| // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef BASE_TASK_H_ |
| #define BASE_TASK_H_ |
| |
| #include "base/non_thread_safe.h" |
| #include "base/tracked.h" |
| #include "base/tuple.h" |
| #include "base/weak_ptr.h" |
| |
| // Task ------------------------------------------------------------------------ |
| // |
| // A task is a generic runnable thingy, usually used for running code on a |
| // different thread or for scheduling future tasks off of the message loop. |
| |
| class Task : public tracked_objects::Tracked { |
| public: |
| Task() {} |
| virtual ~Task() {} |
| |
| // Tasks are automatically deleted after Run is called. |
| virtual void Run() = 0; |
| }; |
| |
| class CancelableTask : public Task { |
| public: |
| // Not all tasks support cancellation. |
| virtual void Cancel() = 0; |
| }; |
| |
| // Scoped Factories ------------------------------------------------------------ |
| // |
| // These scoped factory objects can be used by non-refcounted objects to safely |
| // place tasks in a message loop. Each factory guarantees that the tasks it |
| // produces will not run after the factory is destroyed. Commonly, factories |
| // are declared as class members, so the class' tasks will automatically cancel |
| // when the class instance is destroyed. |
| // |
| // Exampe Usage: |
| // |
| // class MyClass { |
| // private: |
| // // This factory will be used to schedule invocations of SomeMethod. |
| // ScopedRunnableMethodFactory<MyClass> some_method_factory_; |
| // |
| // public: |
| // // It is safe to suppress warning 4355 here. |
| // MyClass() : some_method_factory_(this) { } |
| // |
| // void SomeMethod() { |
| // // If this function might be called directly, you might want to revoke |
| // // any outstanding runnable methods scheduled to call it. If it's not |
| // // referenced other than by the factory, this is unnecessary. |
| // some_method_factory_.RevokeAll(); |
| // ... |
| // } |
| // |
| // void ScheduleSomeMethod() { |
| // // If you'd like to only only have one pending task at a time, test for |
| // // |empty| before manufacturing another task. |
| // if (!some_method_factory_.empty()) |
| // return; |
| // |
| // // The factories are not thread safe, so always invoke on |
| // // |MessageLoop::current()|. |
| // MessageLoop::current()->PostDelayedTask(FROM_HERE, |
| // some_method_factory_.NewRunnableMethod(&MyClass::SomeMethod), |
| // kSomeMethodDelayMS); |
| // } |
| // }; |
| |
| // A ScopedRunnableMethodFactory creates runnable methods for a specified |
| // object. This is particularly useful for generating callbacks for |
| // non-reference counted objects when the factory is a member of the object. |
| template<class T> |
| class ScopedRunnableMethodFactory { |
| public: |
| explicit ScopedRunnableMethodFactory(T* object) : weak_factory_(object) { |
| } |
| |
| template <class Method> |
| inline Task* NewRunnableMethod(Method method) { |
| return new RunnableMethod<Method, Tuple0>( |
| weak_factory_.GetWeakPtr(), method, MakeTuple()); |
| } |
| |
| template <class Method, class A> |
| inline Task* NewRunnableMethod(Method method, const A& a) { |
| return new RunnableMethod<Method, Tuple1<A> >( |
| weak_factory_.GetWeakPtr(), method, MakeTuple(a)); |
| } |
| |
| template <class Method, class A, class B> |
| inline Task* NewRunnableMethod(Method method, const A& a, const B& b) { |
| return new RunnableMethod<Method, Tuple2<A, B> >( |
| weak_factory_.GetWeakPtr(), method, MakeTuple(a, b)); |
| } |
| |
| template <class Method, class A, class B, class C> |
| inline Task* NewRunnableMethod(Method method, |
| const A& a, |
| const B& b, |
