching chars.
EatSameChars(&pattern, pattern_end, &eval, eval_end, next);
// If the string is empty, then the pattern must be empty too, or contains
// only wildcards.
if (eval == eval_end) {
EatWildcard(&pattern, pattern_end, next);
return pattern == pattern_end;
}
// Pattern is empty but not string, this is not a match.
if (pattern == pattern_end)
return false;
// If this is a question mark, then we need to compare the rest with
// the current string or the string with one character eaten.
const CHAR* next_pattern = pattern;
next(&next_pattern, pattern_end);
if (pattern[0] == '?') {
if (MatchPatternT(eval, eval_end, next_pattern, pattern_end,
depth + 1, next))
return true;
const CHAR* next_eval = eval;
next(&next_eval, eval_end);
if (MatchPatternT(next_eval, eval_end, next_pattern, pattern_end,
depth + 1, next))
return true;
}
// This is a *, try to match all the possible substrings with the remainder
// of the pattern.
if (pattern[0] == '*') {
// Collapse duplicate wild cards (********** into *) so that the
// method does not recurse unnecessarily. http://crbug.com/52839
EatWildcard(&next_pattern, pattern_end, next);
while (eval != eval_end) {
if (MatchPatternT(eval, eval_end, next_pattern, pattern_end,
depth + 1, next))
return true;
eval++;
}
// We reached the end of the string, let see if the pattern contains only
// wildcards.
if (eval == eval_end) {
EatWildcard(&pattern, pattern_end, next);
if (pattern != pattern_end)
return false;
return true;
}
}
return false;
}
struct NextCharUTF8 {
base_icu::UChar32 operator()(const char** p, const char* end) {
base_icu::UChar32 c;
int offset = 0;
CBU8_NEXT(*p, offset, end - *p, c);
*p += offset;
return c;
}
};
struct NextCharUTF16 {
base_icu::UChar32 operator()(const char16** p, const char16* end) {
base_icu::UChar32 c;
int offset = 0;
CBU16_NEXT(*p, offset, end - *p, c);
*p += offset;
return c;
}
};
bool MatchPattern(const base::StringPiece& eval,
const base::StringPiece& pattern) {
return MatchPatternT(eval.data(), eval.data() + eval.size(),
pattern.data(), pattern.data() + pattern.size(),
0, NextCharUTF8());
}
bool MatchPattern(const string16& eval, const string16& pattern) {
return MatchPatternT(eval.c_str(), eval.c_str() + eval.size(),
pattern.c_str(), pattern.c_str() + pattern.size(),
0, NextCharUTF16());
}
// The following code is compatible with the OpenBSD lcpy interface. See:
// http://www.gratisoft.us/todd/papers/strlcpy.html
// ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c
namespace {
template <typename CHAR>
size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) {
for (size_t i = 0; i < dst_size; ++i) {
if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL.
return i;
}
// We were left off at dst_size. We over copied 1 byte. Null terminate.
if (dst_size != 0)
dst[dst_size - 1] = 0;
// Count the rest of the |src|, and return it's length in characters.
while (src[dst_size]) ++dst_size;
return dst_size;
}
} // namespace
size_t base::strlcpy(char* dst, const char* src, size_t dst_size) {
return lcpyT<char>(dst, src, dst_size);
}
size_t base::wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) {
return lcpyT<wchar_t>(dst, src, dst_size);
}