| const C& c) { |
| return new RunnableMethod<Method, Tuple3<A, B, C> >( |
| weak_factory_.GetWeakPtr(), method, MakeTuple(a, b, c)); |
| } |
| |
| template <class Method, class A, class B, class C, class D> |
| inline Task* NewRunnableMethod(Method method, |
| const A& a, |
| const B& b, |
| const C& c, |
| const D& d) { |
| return new RunnableMethod<Method, Tuple4<A, B, C, D> >( |
| weak_factory_.GetWeakPtr(), method, MakeTuple(a, b, c, d)); |
| } |
| |
| template <class Method, class A, class B, class C, class D, class E> |
| inline Task* NewRunnableMethod(Method method, |
| const A& a, |
| const B& b, |
| const C& c, |
| const D& d, |
| const E& e) { |
| return new RunnableMethod<Method, Tuple5<A, B, C, D, E> >( |
| weak_factory_.GetWeakPtr(), method, MakeTuple(a, b, c, d, e)); |
| } |
| |
| void RevokeAll() { weak_factory_.InvalidateWeakPtrs(); } |
| |
| bool empty() const { return !weak_factory_.HasWeakPtrs(); } |
| |
| protected: |
| template <class Method, class Params> |
| class RunnableMethod : public Task { |
| public: |
| RunnableMethod(const base::WeakPtr<T>& obj, Method meth, const Params& params) |
| : obj_(obj), |
| meth_(meth), |
| params_(params) { |
| } |
| |
| virtual void Run() { |
| if (obj_) |
| DispatchToMethod(obj_.get(), meth_, params_); |
| } |
| |
| private: |
| base::WeakPtr<T> obj_; |
| Method meth_; |
| Params params_; |
| |
| DISALLOW_COPY_AND_ASSIGN(RunnableMethod); |
| }; |
| |
| private: |
| base::WeakPtrFactory<T> weak_factory_; |
| }; |
| |
| // General task implementations ------------------------------------------------ |
| |
| // Task to delete an object |
| template<class T> |
| class DeleteTask : public CancelableTask { |
| public: |
| explicit DeleteTask(T* obj) : obj_(obj) { |
| } |
| virtual void Run() { |
| delete obj_; |
| } |
| virtual void Cancel() { |
| obj_ = NULL; |
| } |
| private: |
| T* obj_; |
| }; |
| |
| // Task to Release() an object |
| template<class T> |
| class ReleaseTask : public CancelableTask { |
| public: |
| explicit ReleaseTask(T* obj) : obj_(obj) { |
| } |
| virtual void Run() { |
| if (obj_) |
| obj_->Release(); |
| } |
| virtual void Cancel() { |
| obj_ = NULL; |
| } |
| private: |
| T* obj_; |
| }; |
| |
| // RunnableMethodTraits -------------------------------------------------------- |
| // |
| // This traits-class is used by RunnableMethod to manage the lifetime of the |
| // callee object. By default, it is assumed that the callee supports AddRef |
| // and Release methods. A particular class can specialize this template to |
| // define other lifetime management. For example, if the callee is known to |
| // live longer than the RunnableMethod object, then a RunnableMethodTraits |
| // struct could be defined with empty RetainCallee and ReleaseCallee methods. |
| |
| template <class T> |
| struct RunnableMethodTraits { |
| RunnableMethodTraits() { |
| #ifndef NDEBUG |
| origin_thread_id_ = PlatformThread::CurrentId(); |
| #endif |
| } |
| |
| ~RunnableMethodTraits() { |
| #ifndef NDEBUG |
| // If destroyed on a separate thread, then we had better have been using |
| // thread-safe reference counting! |
| if (origin_thread_id_ != PlatformThread::CurrentId()) |
| DCHECK(T::ImplementsThreadSafeReferenceCounting()); |
| #endif |
| } |
| |
| void RetainCallee(T* obj) { |
| obj->AddRef(); |
| } |
| |
| void ReleaseCallee(T* obj) { |
| obj->Release(); |
| } |
| |
| private: |
| #ifndef NDEBUG |
| PlatformThreadId origin_thread_id_; |
| #endif |
| }; |
| |
| // RunnableMethod and RunnableFunction ----------------------------------------- |
| // |
| // Runnable methods are a type of task that call a function on an object when |
| // they are run. We implement both an object and a set of NewRunnableMethod and |
| // NewRunnableFunction functions for convenience. These functions are |
| // overloaded and will infer the template types, simplifying calling code. |
| // |
| // The template definitions all use the following names: |
| // T - the class type of the object you're supplying |
| // this is not needed for the Static version of the call |
| // Method/Function - the signature of a pointer to the method or function you |
| // want to call |
| // Param - the parameter(s) to the method, possibly packed as a Tuple |
| // A - the first parameter (if any) to the method |
| // B - the second parameter (if any) to the mathod |
| // |
| // Put these all together and you get an object that can call a method whose |
| // signature is: |
| // R T::MyFunction([A[, B]]) |
| // |
| // Usage: |
| // PostTask(FROM_HERE, NewRunnableMethod(object, &Object::method[, a[, b]]) |
| // PostTask(FROM_HERE, NewRunnableFunction(&function[, a[, b]]) |
| |
| // RunnableMethod and NewRunnableMethod implementation ------------------------- |
| |
| template <class T, class Method, class Params> |
| class RunnableMethod : public CancelableTask { |
| public: |
| RunnableMethod(T* obj, Method meth, const Params& params) |
| : obj_(obj), meth_(meth), params_(params) { |
| traits_.RetainCallee(obj_); |
| } |
| |
| ~RunnableMethod() { |
| ReleaseCallee(); |
| } |
| |
| virtual void Run() { |
| if (obj_) |
| DispatchToMethod(obj_, meth_, params_); |
| } |
| |
| virtual void Cancel() { |
| ReleaseCallee(); |
| } |
| |
| private: |
| void ReleaseCallee() { |
| if (obj_) { |
| traits_.ReleaseCallee(obj_); |
| obj_ = NULL; |
| } |
| } |
| |
| T* obj_; |
| Method meth_; |
| Params params_; |
| RunnableMethodTraits<T> traits_; |
| }; |
| |
| template <class T, class Method> |
| inline CancelableTask* NewRunnableMethod(T* object, Method method) { |
| return new RunnableMethod<T, Method, Tuple0>(object, method, MakeTuple()); |
| } |
| |
| template <class T, class Method, class A> |
| inline CancelableTask* NewRunnableMethod(T* object, Method method, const A& a) { |
| return new RunnableMethod<T, Method, Tuple1<A> >(object, |
| method, |
| MakeTuple(a)); |
| } |
| |
| template <class T, class Method, class A, class B> |
| inline CancelableTask* NewRunnableMethod(T* object, Method method, |
| const A& a, const B& b) { |
| return new RunnableMethod<T, Method, Tuple2<A, B> >(object, method, |
| MakeTuple(a, b)); |
| } |
| |
| template <class T, class Method, class A, class B, class C> |
| inline CancelableTask* NewRunnableMethod(T* object, Method method, |
| const A& a, const B& b, const C& c) { |
| return new RunnableMethod<T, Method, Tuple3<A, B, C> >(object, method, |
| MakeTuple(a, b, c)); |
| } |
| |
| template <class T, class Method, class A, class B, class C, class D> |
| inline CancelableTask* NewRunnableMethod(T* object, Method method, |
| const A& a, const B& b, |
| const C& c, const D& d) { |
| return new RunnableMethod<T, Method, Tuple4<A, B, C, D> >(object, method, |
| MakeTuple(a, b, |
| c, d)); |
| } |
| |
| template <class T, class Method, class A, class B, class C, class D, class E> |
| inline CancelableTask* NewRunnableMethod(T* object, Method method, |
| const A& a, const B& b, |
| const C& c, const D& d, const E& e) { |
| return new RunnableMethod<T, |
| Method, |
| Tuple5<A, B, C, D, E> >(object, |
| method, |
| MakeTuple(a, b, c, d, e)); |
| } |
| |
| template <class T, class Method, class A, class B, class C, class D, class E, |
| class F> |
| inline CancelableTask* NewRunnableMethod(T* object, Method method, |
| const A& a, const B& b, |
| const C& c, const D& d, const E& e, |
| const F& f) { |
| return new RunnableMethod<T, |
| Method, |
| Tuple6<A, B, C, D, E, F> >(object, |
| method, |
| MakeTuple(a, b, c, d, e, |
| f)); |
| } |
| |
| template <class T, class Method, class A, class B, class C, class D, class E, |
| class F, class G> |
| inline CancelableTask* NewRunnableMethod(T* object, Method method, |
| const A& a, const B& b, |
| const C& c, const D& d, const E& e, |
| const F& f, const G& g) { |
| return new RunnableMethod<T, |
| Method, |
| Tuple7<A, B, C, D, E, F, G> >(object, |
| method, |
| MakeTuple(a, b, c, d, |
| e, f, g)); |
| } |
| |
| // RunnableFunction and NewRunnableFunction implementation --------------------- |
| |
| template <class Function, class Params> |
| class RunnableFunction : public CancelableTask { |
| public: |
| RunnableFunction(Function function, const Params& params) |
| : function_(function), params_(params) { |
| } |
| |
| ~RunnableFunction() { |
| } |
| |
| virtual void Run() { |
| if (function_) |
| DispatchToFunction(function_, params_); |
| } |
| |
| virtual void Cancel() { |
| } |
| |
| private: |
| Function function_; |
| Params params_; |
| }; |
| |
| template <class Function> |
| inline CancelableTask* NewRunnableFunction(Function function) { |
| return new RunnableFunction<Function, Tuple0>(function, MakeTuple()); |
| } |
| |
| template <class Function, class A> |
| inline CancelableTask* NewRunnableFunction(Function function, const A& a) { |
| return new RunnableFunction<Function, Tuple1<A> >(function, MakeTuple(a)); |
| } |
| |
| template <class Function, class A, class B> |
| inline CancelableTask* NewRunnableFunction(Function function, |
| const A& a, const B& b) { |
| return new RunnableFunction<Function, Tuple2<A, B> >(function, |
| MakeTuple(a, b)); |
| } |
| |
| template <class Function, class A, class B, class C> |
| inline CancelableTask* NewRunnableFunction(Function function, |
| const A& a, const B& b, |
| const C& c) { |
| return new RunnableFunction<Function, Tuple3<A, B, C> >(function, |
| MakeTuple(a, b, c)); |
| } |
| |
| template <class Function, class A, class B, class C, class D> |
| inline CancelableTask* NewRunnableFunction(Function function, |
| const A& a, const B& b, |
| const C& c, const D& d) { |
| return new RunnableFunction<Function, Tuple4<A, B, C, D> >(function, |
| MakeTuple(a, b, |
| c, d)); |
| } |
| |
| template <class Function, class A, class B, class C, class D, class E> |
| inline CancelableTask* NewRunnableFunction(Function function, |
| const A& a, const B& b, |
| const C& c, const D& d, |
| const E& e) { |
| return new RunnableFunction<Function, Tuple5<A, B, C, D, E> >(function, |
| MakeTuple(a, b, |
| c, d, |
| e)); |
| } |
| |
| // Callback -------------------------------------------------------------------- |
| // |
| // A Callback is like a Task but with unbound parameters. It is basically an |
| // object-oriented function pointer. |
| // |
| // Callbacks are designed to work with Tuples. A set of helper functions and |
| // classes is provided to hide the Tuple details from the consumer. Client |
| // code will generally work with the CallbackRunner base class, which merely |
| // provides a Run method and is returned by the New* functions. This allows |
| // users to not care which type of class implements the callback, only that it |
| // has a certain number and type of arguments. |
| // |
| // The implementation of this is done by CallbackImpl, which inherits |
| // CallbackStorage to store the data. This allows the storage of the data |
| // (requiring the class type T) to be hidden from users, who will want to call |
| // this regardless of the implementor's type T. |
| // |
| // Note that callbacks currently have no facility for cancelling or abandoning |
| // them. We currently handle this at a higher level for cases where this is |
| // necessary. The pointer in a callback must remain valid until the callback |
| // is made. |
| // |
| // Like Task, the callback executor is responsible for deleting the callback |
| // pointer once the callback has executed. |
| // |
| // Example client usage: |
| // void Object::DoStuff(int, string); |
| // Callback2<int, string>::Type* callback = |
| // NewCallback(obj, &Object::DoStuff); |
| // callback->Run(5, string("hello")); |
| // delete callback; |
| // or, equivalently, using tuples directly: |
| // CallbackRunner<Tuple2<int, string> >* callback = |
| // NewCallback(obj, &Object::DoStuff); |
| // callback->RunWithParams(MakeTuple(5, string("hello"))); |
| // |
| // There is also a 0-args version that returns a value. Example: |
| // int Object::GetNextInt(); |
| // CallbackWithReturnValue<int>::Type* callback = |
| // NewCallbackWithReturnValue(obj, &Object::GetNextInt); |
| // int next_int = callback->Run(); |
| // delete callback; |
| |
| // Base for all Callbacks that handles storage of the pointers. |
| template <class T, typename Method> |
| class CallbackStorage { |
| public: |
| CallbackStorage(T* obj, Method meth) : obj_(obj), meth_(meth) { |
| } |
| |
| protected: |
| T* obj_; |
| Method meth_; |
| }; |
| |
| // Interface that is exposed to the consumer, that does the actual calling |
| // of the method. |
| template <typename Params> |
| class CallbackRunner { |
| public: |
| typedef Params TupleType; |
| |
| virtual ~CallbackRunner() {} |
| virtual void RunWithParams(const Params& params) = 0; |
| |
| // Convenience functions so callers don't have to deal with Tuples. |
| inline void Run() { |
| RunWithParams(Tuple0()); |
| } |
| |
| template <typename Arg1> |
| inline void Run(const Arg1& a) { |
| RunWithParams(Params(a)); |
| } |
| |
| template <typename Arg1, typename Arg2> |
| inline void Run(const Arg1& a, const Arg2& b) { |
| RunWithParams(Params(a, b)); |
| } |
| |
| template <typename Arg1, typename Arg2, typename Arg3> |
| inline void Run(const Arg1& a, const Arg2& b, const Arg3& c) { |
| RunWithParams(Params(a, b, c)); |
| } |
| |
| template <typename Arg1, typename Arg2, typename Arg3, typename Arg4> |
| inline void Run(const Arg1& a, const Arg2& b, const Arg3& c, const Arg4& d) { |
| RunWithParams(Params(a, b, c, d)); |
| } |
| |
| template <typename Arg1, typename Arg2, typename Arg3, |
| typename Arg4, typename Arg5> |
| inline void Run(const Arg1& a, const Arg2& b, const Arg3& c, |
| const Arg4& d, const Arg5& e) { |
| RunWithParams(Params(a, b, c, d, e)); |
| } |
| }; |
| |
| template <class T, typename Method, typename Params> |
| class CallbackImpl : public CallbackStorage<T, Method>, |
| public CallbackRunner<Params> { |
| public: |
| CallbackImpl(T* obj, Method meth) : CallbackStorage<T, Method>(obj, meth) { |
| } |
| virtual void RunWithParams(const Params& params) { |
| // use "this->" to force C++ to look inside our templatized base class; see |
| // Effective C++, 3rd Ed, item 43, p210 for details. |
| DispatchToMethod(this->obj_, this->meth_, params); |
| } |
| }; |
| |
| // 0-arg implementation |
| struct Callback0 { |
| typedef CallbackRunner<Tuple0> Type; |
| }; |
| |
| template <class T> |
| typename Callback0::Type* NewCallback(T* object, void (T::*method)()) { |
| return new CallbackImpl<T, void (T::*)(), Tuple0 >(object, method); |
| } |
| |
| // 1-arg implementation |
| template <typename Arg1> |
| struct Callback1 { |
| typedef CallbackRunner<Tuple1<Arg1> > Type; |
| }; |
| |
| template <class T, typename Arg1> |
| typename Callback1<Arg1>::Type* NewCallback(T* object, |
| void (T::*method)(Arg1)) { |
| return new CallbackImpl<T, void (T::*)(Arg1), Tuple1<Arg1> >(object, method); |
| } |
| |
| // 2-arg implementation |
| template <typename Arg1, typename Arg2> |
| struct Callback2 { |
| typedef CallbackRunner<Tuple2<Arg1, Arg2> > Type; |
| }; |
| |
| template <class T, typename Arg1, typename Arg2> |
| typename Callback2<Arg1, Arg2>::Type* NewCallback( |
| T* object, |
| void (T::*method)(Arg1, Arg2)) { |
| return new CallbackImpl<T, void (T::*)(Arg1, Arg2), |
| Tuple2<Arg1, Arg2> >(object, method); |
| } |
| |
| // 3-arg implementation |
| template <typename Arg1, typename Arg2, typename Arg3> |
| struct Callback3 { |
| typedef CallbackRunner<Tuple3<Arg1, Arg2, Arg3> > Type; |
| }; |
| |
| template <class T, typename Arg1, typename Arg2, typename Arg3> |
| typename Callback3<Arg1, Arg2, Arg3>::Type* NewCallback( |
| T* object, |
| void (T::*method)(Arg1, Arg2, Arg3)) { |
| return new CallbackImpl<T, void (T::*)(Arg1, Arg2, Arg3), |
| Tuple3<Arg1, Arg2, Arg3> >(object, method); |
| } |
| |
| // 4-arg implementation |
| template <typename Arg1, typename Arg2, typename Arg3, typename Arg4> |
| struct Callback4 { |
| typedef CallbackRunner<Tuple4<Arg1, Arg2, Arg3, Arg4> > Type; |
| }; |
| |
| template <class T, typename Arg1, typename Arg2, typename Arg3, typename Arg4> |
| typename Callback4<Arg1, Arg2, Arg3, Arg4>::Type* NewCallback( |
| T* object, |
| void (T::*method)(Arg1, Arg2, Arg3, Arg4)) { |
| return new CallbackImpl<T, void (T::*)(Arg1, Arg2, Arg3, Arg4), |
| Tuple4<Arg1, Arg2, Arg3, Arg4> >(object, method); |
| } |
| |
| // 5-arg implementation |
| template <typename Arg1, typename Arg2, typename Arg3, |
| typename Arg4, typename Arg5> |
| struct Callback5 { |
| typedef CallbackRunner<Tuple5<Arg1, Arg2, Arg3, Arg4, Arg5> > Type; |
| }; |
| |
| template <class T, typename Arg1, typename Arg2, |
| typename Arg3, typename Arg4, typename Arg5> |
| typename Callback5<Arg1, Arg2, Arg3, Arg4, Arg5>::Type* NewCallback( |
| T* object, |
| void (T::*method)(Arg1, Arg2, Arg3, Arg4, Arg5)) { |
| return new CallbackImpl<T, void (T::*)(Arg1, Arg2, Arg3, Arg4, Arg5), |
| Tuple5<Arg1, Arg2, Arg3, Arg4, Arg5> >(object, method); |
| } |
| |
| // An UnboundMethod is a wrapper for a method where the actual object is |
| // provided at Run dispatch time. |
| template <class T, class Method, class Params> |
| class UnboundMethod { |
| public: |
| UnboundMethod(Method m, Params p) : m_(m), p_(p) {} |
| void Run(T* obj) const { |
| DispatchToMethod(obj, m_, p_); |
| } |
| private: |
| Method m_; |
| Params p_; |
| }; |
| |
| // Return value implementation with no args. |
| template <typename ReturnValue> |
| struct CallbackWithReturnValue { |
| class Type { |
| public: |
| virtual ReturnValue Run() = 0; |
| }; |
| }; |
| |
| template <class T, typename Method, typename ReturnValue> |
| class CallbackWithReturnValueImpl |
| : public CallbackStorage<T, Method>, |
| public CallbackWithReturnValue<ReturnValue>::Type { |
| public: |
| CallbackWithReturnValueImpl(T* obj, Method meth) |
| : CallbackStorage<T, Method>(obj, meth) {} |
| |
| virtual ReturnValue Run() { |
| return (this->obj_->*(this->meth_))(); |
| } |
| }; |
| |
| template <class T, typename ReturnValue> |
| typename CallbackWithReturnValue<ReturnValue>::Type* |
| NewCallbackWithReturnValue(T* object, ReturnValue (T::*method)()) { |
| return new CallbackWithReturnValueImpl<T, ReturnValue (T::*)(), ReturnValue>( |
| object, method); |
| } |
| |
| |
| #endif // BASE_TASK_H_ |